
Implementation and Evaluations of Recovery Method for Batch Update

Tsukasa Kudo†, Masahiko Ishino*, Kenji Saotome**, and Nobuhiro Kataoka***

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
* Faculty of Information and Communications, Bunkyo University, Japan

** Hosei Business School of Innovation Management, Japan
*** Interprise Laboratory, Japan

kudo@cs.sist.ac.jp

Abstract - For the operation of the nonstop service systems,
some methods have been put to practical use to perform the
batch update concurrently with the online entries. However,
the whole batch update cannot be executed as a transaction by
the conventional methods. So, in the case where a transaction
failure occurs in the batch update, there is the problem that
the rollback of the update cannot be executed with maintain-
ing the isolation from the online entries. For this problem,
we have proposed the temporal update method, by which the
batch update can be executed as a transaction. In this study,
we show the consistency of the batch update result can be
checked before the commit by this method, even in the case
of the concurrent execution with the online entries. Further-
more, we show the following: the recovery of the transaction
failure by this method can be executed without affecting to
the online entries; it is more efficient than the conventional
methods.

Keywords: database, batch processing, transaction, recov-
ery, business system, nonstop service.

1 INTRODUCTION

In the actual business systems, databases are indispensable,
and it is generally updated by two methods. First is the lump
sum update by a great deal of data (here in after, “batch up-
date”), that is the batch processing [5]. It is used widely in
various fields: the settlement of account in the accounting sys-
tems, a great deal of account transfer for entrust company in
the banking systems, and so on. Here, since its target data are
a great many, the impact of the failure affects the extensive
range of business. So, various kinds of mechanisms are intro-
duced to maintain the safety of the system operations. For ex-
ample, the temporary process is executed prior to the definite
process. In the former, various kinds of confirmations are ex-
ecuted beforehand: validity of the input data, the consistency
of the processing results, and so on. After this confirmations,
the definite process is executed to update the business data of
the database.

On the other hand, users enter their data from the many
online terminals concurrently: in the accounting systems, the
sales information is entered from the POS (Point of Sales)
terminals; in the banking systems, the deposit and withdrawal
data are entered from the ATMs (Automatic Teller Machines).
We call this entry “online entry.” As for the online entry,
small amount of data are entered at each time, and they are
reflected into the database immediately. And, their concur-
rent execution is controlled by the transaction processing [5],

[13] of the DBMS (Database Management System). Here, in
the present time, non-stop service systems are used widely:
such as the internet shops, ATMs, and so on. So, both of the
above-mentioned two methods have to update the same table
of the database concurrently.

As for the online entry, since it is executed as a transaction,
its consistency is maintained. Moreover, the concurrency con-
trol is performed by the DBMS using the lock method to ex-
ecute the many transactions as a serializable schedule. So,
transactions are executed without affecting each other based
on the isolation. And, in the case of transaction failure, its
rollback is executed to cancel the entry without affecting the
other entries based on the atomicity and isolation. On the
other hand, if the lock method is used by the batch update for
a great deals of data, then the conflicting online entries are
made to wait for a long while. That is, though the batch up-
date can be executed as a transaction, it causes the problem of
the long latencies of the online entries.

For this problem, the mini-batch is used widely to shorten
the latency. It splits the batch update to the short time transac-
tions, and executes them sequentially [5]. However, the atom-
icity and isolation of the ACID properties cannot be main-
tained as for the whole mini-batch. That is, since the up-
dated data are committed one after another, the rollback of the
whole target data cannot be executed even in the case of the
failure. That is, the update must be cancelled by the restore
of the backup of the pre-update data or by the compensating
transactions. However, in the case where it is executed con-
currently with the online entries, they use the updated data
immediately. So, it is difficult to cancel their result, and these
methods are not practical. As a result, there is the problem
that the mini-batch must complete all the update by removing
the cause of the failure.

This means that the above-mentioned safety of system op-
erations cannot be maintained. In particular, in the actual
system operations, there are faults due to not only the pro-
gram error but also the data quality, operation error, and so
on. Therefore, there is the problem that the complex or atyp-
ical batch update process must be often executed by stopping
the online entries to separate the both updates. For this prob-
lem, we have proposed the temporal update method, which
utilizes the data history of the time series, and shown that the
batch update can be executed as a transaction without long la-
tency of the online entries by this method [9]. However, we
have not evaluated this method in the case of failure yet.

So, our goal in this paper is to evaluate the recovery func-
tion of the temporal update for the transaction failure assum-

International Journal of Informatics Society, VOL.7, NO.1 (2015) 3-11

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

3

Update

process

Commit

Rollback

Consistency is maintained

Consistency is not maintained

Consistency

check

Figure 1: State transition of update transaction.

ing the actual business system operations. First, we show the
requirements for the recovery of the batch update failure due
to the actual business system operations. Here, we assume
the batch updates are executed concurrently with the online
entries in these system operations. Next, based on these re-
quirements, we perform the experiment about this recovery
method by implementing the temporal update prototype.

The remainder of this paper is organized as follows. We
show the batch update model and related works in Section
2, and show the requirement about recovery functions of the
temporal update in Section 3. We show the implementation
and evaluations of these functions in Section 4, discuss on the
evaluation results in Section 5, and conclude in Section 6.

2 RELATED WORKS

2.1 Batch Update Operations and Methods
To maintain the consistency of the database, various kinds

of functions are implemented in the actual business systems.
As for the update process of the online entry mentioned in
Section 1, it is executed as a transaction, and the consistency
of the update result is checked before its commit. And, in the
case where the consistency is not maintained, the rollback is
executed to cancel the update as shown in Fig. 1. For ex-
ample, in the banking systems, if the updated result of the
account transfer becomes minus, it cannot be executed. So,
the rollback of the transaction is executed, and the process is
cancelled. On the other hand, in the case where the consis-
tency is maintained, the commit is executed.

As for the batch update, in the case of being executed in the
different time period from the online entries such as the night
batch, the operations like this can be performed. We show the
dataflow of the batch update process in Fig. 2. Since the batch
update processes a great deal of data in a lump, commits are
usually executed on the way based on the resource constraint.
So, the backup of the target table is performed prior to the
update. Then, in the case where the consistency of the update
result is not maintained, the target table is recovered by the
backup data. That is, the update is cancelled. On the other
hand, in the case where the consistency of the result is main-
tained, the update completes and the target table is used by
the business such as online entries.

Here, there are other recovery methods, for example, the
differential backup function of the DBMS, compensating trans-
action. However, the recovery by the former cancels the up-
date of the other transactions executed simultaneously, and

the latter needs the extra program. So, the recovery of the
batch update is generally executed by above-mentioned pro-
cess.

Thus, even to execute the batch updates safely, the ACID
properties of the transaction must be maintained. That is, as
for atomicity, the state of database has to transit to a state of
either: the commit state of the update in the case of successful
completion; the state of the update cancelled by the rollback
in the case of failure. As for the consistency, the update result
must be checked to satisfy the various constraints before its
completion. Then, the other transactions can access the table
with the consistency. As for the isolation, the target table of
the update must not be accessed until the completion to avoid
the influences on the other processing. In addition, the dura-
bility is maintained by the function of the DBMS as well as
the online entry transaction.

This process is implemented by the lock method for the tar-
get table or data during the batch update. Though the ACID
properties of the batch update are able to be maintained by
this method, there is a problem that the online entries to ac-
cess the target data must wait for a long while. However,
as for the non-stop service systems, since the online entries
are always performed, it is impossible to separate the pro-
cessing time zone between the batch update and them. As
a result, there is a problem that it is difficult to execute the
batch updates with maintaining the ACID properties. So, as
for the concurrency control between the batch update and on-
line entries, some methods have been put into practical use
[13],[14]. However, as for the conventional methods, there
are some problems to apply it to the non-stop service systems.

First, the mini-batch splits the batch update to the short
time transactions and executes them sequentially to shorten
the time to lock each data. However, as for this method, there
is the problem that the ACID properties cannot be maintained
as the whole mini-batch update as mentioned in Section 1.
Next, as for the timestamp ordering, a unique timestamp is
assigned to each transaction [2],[3]. And, if the transaction
accesses the data updated by the larger timestamp transac-
tion, it is aborted. However, since the batch update takes a
long time, it has to be abort in most cases. Moreover, as for
the multiversion concurrency control based on the snapshot
isolation level, it also uses the above-mentioned method [1],
[10]. So, there is the same problem.

T. Kudo et al. / Implementation and Evaluations of Recovery Method for Batch Update4

Figure 2: Data flow of batch update process.

Before online entry

Online entry

Figure 3: Outline of temporal update method.

2.2 Temporal Update Method
To solve this problem, we have proposed the temporal up-

date method [9]. In this method, we use the extended transac-
tion time. Here, the conventional transaction time expresses
when a fact existed in the database [11], [4]. For example, if a
fact existed between the time Ta and Td, its transaction time
period T is expressed by T = {Ta, Td}. That is, the fact is
entered into the database at time Ta, and deleted at time Td

logically to remain the data history. As long as the data has
not been deleted yet, the instance of Td is expressed by now,
which is the current time to query the database [12]. And, we
extend this time to the future.

In Fig. 3, we show the outline of this method. In this
method, the batch update queries the data of the past time
tq , and inserts the update result in the future time tu as shown
by (1) in this figure. On the other hand, the online entry ac-
cesses the data of the current time now as shown by (2). So,
it does not conflict with the batch update. Here, even for the
online entry results during the batch update, it is also neces-
sary to perform the batch update. Thus, the online entry result
is updated similarly to the batch update separately as shown
by (3). We call this update “online batch update” (hereinafter,
“OB update”). Then, by the commit of the batch update as
shown by (4), the batch and OB update results become to be
queried by the other processing.

However, since plural data exist after the commit, valid data

Figure 4: Execution timing of transactions.

have to be queried as shown by (5). The target data are se-
lected as follows: firstly, the latest update data are selected
for each primary key, and they can be identified by the above-
mentioned time attribute Ta; secondly, if there are still plural
data, the target data are determined in the order of the OB
update, online entry and batch update. In other words, the
online entry has higher priority to the batch update. And, the
OB update, which reflects the batch update on the online entry
result, has the highest priority.

We have shown the following in our previous studies of
the temporal update method [6],[7]. Firstly, we can execute
the batch update about the data related to each other concur-
rently with the online entry, though the both are executed sep-
arately by using the conventional methods. Secondly, we can
execute the batch update more efficiently than the mini-batch,
which is the conventional method to update the data unrelated
each other in a lump, in both of the centralized and distributed
database environment. Moreover, we have shown that we can
apply this method even if the completion time cannot be pre-
dicted at the batch update starting [8]. On the other hand, it is
necessary to consider the following to apply this method: the
implementations of the OB update program, the transaction
time and so on; in the case where the online entry frequency
is high, its efficiency declines.

However, these previous studies assume only the case where
the temporal update completed successfully. And, the follow-
ing studies as for the transaction failure have not performed
yet: the study on confirmation of the consistency of the tem-
poral update results before the commit; the study on rollback
of the transaction in the case where some anomaly is detected
as shown in Fig. 1.

3 REQUIREMENT FOR CONSISTENCY
MAINTENANCE

In this section, we explore the requirements to maintain the
consistency of the result of the temporal update, in the case
where it is executed concurrently with the online entries. We
show an execution timing example of transactions related to
the temporal update in Fig. 4. In this figure, Oi shows the
online entry; OBi shows the OB update; C shows the commit
of the batch and OB update. OBi is executed following to Oi

during the batch update.
Since the batch update processes a great deal of data, it is

often composed by plural transactions due to the resource re-

International Journal of Informatics Society, VOL.7, NO.1 (2015) 3-11 5

strictions. On the other hand, at the batch update completion
time te, from the viewpoint of the transaction processing of
DBMS, the whole batch update and the completed OB update
results must not be queried by the other transactions until the
completion of the commit C. In other words, as for the exam-
ple in this figure, the transaction of the batch update and OB3

are prepared to commit as the temporal update. We call this
status “pre-commit.” And, with the passage of time, the other
OB updates complete one after another such as OB4, OB5,
and they are committed in a lump with the batch update at the
time tc.

Here, the consistency of the batch and OB update results
have to be checked before the commit as shown in Fig. 2.
And, if their consistencies are not maintained, the rollback of
these updates must be done. However, since the OB updates
are performed until the commit C, their results have to be also
checked individually by CKi as shown in this figure. And, if
the consistency of OBi is not maintained, both of its rollback
and the corresponding online entry Oi’s rollback are done.

Thus, the requirement to maintain the ACID properties in
the temporal update is as following. First, as for the consis-
tency, it has to be checked prior to the commit as shown in
Fig. 4. Here, the consistency has to be checked by both of
the DBMS functions and the business logics. The latter indi-
cates that these update results have to be queried from only
the batch update application program prior to the commit. In
other words, prior to the commit of the temporal update, its
results and the committed online entries have to be queried to
verify the consistency of the database.

On the other hand, as for the isolation, the batch update
and OB update results must not be queried by the online en-
try application program until the commit. In addition, even if
rollback due to the failure is not completed until the commit
time tu that was scheduled, it must not be queried similarly.
And, as for atomicity, both rollbacks of the batch update and
the OB update have to be executed in the case of failure. That
is, the database transitions to the state where only the online
entries were performed. Moreover, in the actual system oper-
ations, if the batch update was aborted due to the failure, it is
necessary to be rerun by removing the cause of the failure im-
mediately. So, the rollback also has to be executed efficiently.

In addition, since the OB update accompanies the online
entry, it is not executed if the latter is failed. Conversely,
when a failure is detected in the OB update or batch update,
it is necessary to execute their rollbacks in each case. First,
in the case where a transaction failure or consistency anomaly
is detected during the OB update, both rollbacks of it and the
corresponding online entry must be executed to prevent the
anomaly between them. That is, the online entry and OB up-
date have to be executed as a single transaction. Second, in
the case where some consistency anomaly is detected by the
check of the batch update, the commit of only the online entry
can be executed. So, the batch update and all the correspond-
ing OB updates must be cancelled by the rollback.

For example, we show the data manipulation of the resi-
dence indication. In this business, all the address is changed
to be easy to understand, and it is performed in the whole
target district at the same. Here, the data of one household

Household before moving

After Batch update

Before Batch update

(a2)

(b0)

(c0)

Household after moving

Online entry

(c2)

(b1)

(a2)

Figure 5: Update example of mini-batch.

(c2)

(b1)

(a2)

(a0)

(b0)

(c0)

(b2)

(b3)

Figure 6: Update example of temporal update.

must have the same current address, and a resident after mov-
ing has the previous address, which must be consistent with
the current address as timing. So, since the data are related
with each other, it is necessary to process the whole batch up-
dates as a transaction. Therefore, it cannot be executed by
the mini-batch concurrently with the online entries. We show
this example in Fig. 5. Here, “Address” shows the current
address, and “Prev. Address” shows the previous address in
it. In this case, household addresses are changed by the mini-
batch update. Concurrently, by the online entry, a member of
a household (b0) that has not changed yet moves to another
household that has already changed, and its result is shown
by (b1) in this figure. Here, the resident card has the previous
address, and it does not reflect the residence indication. How-
ever, the current address reflects it, though it is same timing
with the previous address. Therefore, an anomaly between
the current address and previous address occurs.

T. Kudo et al. / Implementation and Evaluations of Recovery Method for Batch Update6

On the other hand, we show the case of executing the same
processing by the temporal update method in (1) of Fig. 6. As
for this method, its batch update results are not queried until
the commit. So, as shown by (b1) in this figure, both of the
current address and the previous address of the online entry
result are based on the data before the residence indication.
Similarly, the following data are generated: the batch update
result (b2), which does not reflect the online entry; the OB
update result (b3), which reflects the residence indication on
the online entry result. As shown in Section 2.2, since the OB
update result (b3) has the highest priority, the moving result
reflecting the residence indication is queried.

And, in the case where the transaction failure occurs in this
processing, the following recovery is executed as shown in (2)
of Fig. 6. First, if the OB update fails, then the current address
shown by (b1) remains. So, it causes anomaly among (b1) and
(a2), that is, the residents in the same household have differ-
ent current addresses. Therefore, both of the OB update and
the online entry must be cancelled by the rollback. As a re-
sult, only the residence indication result (b2) remains, which
maintains the consistency. Second, in the case where the on-
line entry fails, its result is same as this. Third, if the batch
update fails by some reason, the batch update and OB update
are cancelled. They are (a2), (b2), (c2) and (b3). So, the on-
line entry result (b1) remains instead of the original data (b0).
That is, only the moving result remains.

As shown above, the requirement to maintain the consis-
tency of the temporal update result is the following. First,
OB update has to be executed in the single transaction with
the corresponding online entry. Second, prior to the batch
and OB update commit, the consistency of their result have to
be checked. Third, if the anomaly is detected, the rollbacks
of the batch and OB update have to be executed without af-
fecting to the online entries. Fourth, this rollback has to be
executed efficiently.

4 IMPLEMENTATION AND
EVALUATIONS

We perform the experiment by the prototype of the bank
account system, because it is a simple business system. And,
verify that the requirements mentioned in Section 3 can be
realized by the temporal update method.

4.1 Implementation of Temporal Update

In Fig. 7, we show the program composition of the tempo-
ral update to realize the data manipulation shown in Fig. 4.
As for the online entry transaction, in the case where the on-
line entry Oi conflicts the batch update, the OB update OBi

and its consistency check CKi are executed. In addition, in
the case where some anomaly is detected, the rollback of this
transaction is executed. On the other hand, as for the batch up-
date, its status becomes pre-commit shown in Section 3, when
its execution and the commit of DBMS has completed. Next,
its consistency check is executed. Then, it waits the comple-
tion of the running online entry transactions that update the
target data of the batch update, and executes the commit.

Figure 7: Program composition of temporal update.

As for the table of database, we use the following three
tables. Bank account table (hereinafter, “account”) stores
the deposit balance of the account, and Commit time table
(hereinafter, “cT ime”) stores the data to manage the tempo-
ral update. In addition, Transfer result work table (hereinafter,
“result”) stores the transfer amount and the result of account
transfer, which is performed by the batch and OB update.

Here, the data of account are queried via following two
views [3] as shown in Fig. 7, and cT ime is used for these
views. First, “view1” is used by the online entry transac-
tions, and the data of the batch update and OB update are not
queried until the commit of the batch update. Of course, the
transaction can query the OB update data made by itself. Sec-
ond, “view2” is used by the batch update, and has the same
function as view1. Also, the batch update program can query
the batch and OB update data even before they are committed.

In Fig. 8, we show the table composition and its query
result via views. Firstly, as for account, if we express its
relation scheme by Ra, then its attributes are expressed by
the following. In addition, Ta and Td are the transaction time
attributes mentioned in Section 2.2, and they are shown in the
form of date for the simplicity.

Ra(K,Ta, Td, P,D,A) (1)

• K: primary key attributes. It is the primary key of the
projection (K,A), which is the attributes for business.

• Ta: addition time of the data. Here, as for the batch and
OB update, it is the start time of the temporal update
and, “@” is set for the first place as shown at (c) of Fig.
8. It is for the case where the completion time of the
batch update cannot be predicted.

• Td: deletion time of the data.

• P : process class. This shows the process that updated
this data: the OB update, the online entry, and the batch
update. The corresponding value set is expressed by
{Pob,Po,Pb}. Here, we make Pob > Po > Pb.

• D: deletion flag. This shows whether the queried data
is the target of the query. So, it has the logical value
{true, false}. And, if D = false then the data does
not be queried. It is used by the OB update to hide

International Journal of Informatics Society, VOL.7, NO.1 (2015) 3-11 7

Figure 8: Data and views of temporal update.

the corresponding batch update result, which data was
deleted by the online entry.

• A: the other attribute. As for the Fig. 8, it shows the
balance of the bank account.

Next, as for cT ime, if we express its relation scheme by
Rc, then its attributes are expressed by the following.

Rc(N,Ta, Tc) (2)

• N : table name updated by the target batch update.

• Ta: addition time of the target batch update and OB
update data.

• Tc: commit time of the target batch update. Until the
completion of the commit C, it is set to “null.”

Here, cT ime controls the query results of views. As for
view1, by the commit of the batch update, the time of this
commit is set to Tc. So, if Tc ̸= null, then the valid data
are queried as follows. We show its SQL expression in (b) of
Fig. 8. First, as for the data P = Pb (batch update result)
or P = Pob (OB update result) in account, if account.Ta =
cT ime.Ta then the value of account.Ta is replaces by the
one of corresponding cT ime.Tc. Next, as for each K, the
data having the largest P from among the data having the
latest Ta are queried. Incidentally, “now” is the current time
mentioned in Section 2.2.

Figure 9: Transition of number of data via view2.

Similarly, we define view2. As for it, the data are queried
for each K, which has the latest Ta then the largest P . Here,
since “@” is larger value than the number, the batch and OB
update result has the latest Ta. For example, if the online entry
is executed concurrently with the batch update, OB update
result is queried.

We show an example of the query result via views in (c)
of Fig. 8. As for the data K = 1, since its batch update
is committed, the query results are same in the both of two
views. As for uncommitted data K = 2, the online entry
result being executed concurrently with the batch update is
queried by view1; its OB update result is queried by view2.

In addition, result is a table about the interface with the
company which entrusted the account transfer: the account
number, transfer amount of each account is indicated by the
company; the result flag is set by the system to each account
data corresponding to the successful or failure, about the ac-
count transfer. Since this table is used as a work file, the data
history is not necessary. However, the result flags are set by
both of the batch and OB update processes. Here, the exe-
cution order of them is undecided. So, we added the process
class P to this table to store both of the results, and select the
data in the same way as account.

4.2 Experimentations and Evaluations

We performed this experiment by the stand alone PC en-
vironment: CPU was Xeon CPU E5-1620 3.60 GHz with 8
GB memory, and its OS was Windows 7 (64 bit); DBMS was
5.6.17 version of MySQL; the transaction control was per-
formed by its database engine InnoDB; the concurrent execu-
tion was implemented by Thread class of Java.

4.2.1 Consistency Check before Commit

To evaluate the requirement mentioned in Section 3, we
performed experiments using the tables shown in Fig. 8. Prior
to each experiment, we set 10 thousand data to the account,
which bank balance was one million; set 9 thousand data of
transfer amount A to result to perform the bank transfer, and
their result flag R (transfer result) was set to “null.” Here, to
examine the account transfer about both of the success and
failure cases, we calculated the value of A by the following

T. Kudo et al. / Implementation and Evaluations of Recovery Method for Batch Update8

Figure 10: Transition of number of data about rollback.

function of K.

A = [111− (K mod 110) + 1]× 104

Concurrently, the online entries were executed from 5 termi-
nals, by which 50 % of the account balance of each bank ac-
count was transferred to its corresponding bank account. Each
was executed in the interval of about 0.3 sec. And, if the on-
line entry conflicted with the batch update, then its OB update
was executed.

To examine whether the consistency of the batch and OB
update can be checked before the commit, we experimented
to query the data via view2. In Fig. 9, we show the exper-
imental results from the pre-commit until the commit com-
pletion in the temporal update. In this figure, “Online Entry”
shows the change of the number of the data in account up-
dated by the online entries with the elapsed time; “Transfer
by OB Update” shows the same number updated by the OB
update. Next, “OB Update” shows the change of the number
of the data in result inserted by the OB update. Here, even
though the bank transfer is failed due to the lack of the ac-
count balance, the result is inserted to result. But, account
is not updated. So, the numbers of the latter two is differ-
ent. In addition, though not shown in this figure, the unchang-
ing number of the data updated by the batch update could be
queried, because the pre-commit of the batch update process
had already completed.

As shown in this figure, we could query the data of each
query time, including the pre-committed batch and OB update
data. Thus, using view2, we could check the consistency of
the database any time before their commit.

Similarly, we examined the case of the rollback, and in this
case, the experimental process to manipulate the data was as
follows. In addition, the above-mentioned online entries were
executed over this experiment, and the data of target tables
were queried after the each stage. Firstly, the temporal update
and its pre-commit were executed; secondly, the rollback of
the batch and OB update was executed; thirdly, the temporal
update was rerun for the data of this time, and its pre-commit
was executed; finally, the commit of the temporal update was
executed.

Figure 11: Comparison of elapsed time for recovery.

We show the experimental result in Fig. 10 similar to Fig.
9. Here the elapsed time of the each stage is shown by the bar
graph and right axis, instead of the total elapsed time from
the beginning. Fig. 10 shows, in addition to the result shown
in Fig. 9, the number of the batch and OB update result be-
comes to 0 after the rollback. That is, the status, in which the
batch and OB update were cancelled at this stage, could be
queried. On the other hand, as for the requirement about the
affecting to the online entries, since this rollback did not af-
fect to the online entries, the number of the online entry data
was constantly increased.

4.2.2 Efficiency of Rollback

To evaluate the efficiency of the rollback in the temporal
update, we compared its elapsed time with the time for the
recovery in the conventional batch and mini-batch update.

Here, as for the temporal update, its rollback can be exe-
cuted by deleting the data from both of the business table and
Commit time table cT ime: as for the former, the target data
set X of account is expressed as following.

X = {x ∈ Ra|(x[P] = Pb ∪ x[P] = Pob) ∩ Ta = @time}

Here, x[P] shows the value of attribute P in x; similarly,
“@time” shows the value of Ta of this temporal update, which
is “@0140310” in Fig. 8. Similar to this, as for cT ime, the
target data set Y is expressed as follows.

Y = {y ∈ Rc|y[N] = account ∩ Ta = @time}

On the other hand, the recovery for the batch and mini-
batch update has to be executed by the following process as
shown in Fig. 2: firstly, the backup of the target data is al-
ways executed before the update; next, in the case of failure,
the data of the target table are cleared, and the target table is
restored by the backup.

In Fig. 11, we show the experimental result for the above-
mentioned recovery in the four cases of the number of data
in account. Here, “Batch-else” shows the total elapsed time
of the backup and clear, and in this experiment we executed
the clear by the “truncate” statement of SQL; “Batch-import”
shows the elapsed time for the restore by the backup data,
which is executed by the “import” statement of MySQL.

International Journal of Informatics Society, VOL.7, NO.1 (2015) 3-11 9

As shown in this figure, as for the both methods, as the data
increase, the elapsed time is longer. However, the rollback of
the temporal update could be executed so efficiently as com-
pared with the method by the backup and restore. For exam-
ple, in the case of the maximum number (1000 thousands),
the elapsed time of the former was about 1/20 of the latter.
Furthermore, most of the elapsed time of the recovery by the
backup was spent for the restore.

5 DISCUSSIONS

Through the implementation and experiments, we confirmed
that the requirements mentioned in Section 3 can be meet by
the temporal update. First, as shown in Fig. 7, both of the
online entry and OB update could be composed as a single
transaction. Second, as shown in Fig. 9, the batch and OB
update results could be queried before their commit. That is,
the consistency about them could be checked before the com-
mit. Third, as shown in Fig. 10, the rollback of them could
be executed without effect on the online entry result. That
is, if anomaly is detected by the above-mentioned check, the
update is cancelled by the rollback. Finally, as shown in Fig.
11, this rollback is very efficient comparing with the conven-
tional recovery method: about 20 times in the experimental
case. Moreover, as shown in Fig. 10, we performed the veri-
fication of the case of rerun. In the actual system operations,
if the anomaly is detected, the cause has to be removed and
the job has to be rerun to complete the business. We think the
result of this verification shows that this method is useful for
the actual system operations.

Here, for the reason of the efficiency of the rollback, it can
be pointed out that the rollback of the temporal update can be
performed by a simple delete command as shown in Subsec-
tion 4.2.2. That is, in the temporal update, the data histories
about the transaction time are managed. So, as shown in Fig.
8, since the batch and OB update results are stored in the ta-
ble as unrelated records to the online entry results, they are
classified by only the attribute of Process class P . As a result,
the target data of the rollback can be deleted efficiently.

In the actual system operations, various kinds of failures
are detected in the batch update and often it has to be rerun.
So, we consider this efficient rollback is useful to shorten the
turnaround of the batch update. Moreover, as shown in Fig.
10, we performed the verification of the case of rerun. In the
actual system operations, if the anomaly is detected, the cause
has to be removed and the job has to be rerun to complete the
business.

Also, for example, even in the case where the batch up-
date can be executed concurrently by using the mini-batch,
the online entries are often stopped for the safety. As a reason
for this, it can be pointed out that above-mentioned various
failures, such as manipulation errors, dead-locks and so on,
become threats of system operations, which may cause the
error of the online entry result and to disturb the online entry.
From the viewpoint of the safety of the batch update opera-
tions, the updated results should be separated from the online
entry results; the consistency of the updated results should be
checked before their commit. And, as above-mentioned, these
requirements can be realized by the temporal update. There-

fore, we think that this method is useful for the actual system
operations.

As for the implementation of the temporal update, some at-
tributes have to be added to the target and related tables: such
as the transaction time, process class, and deletion flag. Also,
some functions have to be composed: the views to query these
tables; the OB update for the online transaction. On the other
hand, the temporal update can be composed without consid-
ering the online entry. That is, for example, unlike the mini-
batch, it is not necessary to split the update into the short time
transactions, or to implement the recovery methods such as
the compensating transactions. So, we consider that the tem-
poral update is useful in the case where the implementation
like this is necessary in other methods.

Lastly, we would like to discuss about the advantages and
disadvantages of this method comparing with the conventional
method. As for the advantages, firstly, this method can exe-
cute the whole batch update as a transaction concurrently with
the online entries. That is, in the conventional method, there
are the following problems about their concurrent executions:
the batch update with table lock can be executed as a transac-
tion, but the online entries must wait for its completion; the
mini-batch can be executed concurrently with the online en-
tries, but it is not a transaction as the whole processing. So,
the latter cannot do its rollback and cannot maintain the iso-
lation. And, the data have to be recovered by the backup data
in the case of failure as for the both. Therefore, this method
is useful for the following batch update: the batch update on
the data related with each other, as shown in Fig. 5; the batch
update which recovery for the failure has to be performed in a
short time. On the other hand, as for the disadvantage, above-
mentioned functions must be implemented for this method as
shown in Fig. 7. So, the application of this method should be
decided based on this trade off.

6 CONCLUSIONS

At the present time, since most of the business systems pro-
vide the nonstop services, the batch update has to be executed
concurrently with the online entries. However, in such the
environment, since it cannot be executed by the conventional
methods as a transaction, some problems remain. So, we have
proposed the temporal update method, and shown it can be
executed as a transaction. However, to apply this method to
the actual business systems, it has to equip the functions for
the failures.

In this paper, we analyzed the batch update operations in
the actual business systems, and showed the requirement to
execute the temporal update safely during the online entries.
Moreover, through the experiment by the prototype, we con-
firmed that the temporal update satisfy these requirements.
Especially, we find that the rollback can be executed so effi-
ciently comparing with the conventional methods. Therefore,
we can extract conclusions that this method is useful in the
actual system operations.

Future studies will focus on the investigation of the appli-
cation fields of this method, and its application evaluations.

T. Kudo et al. / Implementation and Evaluations of Recovery Method for Batch Update10

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 24500132.

REFERENCES

[1] H. Berenson et al., “A Critique of ANSI SQL Isolation
Levels,” Proc. ACM SIGMOD 95, pp. 1-10 (1995).

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman, “Con-
currency Control and Recovery in Database Systems,”
Addison-Wesley (1987).

[3] T.M. Connlly, and C.E. Begg, “Database Systems: A
Practical Approach to Design,” Implementation and
Management, Addison-Wesley (2009).

[4] N. Edelweiss, P.N. Hübler, M.M. Moro, and G. Demar-
tini, “A Temporal Database Management System Imple-
mented on top of a Conventional Database,” Proc. XX
International Conference of the Chilean Computer Sci-
ence Society, pp. 58–67 (2000).

[5] J. Gray, and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” San Francisco: Morgan Kauf-
mann (1992).

[6] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “Evaluation of Lump-sum Update Methods for
Nonstop Service System,” Int. J. of Informatics Society,
Vol. 5, No. 1, pp. 21–28 (2013).

[7] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and
N. Kataoka, “A Mass Data Update Method in Dis-
tributed Systems,” 17th Int. Conf. in Knowledge Based
and Intelligent Information and Engineering Systems
- KES2013, Procedia Computer Science, Vol. 22, pp.
502–511(2013).

[8] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “Application of a Lump-sum Update Method
to Distributed Database,” Proc. of Int. Workshop on In-
formatics (IWIN2013), pp. 49–56 (2013).

[9] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “A batch Update Method of Database for Mass
Data during Online Entry,” Procs. 16th Int. Conf. on
Knowledge-Based and Intelligent Information & Engi-
neering Systems – KES 2012, pp. 1807–1816 (2012).

[10] A. Silberschatz, H.F. Korth, and S. Sudarshan,
“Database System Concepts,” McGraw-Hill Education
(2010).

[11] R. Snodgrass, and I. Ahn, “Temporal Databases,” IEEE
COMPUTER, Vol. 19, No. 9, pp. 35–42 (1986).

[12] B. Stantic, J. Thornton, and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Procs.
10th Int. Symposium on Temporal Representation and
Reasoning and Fourth Int. Conf. on Temporal Logic, pp.
174–180 (2003).

[13] T. Wang, J. Vonk, B. Kratz, and P. Grefen, “A survey
on the history of transaction management: from flat to
grid transactions,” Distributed and Parallel Databases,
Vol. 23, Issue 3, pp. 235–270 (2008).

[14] D.S. Yadav, R. Agrawal, D.S. Chauhan, R.C. Saraswat,
and A.K. Majumdar, “Modelling long duration transac-
tions with time constraints in active database,” Procs.

the Int. Conf. on Information Technology: Coding and
Computing (ITOC’ 04), Vol. 1, pp. 497–501 (2004).

(Received November 15, 2014)

Tsukasa Kudo received the M.E. from Hokkaido
University in 1980 and the Dr.Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka
Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC,

Information Processing Society of Japan and The Society of Project Manage-
ment.

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan in 2007. In 1979, he joined Mitsubishi Elec-
tric Corp. From 2009 to 2014, he was a professor
of Fukui University of Technology. Since 2014,
he belong to Bunkyo University. Now, His re-
search interests include Management Information
Systems, Ubiquitous Systems, Application Sys-

tems of Data-mining, and Information Security Systems. He is a member
of Information Processing Society of Japan, Japan Industrial Management
Association and Japan Society for Management Information.

Kenji Saotome received the B.E. from Osaka Uni-
versity, Japan in 1979, and the Dr.Eng. in In-
formation Engineering from Shizuoka University,
Japan in 2008. From 1979 to 2007, he was with
Mitsubishi Electric Corp., Japan. Since 2004, he
has been a professor of Hosei business school of
innovation management. His current research ar-
eas include LDAP directory applications and sin-
gle sign-on system. He is a member of the Infor-
mation Processing Society of Japan.

Nobuhiro Kataoka received the master’s degree
in electronics from Osaka University, Japan in
1968 and the Ph.D. in information science from
Tohoku University, Japan in 2000. From 1968 to
2000, he was with Mitsubishi Electric Corp. From
2000 to 2008, he was a professor of Tokai Univer-
sity in Japan. He is currently the president of In-
terprise Laboratory. His research interests include
business model and modeling of information sys-
tems. He is a fellow of IEIEC.

International Journal of Informatics Society, VOL.7, NO.1 (2015) 3-11 11

