
Formal Verification Technique for Consistency Checking between equals and
hashCode Methods in Java

Kozo Okano††, Hiroaki Shimba†, Takafumi Ohta†, Hiroki Onoue†, and Shinji Kusumoto†

††Department of Computer Science and Engineering, Shinshu University
†Graduate School of Information Science and Technology, Osaka University

{okano, h-shimba, t-ohta, h-onoue, kusumoto}@ist.osaka-u.ac.jp

Abstract - Java objects used with the standard collection
should override both of its equals and hashCode methods.
Both methods need to satisfy the consistency rules or unex-
pected behaviors may cause faults that are hard to detect. A
previous study checked whether an equals method satisfies
part of the consistency rule. To avoid unexpected behaviors,
however, it is necessary to check that both the equals and the
hashCode methods satisfy the rules. This research proposes
a method which checks the consistency between equals and
hashCode methods in Java. We model Java source code and
check whether both methods satisfy the rules using an SMT
solver called Z3. We applied our proposed method to some
practical projects. As results, we detected some Java source
code that violates the rules.

Keywords: Java, equals method, hashCode method, For-
mal Verification, Satisfiability Modulo Theories (SMT)

1 INTRODUCTION

In Java, an equals method should be rightly overridden in a
class, if its objects are compared. To guarantee the appropri-
ate behavior of the collection framework, when a class over-
rides its equals method, its hashCode method should also be
overridden [1]. Therefore, a document of Oracle API defines
some rules for the methods in an Object class [2]. For exam-
ple, an equals method is necessary to satisfy reflexive, sym-
metric, and transitive properties. A method violating the rules
may cause faults. It is well known that such faults are hard to
detect [1][3][4]. Rupakheti et al. [5]-[7] presented a checker
called EQ, which is designed to automatically detect an equals
method violating the rules. EQ models an equals method and
performs model checking to check whether the equals method
satisfies part of the rules. Since EQ checks only equals meth-
ods, it cannot detect a class that may cause a fault when its ob-
ject interacts with the collection framework. Also, EQ uses a
model description language called Alloy, which cannot model
bit operations. Hence, EQ cannot model equals methods us-
ing bit operations. To avoid the unexpected behavior, we
propose a new method which checks the inconsistency be-
tween equals and hashCode methods. We use a Satisfiability
Modulo Theories (SMT) solver called Z3 [8] to manipulate
arithmetic operations and bit operations which are often used
in hashCode methods. Since the implementation patterns of
equals and hashCode methods are different, we propose new
implementation patterns of hashCode methods. Also, we pro-
pose a method which converts Java code to an expression in a
model description language called SMT-LIB [9]. We applied

our proposed method to some practical projects. As results,
we detected some Java source code violating the rules. The
rest of this paper is organized as follows. Section 2, Section 3,
Section 4, Section 5, Section 6, and Section 7 present the con-
sistency rules for equals and hashCode methods, a details of
Z3, a motivating example, how to convert Java code to SMT-
LIB, an evaluation of our proposed method and discussion,
and the conclusion of this paper, respectively.

2 CONSISTENT RULES

This section presents the rules that equals and hashCode
methods must satisfy.

2.1 Java Object Class

The Java Object class is defined as the “root of the class
hierarchy. Every class has Object as a superclass. All objects,
including arrays, implement the methods of this class.” by an
Oracle API document [2].

2.2 Consistent Rules for equals Methods

An equals method for Object class determines whether some
other object supplied through its argument equals this object.
An equals method must satisfy the following four rules except
for a null object [2].

• reflexive: for any non-null reference value x, x.equals(x)
should return true.

• symmetric: for any non-null reference values x and y,
x.equals(y) should return true if and only if y.equals(x)
returns true.

• transitive: for any non-null reference values x, y, and z,
if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.

• For any non-null reference value x, x.equals(null)
should return false.

The equals method for Object class is defined as follows
[2]. “The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that
is, for any non-null reference values x and y, this method
returns true if and only if x and y refer to the same object
(x == y has the value true). Note that it is generally neces-
sary to override the hashCode method whenever this method

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 77

public class Sample{

private int val;

private String str;

public boolean equals(Object obj){

if (obj == null)

return false;

if (this == obj)

return true;

if (!(obj instanceof Sample))

return false;

Sample that = (Sample) obj;

if (this.str == null){

return that.str == null;

}

return this.val == that.val && this.str.equals(that.str)

}

public int hashCode(){

return val + (this.str == null ? 0 : this.str.hashCode());

}

}

Figure 1: Example of correct implementation of equals and
hashCode methods

is overridden to maintain the general contract for the hash-
Code method, which states that equal objects must have equal
hash codes.”

2.3 Consistent Rules for hashCode Methods
The hashCode method returns a hash code value for the ob-

ject. This method is supported for the benefit of hash tables
such as those provided by HashMap. The hashCode method
must satisfy the following two rules [2]. In this definition,
information implies the returned value from the method in-
voked by its equals method or a field value used in the equals
method. Thus, if some inconsistency exists between equals
and hashCode methods, a rule violation occurs.

• Whenever it is invoked on the same object more than
once during the execution of a Java application, the
hashCode method must consistently return the same in-
teger, provided no information used in equals compar-
isons on the object is modified. This integer does not
need to remain consistent from one execution of an ap-
plication to another execution of the same application.

• If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of
the two objects must produce the same integer result.

The hashCode method for an Object class returns a differ-
ent integer value for each different instance. Figure 1 shows
an example of a correct implementation of equals and hash-
Code. The sample class has val and str as the integer and
String type field values, respectively. The equals method for
the sample class determines whether an argument is the in-
stance of the sample class after it determines whether an ob-
ject passed as the argument is identical to itself. Next, if the

field value str is null, the equals method checks whether the
str in passed object is also null. Finally, it determines whether
the value of val and the string of str are identical. The hash-
Code method for the sample class concatenates the value of
val and the hash value of str. The sample class satisfies the
consistent rules for both the equals and the hashCode meth-
ods.

3 RELATED WORK

Research on the implementation and the design of a method
in Object class proposed a method that automatically gener-
ates the equals and hashCode methods. Rayside et al. pro-
posed a method which automatically generates the equals and
hashCode methods which match the user demands by using
an annotation of classes and methods [10]. This study per-
forms a dynamic analysis of source code. Grech et al. solved
the problem of the Rayside research, which consumes a long
time to verify cyclic objects by analyzing source codes stati-
cally [11]. Also, Jensen et al. proposed an annotation which
guides the user when the user copies objects by the clone
method [12]. Recently, research using model checking by
the Boolean Satisfiability Problem (SAT) solver and the SMT
solver have gained attention. Anastasakis et al. proposed a
conversion method that converts class diagrams of the Unified
Modeling Language (UML) with the Object Constraint Lan-
guage (OCL) to Alloy [13]. This research helps the developer
who would like to perform verification about Alloy without
knowledge of Alloy. Liu et al. suggested scalable bounded
model checking by representing object-oriented languages as
a bit vector of the SMT solver [14]. This research supports
high-speed verification. Balasubramaniam proposed the con-
straint solver MINION that has high scalability and provides
many functions [15]. Also, they proposed a method that auto-
matically generates a constraint solver optimized to each do-
main [16]. This research helps the generation of the domain-
specific constraint solver. Burdy et al. proposed a method that
statically verifies Java source code [17]. This method speci-
fies the code location that may cause exceptions, such as a
NullPointerException. Also, it can verify Java source code
annotated with JML. It is able to check whether each method
satisfies its constraints based on JML.

3.1 EQ

EQ [7] checks whether the equals method in Java satisfies
the consistency rules. EQ receives a type hierarchy and out-
puts whether the equals method satisfies the consistency rules.
Hereafter, a type hierarchy is a structure of classes and inter-
faces represented as a directed acyclic graph (DAG). Except
Object class, the classes and interfaces which have an inheri-
tance relation belong to the same type of hierarchy. EQ con-
sists of the following four steps. 1) Perform path analysis
for the equals method. 2) Analyze the pattern of the equals
method. 3) Convert Java code to a model described as Al-
loy. 4) Verify the model by an Alloy analyzer. EQ has two
problems. One problem is that EQ does not check whether
a hashCode method satisfies the consistent rules. The other
is that, since Alloy cannot model bit operators, Alloy cannot

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java78

public class COSString extends COSBase{

public byte[] getBytes(){

…

}

public boolean equals(Object obj){

return (obj instanceof COSString)&&

java.util.Arrays.equals

(((COSString)obj).getBytes(),getBytes())

}

public int hashCode(){

return getBytes().hashCode();

}

}

Figure 2: hashCode methods violating consistency rules in
PDFBox of Apache

model usual hashCode method using bit operators. In this
study, to solve those two problems, we use Z3 not Alloy.

3.2 Z3

The SMT problem is a decision problem for logical for-
mulas expressed in first-order logic. An SMT solver solves
SMT problems automatically. The SMT solver determines if
a given logic formula, which is a combination of theories ex-
pressed in first-order logic, is satisfiable. If the theories are
satisfied, the SMT solver outputs assignments for variables
that make the given theory satisfied. SAT problems are de-
scribed as theories that consist of only propositional variables.
On the other hand, SMT problems are described as theories
that consist of many propositional types, such as Int, which
are similar to the types in programming language. Also, SMT
problems can define and use functions. In this study, we de-
termine whether both the equals and the hashCode methods
satisfy the consistency rules by using the SMT solver called
Z3 exhaustively [3]. Z3 can use arithmetic operations, bit vec-
tors, arrays, and recode types. Since an SMT solver searches
the answer in bounded space exhaustively, it can verify that
no assignment violates the consistency rules.

4 EXAMPLE SHOWING MOTIVATION OF
THIS STUDY

In this section, we present the motivation of this study by
showing an example.

EQ [7] detected equals methods violating the consistency
rules by experiments for four open-source projects. The class
implemented equals methods which may cause a fault that is
hard to detect. If an instance of a class which implements its
equals method violating the consistency rules is used in the
standard collection, unexpected behavior might cause faults.
For example, if an instance of a class which has the equals
method violating the reflexive rule is used in a standard col-
lection, a contains method of the standard collection cannot
determine correctly whether the collection contains such an
instance. To check the equivalence of instances, a contains

int [] array1 = {3, 6, 2, 9};

int [] array2 = {3, 6, 2, 9};

COSString a = new COSString (array1);

COSString b = new COSString (array2);

// let assume that a.equals(b) but a.hashCode() != b.hashCode()

Set<COSString> database = new HashSet<COSString>();

database.add(a);

if (database.contains(b)) }

// expect behavior

System.out.println(“Users want this.”);

} else {

// but this clause is executed

System.out.println(“However this statement is executed.”);

}

Figure 3: Motivation Example

method of a collection such as List uses equals methods, an
unexpected behavior might occur. Also, if equals methods
judge two instances are equivalent but these two instances
return different hash values, the hashCode methods cannot
perform the correct behavior. For example, HashMap may
contain two instances judged equivalent by the equals meth-
ods. Figure 2 shows an example of the motivation of this
study. This example shows an implementation of the hash-
Code method violating the consistency rules in PDFBox of
Apache [18].

PDFBox uses java.util.Arrays.equals as the equals method
of the COSString class. Also, PDFBox uses the hashCode
method of a byte array as the hashCode method of the COSString
class. Hence, the equals method checks whether two arrays
have the same number of the elements and all corresponding
pairs of the elements in the two arrays are equal. The hash-
Code method checks whether these two arrays have the same
memory address. Therefore, if instances of the arrays are dif-
ferent and these arrays have the same elements with the same
order, the equals method judges these two objects are equiv-
alent but the hashCode method returns a different hash value
for each. In this case, HashSet may contain two instances
judged equivalent by the equals methods.

It is important that both of equals method and hashCode
method are rightly implemented, because incorrect implemen-
tation will causes unwanted behavior when programmer uses
Java Collection Frame Work with it.

For example, let us consider the program in Fig. 3. Let
assume that a.equals(b) holds but a.hashCode() !=
b.hashCode() also holds, in other words, we implement
incorrectly hashCode method against its equals method. The
program in Fig. 3 executes else clause which we do not
expect.

Thus, it is important that we check whether both of equals
method and hashCode method to be rightly implemented. The
paper (EQ [7]) already has proposed a method for checking
equals method, and therefore we focus on hashCode method.

To avoid such unexpected behavior, we propose a new method
that checks whether both equals and hashCode methods sat-
isfy the consistency rules.

Note that the implementation of both of equals method and
hashCode method is programmers’ obligation regardless the

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 79

public class ArEntry implements ArConstants{

private String filename;

public String getFilename() {

return this.filename;

}

public boolean equals(Object it) {

if (it == null || getClass() != it.getClass())

return false;

return equals((ArEntry) it);

}

public boolean equals(ArEntry it)

if (this.filename == null)

return (it.getfilename() == null);

else

return

this.getFilename().equals(it.getFilename());

}

public int hashCode() {

return super.hashCode();

}

}

Figure 4: Conversion example of Java source code

version of Java.

5 OUR PROPOSED METHOD

Our proposed method analyzes the Java code and models
the behavior of both the equals and the hashCode methods in
the model description language called SMT-LIB. The model
is checked by Z3. Our proposed method receives the type
hierarchy of the code and then outputs whether each equals
method satisfies the consistency rules. The proposed method
is based on static analysis.

Our proposed method consists of the following four steps.
1) It performs path analysis for the equals method. 2) It ana-
lyzes the pattern of the equals method. 3) It converts a given
Java code to a model described in SMT-LIB. 4) It verifies
the model by Z3. The path analysis generates a control flow
graph and performs data flow analysis. The data flow analy-
sis specifies what class is referred by a reference variable at
each position of the source code and specifies what methods
are called. Then, specified methods are inlined into equals or
hashCode methods if needed. The equals or hashCode meth-
ods perform some types of procedures. Therefore, pattern
analysis classifies each method into some patterns. Because it
is difficult to directly convert the hashCode procedures which
contain loops including arithmetic operation or library calls,
we analyze this procedure by using heuristic operations. After
pattern analysis, we convert Java code to SMT-LIB based on
information from the pattern analysis. Also, to check for vi-
olations of the obtained consistency rules, we give some con-
straints to the SMT-LIB model. It is very difficult to model
the first consistency rule of the hashCode method. It should

be recalled that the rule is “Whenever it is invoked on the
same object more than once during an execution of a Java ap-
plication, the hashCode method must consistently return the
same integer, provided no information used in equals com-
parisons on the object is modified. This integer need not re-
main consistent from one execution of an application to an-
other execution of the same application.” To model this rule,
it is necessary to model the concept of time. However, since
first-order logic cannot represent the concept of time, an SMT
solver cannot check the first consistency rule of the hashCode
methods. Therefore, to resolve this problem, we introduce a
more strict consistency rule which replaces the first hashCode
rule. On the other hand, since the second consistency rule
of the hashCode methods is representable in first-order logic,
an SMT solver can check the second consistency rule of the
hashCode methods directly. The substituted consistency rule
of the hashCode method is as follows. We define the first rule
below as the subset rule and the second one as the equivalence
rule.

• Subset rule: Set of fields used in hashCode methods
must be subsumed by the set of fields used in equals
methods.

• Equivalence rule: If two objects are equal according to
the equals(Object)method, then calling the hash-
Code method on each of the two objects must produce
the same integer result.

As Equivalence rule, Java specification gives a one-way
rule. Therefore the rule (1)“a.equals(b) then a.hashCode()
== b.hashCode()” is necessary while(1’) “a.hashCode()
== b.hashCode() impies a.equals(b)” does not need
to be held. Our proposed method uses only (1) as Equivalence
rule.

Figures 4 and 5 show examples of converting Java source
code (Fig. 4) to a model written by SMT-LIB (Fig. 5). In
this example, the type hierarchy has three classes. That is,
the classes are an ArConstants interface, ArEntry class which
implements ArConstants and overrides equals and hashCode
methods, and a class implementing ArConstants that does not
override equals and hashCode methods (this class is repre-
sented as UnderARC in Fig. 5). Figure 5 represents the SMT-
LIB model of the source code in the type hierarchy. Figure 5
represents the declaration of types by the class information, a
definition of the method behavior by the method information,
and the constraints used for validation by an equality check.

5.1 Path Analysis
The path analysis is similar to that of [7]. First, our method

searches equals and hashCode methods. Our method traces
the inheritance relation for a class which does not override its
equals and hashCode methods. If we detect the class which
overrides the equals and hashCode methods, we regard the
equals and hashCode methods of its parent class as the equals
and hashCode methods of such a class. If no overrides of the
equals and hashCode methods are found in an inheritance re-
lation, we regard the equals and hashCode methods of Object
class as the equals and hashCode in such a class. Next, we an-
alyze Java byte code using Soot [19] and generate its control

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java80

;Class information
(declare-datatypes () ((Type ArEntry ArConstants UnderARC Object Null)))
...
(declare-datatypes () ((Ref(Rfield (eqnum Int) (hsnum Int) (pointer Int)))))
(declare-datatypes () ((ArEntry(Arfield (filename Ref)))))
(declare-datatypes () ((Object(Ofield (ar ArEntry)(pointer Int)(class Type)))))
(declare-const this Object)
(declare-const that Object)
(declare-const other Object)
(declare-const nobj Object)
...
;method information
(define-fun equalsRef ((r1 Ref)(r2 Ref)) Bool

(ite (and (and (not (= (pointer r1) 0)) (not (= (pointer r2) 0))) (= (eqnum r1)(eqnum r2))) true false))
(define-fun equalsMain ((o1 Object)(o2 Object)) Bool

(and (=> (or (= (class o1) ArConstants) (or (= (class o1) UnderARC)(= (class o1) Object)))
(= (pointer o1)(pointer o2)))
(=> (= (class o1) ArEntry) (and (and (not(= (pointer o2) 0)) (= (class o1)(class o2)))
(or (and (= (pointer(filename (ar o1))) 0) (= (pointer(filename (aro2))) 0))
(equalsRef (filename (ar o1)) (filename (ar o2))))))

)
)
(define-fun hashCode ((o1 Object)) Int(pointer o1))
;equality check
...
(assert (not (equalsMain this this)))
...
(assert (not(iff (equalsMain this that) (equalsMain that this))))
...
(assert (not(=> (and (equalsMain this that) (equalsMain that other))
(equalsMain this other))))
...
(assert (not(=> (not(= (pointer this) 0)) (not(equalsMain this nobj)))))
...
;hashCode check
(assert (not(=> (equalsMain this that) (= (hashCode this) (hashCode that)))))
...

Figure 5: Conversion example of SMT-LIB

flow graph. This control flow graph is represented by Jim-
ple. Jimple represents a Java source code as a three-address
code, in which each expression consists of one operator, two
operands, and one variable which stores the result of the op-
eration. Hereafter, we analyze a Jimple code generated by
Soot.

Our method performs a path analysis. First, our method
enumerates paths by using the obtained control flow graph.
Next, our method performs a data flow analysis for each path,
and specifies what class is referred from a reference variable
at each source code location and what methods are called.
With this information, our method performs inlining of the
method invocations in equals or hashCode methods. How-
ever, since the number of method invocations is very large,
our method limits the inlining. Our method inlines the method
invocations only in the type hierarchy. Also, our method does
not inline a getter method, which is modeled as directly re-

ferring the field values. Although our method does not inline
outer methods, it models methods of Object class, wrapper
classes, Array classes, and Collections, because the behaviors
of these methods are already well known.

Finally, our method trims the path which is unreachable
and not necessary to our model. Since our method models
the equals method as returning true, we trim the path which
returns false. Also, to avoid modeling the null pointer excep-
tion, our method trims the path which includes uninitialized
reference variables. In other words, our method enhances the
performance by trimming the path not necessary to a model.

5.2 Analyzing the Pattern of Methods

In this step, our method analyzes the pattern of the proce-
dure in equals and hashCode methods. By referring to the
modeling rules for each pattern, our method converts Java
source code to SMT-LIB. In addition to the pattern analysis,

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 81

our method checks whether a subset rule is violated in this
step.

5.2.1 Analyzing Patterns of equals Methods
EQ introduce the six pattern of procedures in equals meth-

ods. Our method analyzes what pattern matches the equals
methods. The six procedure patterns are equivalence check-
ing of array, equivalence checking of List, equivalence check-
ing of Set, equivalence checking of Map, type checking, and
state checking. Type checking looks for the existence of the
following: checking by an instance operator in an if expres-
sion, typecasting by a cast operator, type checking by getClass
method in Object class. State checking looks for the existence
of the equivalence checking of field values and checking a
reference variable that is not null. Equivalence checking of
Array, List, Set, and Map checks whether elements in each
structure can be compared by a loop.

5.2.2 Analyzing Patterns of hashCode
Methods

We introduce the pattern of the procedure of hashCode meth-
ods and define the rules of each procedure. The hashCode
method procedure patterns are converting to int, a bit opera-
tion, and an arithmetic operation in loop. Converting to int
checks for the existence of type converting by cast operation
and type converting by library method of wrapper class. The
arithmetic operation in loop checks the existence of the pro-
cedure of an add operation in loop.

5.2.3 Checking of the Subset Rule
Our method performs checking of the subset rule. Our

method collects a set of field variables used in equals and
hashCode methods by analyzing the equals method and the
hashCode methods, and checks whether the set of field vari-
ables used in hashCode methods are subsumed by the set of
field variables used in equals methods. If a hashCode method
invokes the method of the parent classes and other methods,
since the path analysis inlines the method of the parent classes
and other methods in hashCode methods, the set of field vari-
ables used in the hashCode method contains field variables
used in such method. If the values of variables in the method
of parent classes and other methods are changed, the change
affects the return value of equals and hashCode methods. There-
fore, since it is necessary to consider such field values, we
substitute a subset rule for the first rules of hashCode meth-
ods. Two cases occur in the consistence rule of hashCode
methods. One is that hashCode methods use fields values
used in the equals method. In this case, if field values used
in the equals method are not changed, hash values also do
not change. The other case is that hashCode methods use not
only field values used in the equals method but also field val-
ues not used in equals methods. In this case, nevertheless, the
field values used in the equals method do not change, but hash
values possibly change. To check this case, it is necessary to
check relations of field values used in equals and hashCode
methods. Since it is necessary to check all methods which
modify field values, analyzing consumes many resources.

(declare-datatypes () ((Type ArEntry ArConstants UnderARC
Object Null)))

(define-fun subof ((t1 Type) (t2 Type)) Bool
(ite (or (= t1 Null) (= t2 Null)) false

(ite (and (= t1 ArEntry) (= t2 ArConstants)) true
(ite (and (= t1 UnderARC) (= t2 ArConstants)) true

false
)

)
)

)
(declare-fun instanceof (Type Type) Bool)
(assert (forall ((x Type) (y Type))

(=> (subof x y) (instanceof x y))))
(assert (forall ((x Type) (y Type))

(=> (and (instanceof x y) (instanceof y x))
(= x y))))

(assert (forall ((x Type) (y Type) (z Type))
(=> (and (instanceof x y) (instanceof y z))

(instanceof x z))))
(assert (forall ((x Type)) (= (instanceof Null x) false)))
(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x

Object))))
(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x x))))
(assert (forall ((x Type)) (=> (not(= x ArEntry)) (not(instanceof x

ArEntry)))))
(assert (forall ((x Type)) (=> (not(= x UnderARC))
(not(instanceof x UnderARC)))))

Figure 6: Model of the instanceof operation

5.3 Conversion of Java Source Code to
SMT-LIB

This step consists of the following two steps. 1) The basic
structure conversion converts methods, inheritance relations,
classes, and field values to SMT-LIB. 2) The procedure of
the method conversion converts the procedure of the method
to SMTLIB by using information obtained from the step of
analyzing the pattern of methods.

5.3.1 Basic Structure Conversion

Our method represents classes and fields by records in SMT-
LIB. Our method defines fields used in equals and hashCode
methods. It converts all primitive values to Ints in SMT-
LIB. Since equals methods perform only comparisons, Int has
enough power to represent the result of equivalence checking.

Since hashCode methods perform any type of arithmetic
operations and usually perform typecast to int type before
arithmetic operations, our method always converts primitive
types used in hashCode methods to Ints. Our method con-
verts the enumeration field to the enum type in SMT-LIB.
Since reference variables of enum types possibly refer null,
our method models add a NULL value to the identifier intro-
duced by the enum type. Also, since the enum type of hash-
Code methods invokes a hashCode method of Object class,
our methods models the enum type of hashCode methods as
returning different values for each identifier. Our method de-
fines reference type fields by introducing the new record Ref

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java82

Table 1: Some of the simple µ conversion rules
µ(n1+n2) = + µ(n1) µ(n2)
µ(n1−n2) = - µ(n1) µ(n2)
µ(n1∗n2) = * µ(n1) µ(n2)
µ(n1/n2) = / µ(n1) µ(n2)
µ(a1==a2) = = µ(a1) µ(a2)
µ(n1<n2) = < µ(n1) µ(n2)
µ(n1>n2) = > µ(n1) µ(n2)
µ(n1>=n2) = >= µ(n1) µ(n2)
µ(n1<=n2) = <= µ(n1) µ(n2)
µ(n1! =n2) = not(= µ(n1) µ(n2))
µ(b1||b2) = or µ(b1) µ(b2)

µ(b1&&b2) = and µ(b1) µ(b2)
µ(!b1) = not µ(b1)

µ(a1instanceofa2) = instanceof µ(a1) µ(a2)
µ(a1.getClass()) = class µ(a1)

µ(T1.class) = µ(T1)
µ(b1?a1:a2) = ite (µ(b1)) (µ(a1)) (µ(a1))
µ(n1|n2) = bvor µ(n1) µ(n2)
µ(n1&n2) = bvand µ(n1) µ(n2)
µ(n1 ˆn2) = bvxor µ(n1) µ(n2)

representing a reference type. Ref represents the object that
is out of the type hierarchy. Our method models such an ob-
ject based on the hypothesis that such a method satisfies the
consistency rules of equals and hashCode methods. Ref de-
fines a field variable that represents the reference of its object.
It is used in equivalence checking as the Int type field. Our
method defines the equals methods of Ref when a Ref object
is used. Our method does not define hashCode methods of
Ref. It models this as a reference of the hash values. Our
method models the data structure of Java by arrays and lists.
Our method represents arrays, Sets, and Maps using arrays
of SMT-LIB. An array of SMT-LIB is defined by specifying
the type of its index and its type of elements. For example,
specifying the type of index as Int represents the array. Set
is also represented by adding a constraint in which elements
are different from each other in this array. Our method repre-
sents the inheritance relation of a class by the nest of records.
However, it cannot model the behavior of instanceof, which
checks whether a class has an inheritance relation between
other classes. Hence, our method introduces the type named
Type which enumerates the type of adds null to all classes in
the type hierarchy. Our method models the instanceof oper-
ator by representing the relation of Type. Figure 6 shows an
example of an instanceof operation model. The definition of
Object class defines all classes as a field. Object class repre-
sents the runtime objects and defines a pointer as an Int type.
Type defines a field representing where the instance comes
from.

5.3.2 Conversion of the Procedure of Methods

Conversion of the procedure of methods converts Java source
code to SMT-LIB based on information obtained from the
step of analyzing the pattern of methods. First, our method
generates expression trees for each expression represented as
Jimple. Our method specifies the final expression returned by

the return expression by tracing the expression tree and ana-
lyzing how the values of variables are calculated. The opera-
tion in expressions is converted by the converting rules. Table
1 shows the simple converting rules of Java source code to
SMT-LIB. The convert function converts Java source code to
SMT-LIB, where bm and am represent subexpressions of the
boolean type and the numerical type, respectively. Tm repre-
sents arbitrary types. Java represents an expression with infix
notation, whereas SMT-LIB represents expressions by prefix
notation. Also, our method converts the instanceof operator
based on modeling previously described.

5.3.3 Conversion of equals Methods

Our method converts equals methods based on the six pat-
terns obtained from the pattern analysis. The operations used
in type checking are converted as shown in Table 1. Since ver-
ification by an SMT solver is performed on the object level,
cast operations used in the equals method are not converted.
Since statement checking compares values, the comparison
expression is converted as in Table 1. With regard to the
equivalence checking of arrays, Lists, Sets, and Maps, our
method models the method which performs a comparison in
the loop as it performs a comparison of each element of an ar-
ray. For example, let us consider an instance of a class which
has the array as the field, and performs an equals method.
Our method checks whether this equals method performs a
comparison of its field array with the array of its argument by
the same index. Next, our method checks whether a variable
used in the loop header is used as the index of the array. If
those two conditions are satisfied, our method determines it
performs a comparison. Most loop operations in an equals
method match this pattern. Since other loop operations are
rarely performed and SMT-LIB cannot evaluate statements
dynamically, our method does not model such loop opera-
tions.

5.3.4 Conversion of hashCode Methods

Our method converts hashCode methods based on the six
patterns obtained from the pattern analysis. A variable changed
by its type by a cast operation or a method of the Java class li-
brary is represented as the Int type of SMT-LIB. Operands of
bit operations are represented as 8-bit type vector types. Con-
version results of the operations to Int types are obtained by
applying bv2int functions to the result. Although Int of Java is
32 bits, if it models it as 32 bits, modeling takes an enormous
amount of time. Therefore, our method models it as an 8-
bit integer. Bit operations of hashCode methods operate two
operands and do not performs bit operations on one specific
bit. Hence, our method can perform verification. Arithmetic
operations in a loop are analyzed and our method determines
what pattern matches the operations. An arithmetic operation
in a loop can be represented as expression, if the number of
iterations is identical to the length of the array and arithmetic
operations performed in loop do not contain nondeterministic
values. However, the result of this operation is decided after
the loop is terminated. Therefore, our method limits the loop
iteration. This is well used in bounded model checking. Our

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 83

unsat
(error "line 74 column 17: model is not available")

unsat
(error "line 80 column 22: model is not available")

unsat
(error "line 86 column 28: model is not available")

unsat
(error "line 92 column 22: model is not available")

sat
((this (Ofield (Arfield (Rfield 8 9 7)) 3 ArEntry))
(that (Ofield (Arfield (Rfield 8 9 10)) 2 ArEntry)))

Figure 7: Results of verifying the code of Figure 5

method calculates the result of the loop after 0 to 10 itera-
tions. Our method cannot verify all cases but if our method
decides a hashCode method violates the rule, this decision is
absolutely true. Similarly to the equals method, our method
does not model other loop operations.

5.3.5 Additional Constraints
Our method verifies the four consistency rules of equals

methods and the equivalence rule of hashCode methods by
an SMT solver. The SMT solver solves the constraint and
shows the assignment, which is a set of values for the vari-
ables that satisfies all constraints. Therefore, to obtain an ex-
ample of a type hierarchy which violates the consistency rule,
our method introduces the negation of consistency rules as the
constraints.

5.4 Solving Constraints by an SMT Solver
Our method verifies the SMT-LIB expression which mod-

els Java source code by using an SMT solver called Z3. In
general, Z3 determines whether a given set of constraints is
satisfiable. If it is unsatisfiable, Z3 also outputs a counter
example, which is a set of assignments of variables and inter-
pretation of functions.

Since our method uses the negation of the consistency rules
as the constraints in SMT-LIB, if Z3 outputs unsatisfiable,
then we conclude that the source code does not violate the
consistency rules. On the other hand, if Z3 outputs satisfi-
able, we conclude that the source code violates the consis-
tency rules In such a case, Z3 can output a set of assignments
which makes the input true.

Figure 7 shows the results of verification by Z3 for the
source code in Fig. 5. The bottom line shows that the re-
sult of verifying the equivalence rule of the hashCode method
and the other four lines are the results of verifying the consis-
tency rules of equals method. Figure 7 shows that violation of
the equivalence rule is detected. The optional outputs as as-
signments show that two ArEntry objects have the same field
values but their references are different.

6 EXPERIMENTS

In this section, we evaluate our proposed method by exper-
iment. We implement the verification function of the subset

public class HCatFieldSchema implements Serializable {

public enum Category {

PRIMITIVE,ARRAY,MAP,STRUCT

};

String fieldName,typeString;

Category category ;

・・・

public boolean equals(Object obj) {

if (this == obj)

return true;

if (obj == null)

return false;

if (!(obj instanceof HCatFieldSchema))

return false;

HCatFieldSchema other = (HCatFieldSchema) obj;

if (category != other.category)

return false;

if (fieldName == null) {

if (other.fieldName != null) {

return false;

}

} else if (!fieldName.equals(other.fieldName)) {

return false;

}

if (this.getTypeString() == null) {

if (other.getTypeString() != null) {

return false;

}

} else if (!this.getTypeString().equals(other.getTypeString())) {

return false;

}

return true;

}

public int hashCode() {

int result = 17;

result = 31 * result + (category == null ? 0 : category.hashCode());

result = 31 * result + (fieldName == null ? 0 : fieldName.hashCode());

result = 31 * result + (getTypeString() == null ? 0 :

getTypeString().hashCode());

return result;

}

}

Figure 8: A fixed HCatFieldSchema class

rule, part of the modeling to SMT-LIB and the verification
function of our tool. We did not implement the converting
of bit operations and loops. This is some of our future work.
Subsection 6.1 shows the results of applying our tool to some
projects. The results show the effect of methods violating the
subset rule. Subsection 6.2 shows the results for whether our
tool can detect violation of the consistency rules of equals
methods. In the experiments, we first converted Java source
code to SMT-LIB manually. Then, we applied our tool to
that model. Subsection 6.3 shows the execution time of our
tool. Subsection 6.4 shows how often the projects violated the
rules.

6.1 Evaluation of the Subset Rule
We applied our tool to Lucene 4.6.0. Table 2 shows the

results. Numclass represents the number of classes in which
the equals or hashCode methods are overridden. Subset rep-
resents the number of classes satisfying the subset rule. Vi-
olation represents the number of classes violating the subset
rule.

We discuss the four classes that violate the subset rule.
Two of the four classes contain a field variable that stores the

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java84

Table 2: Results of violation of the subset rule

Name NumClass Subset Violation
Lucene 110 106 4

length of the array and is used in only hashCode methods.
The length of array can be calculated by the fields variable of
the array. Also, array is used in both equals and hashCode
methods. Therefore, these classes do not completely violate
the subset rule. Although these fields are declared with a key-
word “final”, our method guarantees that the reference vari-
ables refer always to the same object, but it does not guarantee
that the objects are not changed. Therefore, if the length of
the array changes, the field variable is not renewed and it does
not store the correct value.

One of the four classes contains a field variable that stores
the hash value already calculated for performance improve-
ment. This class returns the hash value generated by convert-
ing the memory address of object to an integer value. Since
this value does not change at runtime of the application, the
class does not completely violate the subset rule.

The last class does not override its equals method and in-
vokes the equals method of Object class. The equals method
of Object class does not use field values. However, this class
overrides its hashCode method and uses a field value. There-
fore, this class violates the subset rule.

6.2 Evaluation of the Equivalence Rule

We evaluated the equivalence rule through the HcatField-
Schema class of Apache Hive. This class receives a bug re-
port which states that the class overrides its equals method but
does not override its hashCode method in the past revision.
This bug is fixed in the later revision. We manually modeled
the two revisions of this class. One contains the bug and the
other fixes the bug. We conclude that our tool works correctly,
if the following two conditions are satisfied. 1) Our tool de-
tects that an unfixed class violates the consistency rules. 2)
Our tool detects that a fixed class does not violate the con-
sistency rules. Figure 6 shows the source code of the fixed
class. This class does not have its parent class. The unfixed
class does not override its hashCode method. If the hashCode
method of the unfixed class is invoked, the unfixed class in-
vokes the hashCode method of Object. The equals method of
this class determines the equivalence of two objects by com-
paring field values. However, the hashCode method returns
true if two objects are the same. Hence, this class violates the
equivalence rule. Since the hashCode method of the fixed
class returns a hash value by performing arithmetic opera-
tions involving a field value used in the equals method, the
fixed class does not violate the equivalence rule. We check
the violation of the equivalence rule by Z3. Z3 determines
the unfixed class violates the equivalence rule, but the fixed
class does not violate the equivalence rule. This result shows
that our method can detect the implementation which violates
the equivalence rule.

Table 3: Comparison of execution times
Name Path length Path analysis Pattern analysis Execution

procedure time
Lucene 16,970 12s 29s 1s 48s
Tomcat 257,590 38s 240s 2s 285s

JFreeChart 3,538,281 11,181s 11,491s 6s 22,689s

Table 4: Number of violated rules
Name equals method hashCode method totalreflexive symmetric transitive null subset equivalence

Lucene 2 0 0 0 4 1 7
Tomcat 11 3 4 3 14 7 35

JFreeChart 1 1 2 0 76 36 113

6.3 Execution Times
To evaluate the cost of checking, we applied our tool to

Lucene 4.6.0, Tomcat 8.0.1, and JFreeChart 1.0.17. We com-
pared the execution times. Figure 3 shows the results of this
experiment. The path length, the name of each step, and the
time represent the total path length of each project, the exe-
cution time of each step, and the total execution time, respec-
tively. Time represents the total execution time.

These results show that our proposed method is effective
when it checks small or medium-sized projects. Our method
can check large projects by limiting and reducing the search
space. The execution time is approximately in proportion to
the total pass length. We do not have an obvious answer to
the cause of this result. Analyzing the cause is future work.
Also, analyzing the procedure of a method and converting the
Java source code to SMT-LIB model consume over 50% of
the total execution time. We can reduce the total execution
time by improving the performance of these steps.

6.4 Evaluation of Projects
We evaluated how often the projects violate the consistency

rules. We applied our tool to Lucene 4.6.0, Tomcat 8.0.1, and
JFreeChart 1.0.17.

Table 4 shows the results of this experiment. Each name
in the rule column represents the number of implementations
violating that rule.

We discuss the causes of the violations of the consistency
rules. The causes of violating the rules of the equals methods
are those of [7]. That is, they are asymmetry null checking,
invalid type checking at type hierarchy, and mistyping. Also,
we model the method invocations for fields as a nondetermin-
istic function, and such modeling may generate wrong mod-
els. Three type hierarchies violating the rules are caused by
the wrong models. This problem can be solved by improving
our tool. For example, we can solve this problem by using
the information of method behavior from users for a method
which is not inlined.

Regarding the subset rule of hashCode methods, some classes
contain a field variable which stores the hash value already
calculated for improving the performance. This method re-
turns the hash value generated by converting the memory ad-
dress of the object to an integer value. Since this value does
not change at runtime of the application, the class does not
completely violate the subset rule. Also, regarding the equiv-
alence rule, many classes override their equals methods but

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 85

do not override their hashCode methods, and so they violate
this rule. This violation is only in JFreeChart, not the other
two projects. Therefore, the policy of implementation of the
project may affect this result. Consequently, we claim that the
projects policy must contain the rule that if a class overrides
the equals methods, then the class must override the hashCode
methods. Also, two classes violate the equivalence rule of the
hashCode methods. This violation is caused by their equals
methods that violate the consistency rules.

7 CONCLUSION

In this paper, we proposed a method that verifies the consis-
tency between both equals and hashCode methods. Also, we
evaluated our method by experiments. Our method analyzes
Java source code and converts the code to SMT-LIB. By using
Z3, our method verifies whether the source code violates the
consistency rules. If thee code violates any of the consistency
rules, our method is able to output counter examples. The
experimental results show that our method detects that some
of the real code includes incorrect method implementations
which violate some of the consistency rules.

We will implement the functions which are not yet imple-
mented in our tool. Also, we will evaluate the performance of
our tool by applying our tool to many practical projects. Ex-
perimental results show that our method detects the inconsis-
tency of some projects, but does not show how many projects
can be checked by our tool. We will apply our method to
many projects and examine the results. These are all future
work.

REFERENCES

[1] J. Bloch, “Effective Java,” Addison-Wesley (2008).
[2] Oracle, “Java Platform, Standard Edi-

tion 7 API Specification” (2013)
http://docs.oracle.com/javase/7/docs/api/.

[3] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
ACM SIGPLAN Notices Homepage archive, pp.92-106
(2004).

[4] M. Vaziri, F. Tip, S. Fink, and J. Dolby, “Declarative
Object Identity Using Relation Types,” Proceedings of
the21st European Conference on Object-Oriented Pro-
gramming, pp.54-78 (2007).

[5] C. R. Rupakheti and D. Hou, “An Empirical Study of
the Design and Implementation of Object Equality in
Java,”’ Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting
of minds, pp.111-125 (2008).

[6] C. R. Rupakheti and D. Hou, “An Abstraction-Oriented,
Path-Based Approach for Analyzing Object Equality in
Java,” Proceedings of the 17th Working Conference on
Reverse Engineering, pp.205-214 (2010).

[7] C. R. Rupakheti and D. Hou, “Finding Errors from Re-
verse Engineered Equality Models using a Constraint
Solver,” Proceedings of the 28th IEEE International
Conference on Software Maintenance, pp.77-86 (2012).

[8] L. deMoura and N. Bjorner, “Z3: An Efficient SMT
Solver,” Proceedings of the 14th international confer-

ence on Tools and algorithms for the construction and
analysis of systems, pp.337-340 (2008).

[9] C. Barrett, A. Stump and C. Tinelli, “The SMT-LIB
Standard Version 2.0” (2010).

[10] D. Rayside, Z. Benjamin, R. Singh, J.P. Near, A. Milice-
vic, and D. Jackson, “Equality and Hashing for (almost)
Free: Generating Implementations from Abstraction
Functions,” Proceedings of the 31st International Con-
ference on Software Engineering, pp.342-352 (2009).

[11] N. Grech, J. Rathke, and B. Fischer, “JEqualityGen:
Generating Equality and Hashing Methods,” Proceed-
ings of the 9th international conference on Generative
programming and component engineering, pp.177-186
(2010).

[12] T. Jensen, F. Kirchner, and D. Pichardie, “Secure the
clones: Static enforcement of policies for secure ob-
ject copying,” Proceedings of the 20th European confer-
ence on Programming languages and systems: part of
the joint European conferences on theory and practice
of software, pp.317-337 (2010).

[13] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“UML2Alloy: A Challenging Model Transformation,”
Proceedings of the ACM/IEEE 10th International Con-
ference on Model Driven Engineering Languages and
Systems, pp.436-450 (2007).

[14] T. Liu, M. Nagel, and M. Taghdiri, “Bounded Program
Verification using an SMT Solver: A Case Study,” Pro-
ceedings of the 5th International Conference on Soft-
ware Testing, Verification and Validation, pp.101-110
(2012).

[15] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A Fast,
Scalable, Constraint Solver,” Proceedings of the 17th
European Conference on Artificial Intelligence, pp.98-
102 (2006).

[16] D. Balasubramaniam, C. Jefferson, L. Kotthoff, I.
Miguel, and P. Nightingale, “An Automated Approach
to Generating Efficient Constraint Solvers,” Proceedings
of the 2012 International Conference on Software Engi-
neering, pp.661-671 (2012).

[17] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An
overview of JML tools and applications,” International
Journal on Software Tools for Technology Transfer,
pp.212-232 (2005).

[18] Apache, “Apache PDFBox - A Java PDF Library”
(2012) http://pdfbox.apache.org/.

[19] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E.
Gagnon, and P. Co, “Soot a Java Optimization Frame-
work,” Proceedings of the 1999 conference of the Cen-
tre for Advanced Studies on Collaborative research,
pp.125-135 (1999).

(Received November 20, 2014)
(Revised Feburary 23, 2015)

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java86

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2015, he

has been an Associate Professor at Department of Computer Science and En-
gineering, Shinshu University. His current research interests include formal
methods for software and information system design. He is a member of
IEEE, IEICE, IPSJ.

Hiroaki Shimba received her BI and MI degrees
from Osaka University in 2012 and 2014, respec-
tively. His research interests include model driven
software development, and consistency checking
between equals and hashCode Methods in Java.
He now works at Fuji Xerox Corp.

Takafumi Ohta received his BI and MI degrees
from Tohoku University in 2013 and from Osaka
University in 2015, respectively. His research in-
terests include bug identification using concolic
execution. He now works at NS Solutions Cor-
poration.

Hiroki Onoue received her BI from Osaka Uni-
versity in 2014. His theme for the bachelor degree
is“ implementation of consistency checking be-
tween equals and hashCode Methods in Java.”He
now works at Sharp Corp.

Shinji Kusumoto received his BE, ME, and DE
degrees in Information and Computer Sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a Professor at the Graduate
School of Information Science and Technology of
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 87

