
A Simulator for the Execution Efficiency Measurement

of Distributed Multi-Database Virtualization

Daichi Kano*, Hiroyuki Sato*, Jun Sawamoto*, and Yuji Wada**

* Graduate School of Software and information Science, Iwate Prefectural University, Japan

** Department of Information Environment, Tokyo Denki University, Japan

sawamoto@iwate-pu.ac.jp

Abstract –In database virtualization technology, the

database of a different kind can be used as if it were a kind

of database. However decline of execution efficiency is left

as one of the research subjects. In improving the execution

efficiency, it is necessary to measure the execution

performance of the virtualization processes, especially in a

distributed environment where multiple databases are

connected via a network. In this study, we have designed

and implemented the simulator for the execution efficiency

measurement. This simulator measures the execution

efficiency by calculating the processing time of

virtualization processes, database processes and

communication processes, and totaling them.

Keywords: Distributed database, Multi-database

virtualization, Simulator, Performance evaluation and

improvement.

1 INTRODUCTION

Today, it is important to discover and analyze the

knowledge and trends which are hidden in large collections

of data on ubiquitous network environment using data

mining technology, and to use them for decision making of

business, etc. However, since those data exists in various

types of distributed databases, an appropriate database has to

be chosen from a variety of databases and accessed properly.

The work of the preparation process of data mining of

acquiring appropriate data is needed, and it becomes a

burden for the data analysis engineer who performs data

mining in the distributed database environment.

To reduce this burden, the multi-database virtualization

technology which enables a user to access various types of

databases as if accessing a single type of databases has been

studied [1-3]. The usefulness has been shown when database

virtualization technology is used to perform data mining.

However, some research issues are pointed out.

Degradation of the execution efficiency by virtualization

processing among the research issues remain by the

previous work as one of the main subjects to be solved.

Since virtualization processing is performed in addition to

normal database processing, it causes execution degradation.

Virtualization processing transforms commands and the

processing result based on the schema, and when especially

the processing result becomes extensively large,

virtualization processing becomes a burden. An

improvement can be expected by using load sharing

technology and parallel processing technology for this issue.

While each load decreases by distributing data processing

and parallel processing, we anticipate the generation of

network delay by low line speed, congestion, etc. Therefore,

factors about the network, such as communication time and

transmission speed, become important as well as processing

of databases.

In improving the execution efficiency, it is necessary to

measure the execution performance of the virtualization

processing, especially in a distributed environment where

multiple databases are connected via a network. But it takes

a lot of databases and large-scale network structure, and

preparation of actual measurement environment is costly

and very difficult. Therefore, the measurement environment

using a simulator is considered.

In this study, we have designed and implemented the

simulator for the execution efficiency measurement. This

simulator measures the execution efficiency by considering

the processing time of virtualization processes, database

processes and communication comprehensively. And we

aim to contribute to quantitative verification and evaluation

of the execution efficiency improvement technique of

virtualization processing.

The rest of this paper is organized as follows: In section 2,

we describe related works. In section 3, we present our

proposed solution for database virtualization. In section 4,

details of the design of the proposed simulator are described.

In section 5, we report the process and some results of

acquiring reference parameters for the time of virtualization

processing. Finally, the paper is concluded in section 6.

2 RELATED WORKS

The performance estimation of database system is an

active research area. They mainly approach this subject by

building performance models of database servers and

running the models for the simulation [1]-[3].

 Garcia [1] presents a simple model based on the queuing

network paradigm using fixed distribution for the service

times of the queues. The parameters used in the model are

adjusted using measurements taken from real servers. This

work demonstrates that extreme simple model is capable of

predicting the performance of metrics of real database

servers with high accuracy and capturing the essential

performance aspects of database servers.

Wu, et al [2]-[3] propose a method for predicting query

execution time for concurrent and dynamic database

workloads. Their approach is based on analytic model rather

than machine-learning model. They use optimizer's cost

model to estimate the I/O and CPU operations for each

individual query, and then use a queuing model to combine

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 69

these estimates for concurrent queries to predict their

execution times. A buffer pool model is also used account

for the cache effect of the buffer pool.

These related works are all targeted for real database

servers. On the other hand, our target is virtualized

distributed multi-database system. And we have designed

and implemented the simulator for the execution efficiency

measurement by considering the processing time of

virtualization processes, database processes and

communication processes. Our main goal is to discover the

bottlenecks of the database virtualization processing.

Some earlier reports [4]-[6] have described the study of

database virtualization technology.

Mori et al. [4] proposed development of a system to

disseminate information actively to all users in a mobile

computing environment. They implemented an experimental

system using the meta-level active multi-database system as

the platform in a mobile computing environment. By

mapping the data of the local database group to a meta-

database through the basic search and build operations, the

system intends to combine data and include different types

of local database group.

The data integration technique, Teiid [5], enables

virtualization of various types of databases; through such

virtual databases, one can access such data sources as

relational databases, web databases, and application

software such as ERP and CRM, etc. in real time. They can

all be integrated for use. In fact, Teiid has a unique query

engine. Furthermore, the real-time data integration is

accomplished by connecting business application software

through the JDBC/SOAP access layer with data sources

which are accessed through the connector framework.

In [6], they similarly describes a module known as a

wrapper that allows accessing and integrating data from

various sources such as RDBs, the Web, and Excel files.

In our previous study [7], we considered the metadata,

UML, ER model, and the XML schema as candidates for

use to accomplish database virtualization. Thereby,

ubiquitous databases can be used as if they were a single

database. We then compared the advantages and

disadvantages of each to analyse them as follows.

In our previous studies [7]-[10], we examined XML

schema advantages and proposed a virtualization method by

which such ubiquitous databases as relational databases,

object-oriented databases, and XML databases are usable, as

if they all behaved as a single database.

3 DATABASE VIRTUALIZATION [7]

Databases of many kinds exist in terms of their associated

data model differences and vendor differences. Regarding

differences among data models, each has different data

representation, and unique associated manipulation. Some

typical examples include the table type of relational

databases (RDB), XML-representation type of XML

databases (XMLDB), and object-oriented databases

(OODB). Even the same model database might have

different features among vendors. Regarding RDB for

example, there might be some differences in SQL and/or

data type representation. The typical example is that we

have MySQL, PostgreSQL, and SQLServer from different

vendors.

These differences according to the model and vendor bring

some undesired results. For example, we might end up

spending more time and labor during application system

development because of the different data models that must

be confronted. For example, we might need to acquire the

right API to handle data of every different type of database.

Virtualization of such different types of modelled databases

to unify the procedures for all of them would probably

impart less of workload and cost, and facilitate their

management in a more flexible manner. Consequently,

virtualization of databases, if it could be done, would

facilitate application system design and database

management as well.

To have a virtualization feature, we will consider the

inclusion of features to manage distributed databases of

similar types, the distributed databases of different types,

and provide location transparency for users, such that they

notice no differences of database structure or location and

become able to use databases of all kinds in a flexible

fashion. Fig. 1 portrays an example view of the database

virtualization technique.

For virtualization of ubiquitous databases in our study, we

will describe the schema information of the real databases,

of which more than one always happens to exist, by creating

and using one common XML schema. We also provide

functionality of data search and update with the XML-based

common data manipulation API.

3.1 XML Conversion Program

We will use an XML schema that provides a flexible

representation capability and a high transparency capability.

To do so, we will produce such a virtualization concept in

which the user would feel as if he or she were locally

manipulating the remote site RDB from a local RDB process

environment. That can be accomplished by converting the

schema information and data information of the local RDB

into the XML schema, and then storing that information into

the RDB that the user would like to operate.

We developed an XML conversion program, XML

Export/Import, as depicted in Fig. 2. We then used such

different vendor RDBs as MySQL, PostgreSQL, and

SQLServer2005 because they are available in the RDB

virtualization system creation environment. We have to

rebuild the XML tree with our XML conversion program

when the distributed database is redefined.

XQuery

DATA

Schema

XML

DATA

Schema

Result

RDB

Schema conversion

module

DATA

Schema

XQuery SQL

Common schema
Query conversion

module

User APs

Query conversion
module

Figure 1: An example view of database virtualization.

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization70

Figure 2: Virtualization technique for RDB databases.

3.2 RDB Schema Conversion into XML

The following describes how the RDB schema is

converted into XML. Fig. 3 presents results of reading the

schema information from the RDB and converting it into

XML. The RDB schema information that is converted into

an XML format includes "table names", "field names"

(associated data types and default values), and "constraints"

(primary key constraint, unique constraint, check constraint,

NOT NULL constraint, and foreign key constraint)

capability.

Regarding the XML tree structure, we described the table

information in the table structure node with its elements of

Field="column name", Type="data type", Null="TRUE or

FALSE" (NOT NULL constraint). We described the schema

information in the schema node with its elements of TYPE=

"constraint name", Table= "table name", Column= "column

name", ReTable= "referenced table name", ReColumn=

"referenced column name", and Check= "rule".

3.3 RDB Data Conversion into XML

The manner in which the RDB data are converted into

XML is described next. Fig. 4 portrays results of reading the

data information from the RDB and conversion into XML.

Because of the XML tree structure, we had

dbname="database name", tblname="table name", and the

actual data columns succeed.

3.4 Virtualization of Databases

We discuss the virtualization of modelled DBs of different

types. For virtualization of different types of modelled DB,

we describe the schema information of each model using a

single common schema. The common schema we will use is

an XML Schema. Around it, we will perform virtualization.

Fig. 1 shows a virtualization method for different database

types. To accomplish schema conversion from a different

modelled database, we first get the schema information from

an RDB to work on. Then we convert it into the correct

XML schema for that RDB. We currently have to re-build

Figure 3: Example of RDB schema information

conversion into XML.

Code Name Latitude Longitude

47401 Wakkanai 45.25 141.41

47404 Haboro 44.22 141.42

… ... … …

RDB

XML DB

Figure 4: Example of actual RDB data conversion into

XML.

MySQL SQLServer PostgreSQL

Database virtualization

XML Schema

RDB Schema

information

Data

information

XMLImport program

XML Export program

<?xml version="1.0" encoding="utf-8" ?>

<dataset dbname="chihou">

 <data tblname="AreaInfo ">

 <Code>47401</Code>

 <Name>Wakkanai</Name>

 <Latitude>45.25</Latitude>

 <Longitude>141.41</Longitude>

 </data>

 <data tblname=" AreaInfo ">

 <Code>47404</Code>

 <Name>Haboro</Name>

 <Latitude>44.22</Latitude>

 <Longitude>141.42</Longitude>

 </data>

 <…>

<?xml version="1.0" encoding"UTF-8" standalone="yes"

<root>

 <rdb Name="mysql">

 <database Name="questionnaire" >
<table_structure Name="member">

 <field Field="samplenum"

Type="integer" Null="FALSE" Default=" />
<field Field="answerday" Type="text"

Null="FALSE" Default=" />

 ….

 </table_structure>

<schema>

 <constraint Type="PRIMARY KEY"

Table="member" Column="samplenum" />

….

<constraint Type="FOREIN KEY" Table="questionnaire"

Column="samplenum" Retable="member"
ReColumn="samplenum" />

….

 </schema>
</database>

</rdb>
</root>

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 71

the XML tree with our schema conversion module when the

distributed database is redefined.

Table 1 presents schema conversion correspondences

between the two. Because any XML DB is already de-

scribed in the XML format, we extract the schema

information without conversion. On the other hand, when

the data are manipulated, our query conversion module

automatically transfers the access results to the application

program.

3.5 Techniques of Execution Efficiency

Improvement

Methods of the execution efficiency improvement of

virtualization processing (improvement in the speed) are as

follows.

 The place of virtualization processing

In order to accelerate, the virtual database environment

which uses load sharing technology and parallel processing

technology is shown in Fig. 5, and we use both user side

virtual DBMS and data side virtual DBMS.

Since the database is distributing through a network and

communication time influences the whole processing time

greatly, it becomes important to reduce the amount of data

transfer for the improvement of the processing speed. Under

the virtualization processing the data volume changes. Even

if the same data is processed, data volume differs by the

schema expression, RDB schema or XMLDB schema.

Therefore, the place where the virtualization processing is

performed could be changed, so that the amount of data

transferred is reduced, and communication time is reduced.

 Database selection

When the same table and data are stored in different

databases, it could be considered to make the load of each

database uniform by acquiring data from a database with

little load. In database virtualization technology, since

virtual processing is added in addition to processing of the

usual database, balancing of the database load becomes

important.

4 DESIGN OF THE SIMULATOR

In this section, we design a simple model based simulator

based on the database virtualization technique described in

Section 3. Only two types of DBs, e.g. RDB and XMLDB,

are considered here.

In improving the execution efficiency, it is necessary to

measure the execution performance of the virtualization

processing, especially in a distributed environment where

multiple databases are connected via a network. But it takes

a lot of databases and large-scale network structure, and

preparation of actual measurement environment is costly

and very difficult. Therefore, the measurement environment

using a simulator is considered.

Two of the followings are the basic requirements needed

by the simulator.

 Measurement for discovering the causes (bottlenecks)

of delay of database virtualization processing can be

performed.

 Measurement when the number of databases connected

Table 1: SQL and associated XML

User

Virtual DBMS

Virtual

DBMS

DB

Virtual

DBMS

DB

Virtual

DBMS

DB

Data side

User side

Virtual

DBMS
Virtual

DBMS
Virtual

DBMS

Figure 5: Virtual database environment which uses load

sharing technology and parallel processing technology.

or the volume of each database becomes large on the

virtual database environment using load sharing

technology and parallel processing technology can be

performed.

4.1 Outline of the Simulator

The main purpose of the simulator is the bottleneck

discovery of database virtualization processing. For the

purpose of this bottleneck discovery, actual processing, such

as virtualization processing, database processing and

communication processing, are not needed and actual

processing is not performed in the simulator. The execution

efficiency is computed simulating and integrating each

processing time. Random elements such as network

 SQL XML

Table
definition

CREATE TABLE

table name…

<xsd: element

name=“table
name”…

Column
definition

CREATE TABLE…

column name...

<xsd: element

name=“column
name”…

Data type
definition

CREATE TABLE…

data type..

<xsd: element…

type=“data
type”…

Default values

CREATE TABLE…

column name DEFAULT
value

<xsd: element…

default=“value”…

Primary key
constraint

PRIMARY KEY <xsd: key…

Unique
constraint

UNIQUE <xsd:unique …

Foreign key
constraint

FOREIGN KEY
<xsd: keyref …

refer =…

NOT NULL NOT NULL
<xsd:…

nillable=“false”...

Method CREATE METHOD

Inheritance

CREATE TABLE…

UNDER upper level

table name

<xsd:

complexType …

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization72

congestion, user's command input timing are simulated and

computed repeatedly to obtain average and variance.

Prerequisites for database access for the simulation are

specified as follows. The data mining and distributed

database environments are considered in the simulator and it

assumes a limited range of database operations here. For

example, database updating and join operations are excluded

in the simulator.

By realizing each component such as database processing

of the simulator as a process and performing inter-process

communication with TCP protocol, the simulator can be

implemented on a single PC or on two or more PCs.

Followings are prepared as an item which can be changed

by setup.

 Number of users
 Number, scale, and kind of databases
 Network line speed

4.2 Measurement Items

The following measurement is performed for the overhead

identification of virtualization processing. About the

reference parameters for the simulation, some preliminary

simple virtual processings are performed beforehand and

they are determined from the result at the time of

implementation.

 Time of virtualization processing

This mainly considers time of conversion such as query

conversion from XQuery to SQL and result conversion from

RDB result into XML format. The measuring method

computes and converts the processing time according to the

length of a query, the data volume of the result, etc. based

on the reference parameters.

 The change in the data volume after virtualization

processing

The data volume fluctuated by virtualization processing of

query result is measured.

 Processing time of a database

The processing time of a database is computed from a

query. For example, in 'Selection', processing time changes

by the existence of indexes. Processing time is changed also

by the timing of the database usage and the number of users.

If there are some database processing performed during

system usage of a user, the wait time of the database

processing will be added to the processing time for the user.

 The amount of data transfer

The data transfer rate is adjusted by changing the network

utilization factor according to the number of users, users'

usage timing, etc. of databases. The system determines the

amount of data volume by what kind of query is issued to

which database by each user, then decides the amount of

data transfer by which network is used for the data transfer.

 Communication time

Communication time is computed using the following

formulas.

Since the network of a database is classified to class 3 in

Network Quality of Service (QoS) of Y.1541 of ITU, delay

by congestion is generated in the probability of 10-3 based

on the class 3 of QoS. Time to be delayed in this case, being

unspecified in the class 3 of QoS and not restricted, we

make it the interval of the retransmission-of-message packet.

The process on the data reception side performs the

measurement of communication time.

4.3 Size of Packet

Packet size is needed for the determination of the rate of

control data or the number of times of communication. The

maximum size (MSS: Maximum Segment Size) of the

packet changes with MTU (Maximum Transmission Unit)

of the data link assuming that the database uses TCP.

The main current data links are Ethernet and PPPoE, and

assuming the protocol uses TCP, MTU of Ethernet is used.

The maximum data volume per packet is set to 1460 bytes,

and the number of times of communication is (Amount of

data transfer /1460) and the rate of control data is (1-1460 /

1518).

4.4 System Configuration

Each component is realized by a process so that the each

component, such as virtual DBMS, can be executed

concurrently. Each component performs inter-process

communication with TCP protocol, and the simulator is run

on a single PC or two or more PCs. Development language

is C and execution environment is Linux.

In order to decide to implement virtualization on user side

or data side depending on the measurement result,

virtualization process could be performed on both sides.

Although designed supposing virtualization of RDB and

XMLDB at this time, when adding virtualization of other

DB kinds, it is made to be easy to extend. By saving the last

setting environment in a file, and calling it easily, the time

and effort for the setup for every simulator use is reduced.

The system configuration of the simulator based on Fig. 5

is shown in Fig. 6. And the component processes of the

simulator are classified into following three.

 Interface process for the simulator user

Processing of a simulator user's interface and management

of the whole simulator are performed. The setup of the

simulator and directions of a simulation start are performed.

 User's process

Processing corresponding to each user using a database is

performed. Execution of XQuery, reference of an XML

schema, etc. are performed and processing time is sent to the

interface process for the simulator user. In a communication

module, calculation and conversion of communication time

are performed from the data volume of the received result.

In a virtualization process module, calculation and

conversion of time of virtualization processing from the data

volume of a result are performed.

 Handling process of each database

Processing of data side virtual DBMS and database

accesses are performed. The processing time for processing

of a database and virtualization processing according to a

setup of the number of data etc. is computed and converted.

factornutilizatioNetworkspeedLine

datacontrolofRatetransferdataofAmount
timeionCommunicat






)1(

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 73

In a communication module, calculation and conversion are

performed for the communication time of query reception

based on the received query. By DB module, calculation and

conversion of the processing time concerning query

execution are performed and data size or the number of data

of the result data are determined. In the virtualization

process module, calculation and conversion of time for

virtualization of data from the number of result data, etc. are

performed.

In a communication module, since a transmitting side

process does not need to consider the existence of delay,

such as a collision, about measurement of a communication

time, the communication module of the receiving side

process measures communication time. Specifically,

measurement of communication time in case a command is

sent to data side virtual DBMS from user side virtual DBMS

is performed by the database side communication module

and in case a result is sent to user side virtual DBMS from

data side virtual DBMS, measurement is performed by the

user side module.

5 REFERENCE PARAMETERS FOR THE

TIME OF VIRTUALIZATION

PROCESSING

In this section, we determine necessary reference

parameters for the simulator model in Section 4. The

parameters are determined using measurements taken from

real virtualization processing and database access.

Simple and preliminary virtualization processing was

performed and the reference parameters of the processing

time of virtualization processing and the fluctuation of the

data volume after virtualization processing were determined.

Although implementation was carried out in Java by the

previous work [7], since Java operates on a virtual machine

and delay by insufficient memory occurs, we re-

implemented the system in C.

At this stage, since database virtualization of only RDB

and XMLDB is assumed, only the reference parameters of

these virtual processings are obtained. Moreover, execution

using an actual database is not performed about processing

of a database, but the function which returns dummy data is

prepared. The execution environment of preliminary

virtualization processing is as shown in Table 2.

The reference parameters obtained in this section are the

references only for the environment shown in Table 2. The

reference parameters should be reconsidered and modified

under other environments.

About the composition of a database, RDB 'Chihou'

assumes the database with the table and column shown in

Table 3, and assumes the XMLDB database 'Tenkou' which

is shown in Fig. 7.

The XQuery used for the execution is as follows.

for $A in fn:doc('Tenkou')//Item let $B :=

fn:doc('Chihou')//areainfo[@Code=$A/Station/Code]

let $C := fn:doc('Chihou')//observ[@Code=$A/Station/

Code] return <result>{$B/@Code, $B/Area, $B/Kana,

$C/Observ, $A//Precipitation, $A//Precipitations}

</result>

Virtualization

process module

Communication

module

Virtualization

process module

Communication

module

Communication

module

Virtualization

process module

DB module

Communication

module

Virtualization

process module

DB module

Communication

module

Virtualization

process module

DB module

Interface process for

the simulator user User's process

Virtualization

process module

Communication

module

Virtualization

process module

Communication

module

Handling process of each database

Figure 6: System configuration.

Table 2: Preliminary virtualization process execution

environment

OS Windows 8.1 pro 64bit

CPU Core i5-3317U1.70GHz 2threads

Memory 4GB

Table 3: Structure of RDB 'Chihou'.

Table name Column name

Areainfo Code, Area, Kana

Observ Code, Observ

Figure 7: Structure of XMLDB 'Tenkou'.

Table 4: The virtualization processing time of the

execution result of the query of RDB (microseconds).

Number of

result data
1 3 5

500,000 657,763 1,660,663 2,658,075

1,000,000 1,280,225 3,270,225 5,205,550

2,000,000 2,501,350 6,092,450 10,225,800

Number of columns

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization74

Table 5: The virtualization processing time of the

execution result of the query of XMLDB (microseconds).

Number of

result data
1 3 5

500,000 855,000 2,285,700 3,721,778

1,000,000 1,714,250 4,554,200 7,202,556

2,000,000 3,398,000 8,741,800 14,397,000

Number of items

Figure 8: Graph of the virtualization processing time of the

execution result of the query of RDB

This XQuery is a query which acquires data from RDB

named 'Chihou' and XMLDB named 'Tenkou'. It is the

query of returning the result which acquired from 'Chihou'

of the 'let' phrase based on the result of 'Tenkou' acquired

with the 'for' phrase, in the form described after 'return'

phrase. From the simple execution result of virtualization

processing, virtualization processing of a query execution

result has measured time.

To determine the reference parameters, queries for above

mentioned processing which return 500,000, 1,000,000 or

2,000,000 result data, are created and executed multiple

times. From the execution results, reference parameters are

determined as shown in Table 4, 5.

For the virtualization processing time of the execution

result of the query of RDB, it is proportional to the number

of result data and the number of columns, as shown in Fig. 8.

Moreover it can be expressed by a linear equation of 0.953

microseconds of inclination and 0.208 microseconds of

intercept of the number of columns. Value by these

parameters and actual measurement are shown in Fig. 9.

For the virtualization processing time of the execution

result of the query of XMLDB, it is proportional to the

number of result data and the number of items, like RDB.

Therefore, it can be expressed by a linear equation of 1.393

microseconds of inclination and 0.317 microseconds of

intercept of the number of item.

The determined reference parameter of each processing

time is shown in Table 6. As mentioned before, these

reference parameters are the references only for the

environment shown in Table 2. But, the main purpose of our

simulator is the bottleneck discovery of database

virtualization processing. So, we do not need to know

absolute virtualization processing time. We need to know

the relative ratio between the virtualization processing time

and the database processing time. Although the database

processing time is not shown yet in this paper, it should be

measured in the same environment as this time, and we

could use it.

Figure 9: Value by reference parameters and actual

measurement of the query of RDB

Table 6: Reference parameter of processing time

(microseconds).

Processing Processing time

Virtualization processing

time of the execution

result of the query of RDB

(0.953 x Number of columns

+0.208) x Number of result

data

Virtualization processing

time of the execution

result of the query of

XMLDB

(1.393 x Number of items

+0.317) x Number of result

data

6 CONCLUSION

In this research, the design and implementation of the

simulator which measure the execution efficiency of the

database virtualization processing in the distributed

environment where multiple heterogeneous databases were

connected with the network have been performed.

However, verification and evaluation of this simulator

itself is left yet. Therefore, it is necessary to advance to the

next stage of performing verification and evaluation of the

simulator, and perform quantitative measurement of

database virtualization processing. From the result, we

discover the bottleneck of database virtualization processing,

and plan to accelerate the bottleneck parts in the future.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant

Number 24500122.

REFERENCES

[1] D. F. Garcia, "Performance Modeling and Simulation

of Database Servers." The Online Journal on

Electronics and Electrical Engineering Vol.2, No.1,

pp.183-188 (2010).

[2] W. Wu, et al., "Predicting query execution time: Are

optimizer cost models really unusable?." IEEE 29th

International Conference on Data Engineering (ICDE),

pp.1081-1092 (2013).

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 75

[3] W. Wu, et al., "Towards predicting query execution

time for concurrent and dynamic database workloads."

Proceedings of the VLDB Endowment, Vol.6, No.10,

pp.925-936 (2013).

[4] K. Mori, S. Kurabayashi, N. Ishibashi, and Y. Kiyoki,

"An Active Information Delivery Method with

Dynamic Computation of Users' Information in Mobile

Computing Environments." DEWS2004 1-A-04,

(2004). (in Japanese)

[5] Teiid: http://www.jboss.org/teiid, Red Hat

[6] DB2: Information Integrator V8.1,

http://www.jpgrid.org/documents/pdf/WORK4/sugawa

ra_ws4.pdf

[7] Y. Wada, Y. Watanabe, K. Syoubu, H. Miida, J.

Sawamoto, "Virtual Database Technology for

Distributed Database in Ubiquitous Computing

Environment," American Journal of Database Theory

and Application, Vol. 1, No.2, pp.13-25 (2012).

[8] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and

T. Katoh, "Virtualization Technology for Ubiquitous

Databases," Proc. 4th Workshop on Engineering

Complex Distributed Systems (ECDS), pp.555-560

(2010).

[9] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and

T. Katoh, "Virtual Database Technology for

Distributed Database," Proc. IEEE 24th International

Conference on Advanced Information Networking and

Applications Work-shops (FINA2010), pp.214-219

(2010).

[10] Y. Wada, Y. Watanabe, K. Syoubu, H. Miida, J.

Sawamoto and T. Katoh, "Technology for Multi-

database Virtualization in a Ubiquitous Computing

Environment," International Workshop on Informatics

(IWIN2010), pp. 89-96 (2010).

(Received October 23, 2014)

(Revised February 9, 2015)

Daichi Kano received M.S. degree in

2015 from Iwate Prefectural University,

Japan. His research interests include

distributed parallel processing and

simulation. He is currently working for

Tokyo Computer Service Co., LTD.

Hiroyuki Sato is currently a Professor

of Faculty of Software and Information

Science, Iwate Prefectural University,

Japan. He received the B.E. in

information engineering from Tsukuba

University in 1982. He joined

Mitsubishi Electric Corporation in 1982.

He received his PhD degree from Tsukuba University in

2003. His research interests include parallel processing, and

high performance computing. He is a member of IPSJ,

IEICE and IEEE-CS.

Jun Sawamoto is currently a Professor

of Faculty of Software and Information

Science, Iwate Prefectural University,

Japan. He received the B.E. and M.E. in

mechanical engineering from Kyoto

University in 1973 and 1975. He joined

Mitsubishi Electric Corporation in 1975.

He received his PhD degree from Tokyo Denki University

in 2004. His research interests include ubiquitous computing,

human-interface system, multi-agent systems, and

cooperative problem solving. He is a member of IPSJ,

IEEE-CS, ACM.

Yuji Wada received the B.E. and the

M.E. in electrical engineering from

Waseda University in 1974 and 1976,

respectively. He joined Mitsubishi

Electric Corporation in 1976. He

received the PhD degree in computer

science from Shizuoka University of

Japan in 1997. He is currently a Professor in the Department

of Information Environment, Tokyo Denki University. His

research interests include database systems, data mining,

and recommendation. He is a member of the IPSJ, the

IEICE, the JSAI, the JSSST and the DBSJ.

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization76

