
International Journal of

Informatics Society

Informatics Society

09/15   Vol. 7  No.2   ISSN 1883-4566



Editor-in-Chief:        Yoshimi Teshigawara, Tokyo Denki University 
Associate Editors:  Teruo Higashino, Osaka University 

 Yuko Murayama, Iwate Prefectural University
 Takuya Yoshihiro, Wakayama University

Editorial Board 
Hitoshi Aida, Tokyo University (Japan)
Asli Celikyilmaz, University of California Berkeley (USA)
Huifang Chen, Zhejiang University (P.R. China)
Toru Hasegawa, Osaka University (Japan)
Atsushi Inoue, Eastern Washington University (USA)
Christian Damsgaard Jensen, Technical University of Denmark (Denmark)
Tadanori Mizuno, Shizuoka University (Japan)
Jun Munemori, Wakayama University (Japan)
Kenichi Okada, Keio University (Japan)
Tarun Kani Roy, Saha Institute of Nuclear Physics (India)
Richard Sevenich, Vancouver Island University (Canada)
Norio Shiratori, Waseda University (Japan)
Osamu Takahashi, Future University Hakodate (Japan)
Carol Taylor, Eastern Washington University (USA)
Sebastien Tixeuil, Sorbonne Universités (France)
Sofia Visa, College of Wooster (USA)
Ian Wakeman, the University of Sussex (UK)
Ming Wang, California State University Los Angeles (USA)
Salahuddin Zabir, France Telecom Japan Co., Ltd. (France)
Qing-An Zeng, North Carolina A&T State University (USA)
Justin Zhan, Carnegie Mellon University (USA) 

Aims and Scope 
The purpose of this journal is to provide an open forum to publish high quality research papers in the areas of 
informatics and related fields to promote the exchange of research ideas, experiences and results. 
Informatics is the systematic study of Information and the application of research methods to study Information 

systems and services. It deals primarily with human aspects of information, such as its qu ality and value as a 
resource. Informatics also referred to as Information science, studies t he structure, algorithms, behavior, and 

interactions of natural and a rtificial systems that store, process, access and communicate information. It also 
develops its own conceptual and theoretical foundations and utilizes foundations developed in other fields.  The 
advent of computers, its ubiquity and ease to use has led to th e study of info rmatics that has computational, 
cognitive and social aspects, including study of the social impact of information technologies. 
The characteristic of informatics' context is amalgamation of technologies. For creating an informatics product, 

it is necessary to integrate many technologies, such as mathematics, linguistics, engineering and other emerging 

new fields. 



Guest Editor’s Message 
Ryozo Kiyohara 

Guest Editor of Twentieth Issue of International Journal of Informatics Society 

 
We are delighted to have the Twentieth issue of 
the International Journal of Informatics Society 
(IJIS) published. This issue includes selected 
papers from the Eighth International Workshop 
on Informatics (IWIN2014), which was held at 
Prague, Czech Republic, Sep. 10-12, 2014.  
The workshop was the eighth event for the 
Informatics Society, and was intended to bring 
together researchers and practitioners to share 
and exchange their experiences, discuss 
challenges and present original ideas in all 
aspects of informatics and computer networks. 
In the workshop 24 papers were presented in 
five technical sessions. The workshop was 
successfully finished with precious experiences 
provided to the participants. It highlighted the 
latest research results in the area of networking, 
business systems, education systems, design 
methodology, groupware and social systems. 

Each paper submitted IWIN2014 was 
reviewed in terms of technical content, 
scientific rigor, novelty, originality and quality 
of presentation by at least two reviewers. 
Through those reviews 15 papers were selected 
for publication candidates of IJIS Journal, and 
they were further reviewed as a Journal paper. 
This volume includes four papers among the 
accepted papers, which have been improved 
through the workshop discussion and the 
reviewers’ comments.  

We publish the journal in print as well as in 
an electronic form over the Internet. We hope 
that the issue would be of interest to many 
researchers as well as engineers and 
practitioners over the world. 
 

 

 

 

 

 

 
 

Ryozo Kiyohara is received B.E., and M.E. 
degrees from Osaka University in 1983, and 
1985. Since joining Mitsubishi Electric 
Corporation in 1985, he had been engaged in 
developing a machine translation system. From 
1989, he had been at the Institute for the New 
Generation Computing Technologies engaged 
in the Fifth Generation Computing Project until 
he returned to Mitsubishi Electric Corporation 
in 1992. He received Ph.D. in 2008 from Osaka 
University in Information Science and 
Technology. He is a professor of Kanagawa 
Institute of Technology since 2012. His current 
research interests include software upgrade 
systems and Java processing in on-vehicle 
information devices. He is a member of IEEE 
(Senior Member), ACM, IPSJ (Information 
Processing Society of Japan), and IEICE (The 
Institute of Electronics, Information and 
Communication Engineers). 
 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 57

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.



58



A Method for Detection of Traffic Conditions in an Oncoming Lane  

Using an In-vehicle Camera  

Ryo Shindo*, and Yoh Shiraishi** 
  

* Graduate School of Systems Information Science, Future University Hakodate, Japan 
** School of Systems Information Science, Future University Hakodate, Japan 

{ g2113016, siraisi }@fun.ac.jp 

 
Abstract - In recent years, we have become able to acquire 

traffic information about traffic congestion through the 

VICS (Vehicle Information and Communication System). 

The VICS is one of the traffic systems that provide drivers 

with information on the state of traffic congestion. However, 

it is difficult for drivers to decide appropriately as to 

whether they should change lanes or make detours because 

the VICS provides information on the causes of traffic 

congestion, such as traffic accidents or road works, in the 

form of icons. Icons are simple representations, but are not 

intuitive and informative. In contrast, presenting images 

recorded by an in-vehicle camera to represent the causes of 

traffic congestion is more effective than presenting icons to 

help users to understand the causes intuitively. When an in-

vehicle camera records the conditions directly in front of a 

moving vehicle, recording the traffic conditions of an 

oncoming lane is simpler than trying to record the 

conditions in the lane in which the user is driving (driving 

lane), as preceding vehicles may obscure the camera view. If 

images representing the conditions in front of preceding 

vehicles are sent to drivers from vehicles in the opposite 

lane in advance, the drivers can avoid the congestion 

effectively. Therefore, we propose a method for detecting 

the traffic conditions of an oncoming lane using an in-

vehicle camera. In addition, we conducted some 

experiments to show the effectiveness of the proposed 

system. In particular, we conducted the experiment about 

estimating the speed of vehicles on an oncoming lane by 

using optical flow toward detecting the traffic congestion in 

an oncoming lane. The experimental results suggest that the 

length of optical flows changes depending on the speed of 

oncoming vehicles and the proposed method has potential to 

detect traffic conditions. 

 

Keywords: in-vehicle camera, detection of vehicles, traffic 

congestion, sensing, estimation of vehicle speed 

1 INTRODUCTION 

Drivers cannot effectively avoid traffic congestion through 

methods such as changing lanes and making detours if they 

are not aware of conditions of traffic congestion, such as the 

causes and ranges of the congestion, in advance. The VICS 

(Vehicle Information and Communication System) is one of 

the traffic systems that provide information on the 

conditions of traffic congestion [1]. In the VICS, 

information such as the volume of traffic, the speed of 

vehicles, and so on is acquired by sensors located on roads 

and sent to the information center. The collected information 

is converted into traffic information. The center sends the 

traffic information to car navigation systems and other in-

vehicle devices. However, the VICS provide information on 

the causes of traffic congestion, such as traffic accidents or               

under construction, in the form of icons. Icons are simple 

representations, but are not intuitive and informative for 

grasping traffic congestion. Therefore, it is difficult for 

drivers to decide how to avoid traffic congestion effectively. 

Currently, Probe Information Systems are in wide-spread 

usage [2]-[4]. Probe Information Systems are systems that 

support aspects of driving, such as navigating and calling for 

attention, by using information collected by sensors 

embedded in vehicles. Probe information includes vehicles’ 

location information, air temperature, engine rotation speed, 

actuating information of the ABS (Antilock Brake System), 

and so on. The collected probe information can be shared 

among vehicles through a network or directly with a 

wireless connection called “inter-vehicle communication” 

[5]-[7]. 

A driver’s front view is partially obscured by the 

preceding vehicles in the driving lane when the driver tries 

to record the causes of the congestion using an in-vehicle 

camera. Consequently, the driver cannot grasp the causes of 

traffic congestion and cannot avoid traffic congestion in 

advance unless the driver comes close to the site of the 

cause. For example, in Fig. 1, the cause is in front of vehicle 

C. Vehicle A’s front view is partially obscured by the 

preceding vehicles in the driving lane. The driver of vehicle 

A cannot grasp the causes of traffic congestion unless the 

driver comes at points of vehicle C. On the other hand, 

vehicles in the oncoming lane (oncoming vehicles), as 

shown vehicle B in this figure, can grasp the causes of 

traffic congestion in the driving lane. The driver of vehicle 

A can identify congestion in front of the preceding vehicles 

and avoid it if the driver gets images representing the causes 

of traffic congestion in his or her driving lane from 

oncoming vehicles in advance. In this figure, vehicle B can 

grasp the causes of traffic congestion in the opposite lane, 

and vehicle A can acquire an image representing the causes 

from vehicle B when vehicle B comes at the point of vehicle 

B*. 

For these reasons, in this study we assume that vehicles 

can share images and we propose a method for detecting 

traffic congestion in an oncoming lane, by using an in-

vehicle camera. This study aims to detect traffic congestion 

in an oncoming lane from the view point of vehicle B in this 

figure.  

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 59-68 59



 
Figure 1: The positional relation between vehicles 

 

This paper is organized as follows. Section 2 mentions 

research related to our study. Section 3 discusses the 

requirements of the proposed system. We outline our 

proposed method in Section 4. Finally, we discuss the 

effectiveness of our proposed method in Section 5. 

2 RELATED WORK 

This section introduces research related to our study. First, 

we discuss research and technologies related to presenting 

and sharing information on traffic conditions in Section 2.1. 

In addition, we discuss research on sharing information on 

traffic conditions by using an in-vehicle camera in Section 

2.2. Finally, we discuss and compare the related research 

and our proposed method in Section 2.3. 

2.1 Presenting and Sharing Information on 

Traffic Conditions 

The VICS is one of the traffic systems that provide 

information on the conditions of traffic congestion [1]. In 

the VICS, information is collected by sensors located on 

roads and sent to information center. The collected 

information is converted into traffic information, such as the 

range of traffic congestion, road obstacles and highway 

regulations. The center sends the traffic information to car 

navigation systems and other in-vehicle devices using 

microwaves in the ISM band and frequency modulation 

(FM), similar to the Radio Data System (RDS) or Data 

Radio Channel (DARC). Thus the VICS can provide traffic 

information in real time. In the VICS, information displayed 

on maps of car navigation systems presents the traffic 

congestion classified into three degrees (sparse, crowded, 

and congested) based on the VICS’s classification of traffic 

congestion (Table 1). VICS also displays icons representing 

highway regulations, hazard to moving traffic, and so on 

(Fig. 2). Drivers can grasp the traffic conditions anywhere 

by observing the displayed information. 

However, the VICS cannot necessarily collect and provide 

this information for every road, because some roads do not 

have devices to collect information. In addition, the VICS 

provide information on the causes of traffic congestion, such 

as traffic accidents or under construction, as icons. 

Therefore, drivers must understand the meanings of the 

icons. However, drivers cannot decide whether or not they 

will avoid traffic congestion effectively because it is 

difficult for them to imagine the scale and the influence of 

the event that is happening in the driving lane from icons. 

Icons provided by the VICS are not intuitive information for 

drivers because they are simple information that does not 

depend on the scale of the causes. 

Presenting camera images representing the causes of 

traffic congestion is effective for intuitive comprehension of 

traffic conditions [8, 9]. Intuitive comprehension enables 

drivers to identify traffic congestion in front of preceding 

vehicles and to avoid it in advance. 

Tamai et al. [8] proposed a system that provides videos 

recorded at the point of traffic congestion for drivers’ 

intuitive comprehension. A smartphone placed on the 

dashboard with a cradle records traffic congestion. The 

system collects and provides the recorded videos effectively, 

considering the time difference and the degree of congestion 

in the videos. The time difference means the difference 

between the time at witch a user receives the video and the 

time when the video was recorded. Tamai et al. [9] proposed 

a method that shares short videos representing the traffic 

conditions on roads with other vehicles. The system grasps 

the speed of a moving vehicle and determines the ranges of 

congestion based on the speed. The speed can be calculated 

based on location information acquired by a GPS sensor 

embedded in a smartphone placed on the vehicle’s 

dashboard. At the same time, the smartphone records a front 

view. The system manipulates the video images considering 

the colors and the shapes, and detects traffic lights when the 

vehicle is in congestion. In addition, the system generates a 

video that is about 10 seconds long. The system grasps the 

speed of the moving vehicle easily by calculating the 

movement of traffic lights in the video because traffic lights 

are stationary objects. 

2.2 Grasp of Traffic Conditions by Using In-

vehicle Cameras 

We will now introduce some research on grasping the 

conditions of roads by using an in-vehicle camera. Kutoku 

et al. [10] proposed a system that detects obstacles on roads 

by using an in-vehicle camera. An in-vehicle camera is 

placed on the dashboard of a moving vehicle and records the 

view in front of the moving vehicle. The system generates 

subtracted images by using the video currently being 

recorded and background video. Background video is a 

video recorded in advance on the same road when it had no 

obstacles. The system detects obstacles by using subtracted 

images. Many researchers tackle the detection of objects on 

roads. However, the objects targeted by such research are 

assumed objects such as a person, a vehicle, and so on. 

Kutoku’s system can detect unexpected objects by using the 

Degree of 

congestion 

(Color) 

General road Inner-city 

high-speed way  

Intercity  

high-speed way 

Congested 

(Red) 

Less than 

10km/h 

Less than  

20km/h 

Less than  

40km/ 

Crowded 

(Orange) 

10km/h-

20km/h 

20km/h-40km/h 40km/h-60km/h 

Sparse 

(Green) 

More than 

20km/h  

More than 

40km/h  

More than 

60km/h  

Figure 2: Icons provided by the VICS [1] 

 

 Table 1: The VICS’s classification of traffic congestion [1] 

R. Shindo et al. / A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera60



subtracted images. To generate subtracted images, the 

system must examine the time and position of the vehicles 

in the two videos because the speed and the positions of 

moving vehicles are different in each video. First, the 

system considers the time between the two videos using the 

scale representing the distance between the cameras in the 

two videos. Second, the system considers the positions of 

moving vehicles in each video by image processing of the 

surface of roads.  According to this processing, the frames 

between two videos are selected and subtracted images are 

generated. The system calculates the recall, the false 

detection rate and the rate of false detection frames based on 

the distance between the moving vehicle and obstacles, by 

using image features of subtracted images. Image features 

include the brightness, the intensity and the edge. Then, the 

system detects unexpected objects considering the 

calculation results.  

Hamao et al. [11] proposed a system that detects traffic 

congestion by using an in-vehicle camera. A smartphone is 

placed on a moving vehicle and records the view in front of 

the moving vehicle. The system sets a region of interest 

(ROI) on images, and calculates the standard deviation of 

the luminance histogram of the oncoming lane in the ROI. 

The system detects congestion based on the calculated 

standard deviation of the luminance histogram between 

congested roads and uncongested roads. 

2.3 Comparing the Related Works with Our 

Method 

Providing information on the conditions of traffic 

congestion using the VICS is not intuitive for drivers 

because the VICS presents such information as icons. The 

method proposed by Tamai et al. demonstrates that 

presenting information on traffic congestion as camera 

images taken by an in-vehicle camera is effective. However, 

in the case where preceding vehicles are moving in front of 

the vehicle with an in-vehicle camera, the camera cannot 

record the state of traffic congestion and its causes in the 

area in front of the preceding vehicles. Therefore, recording 

traffic congestion from an oncoming lane is easier than from 

a driving lane. To grasp the causes of the congestion by 

using an in-vehicle camera, it is necessary to detect the 

congestion and its range. In addition, to grasp the range and 

detect the congestion, it is necessary to detect the speed of 

oncoming vehicles. Grasping the ranges of the congestion 

and detecting the congestion are possible by acquiring the 

speed from oncoming vehicles with inter-vehicle 

communication. However, the moving vehicle must acquire 

the speed from a number of oncoming vehicles. On the other 

hand, detecting congestion is possible with only one moving 

vehicle with an in-vehicle camera. The method proposed by 

Kutoku et al. that detects road obstacles can detect 

congestion, but has difficulty detecting the speed of 

oncoming vehicles.  The method proposed by Hamao et al. 

cannot detect the speed of oncoming vehicles.  In addition, 

this method cannot discriminate between oncoming vehicles 

and objects behind them in images. 

3 REQUIREMENTS OF THE PROPOSED 

SYSTEM 

For intuitive grasping of the conditions of traffic 

congestion, presenting camera images is more effective than 

presenting icons. In addition, recording the conditions of 

oncoming lanes is easier than recording that of driving lanes 

when an in-vehicle camera records the view in front of a 

moving vehicle. Grasping the ranges of the congestion is 

required in order to detect the causes of the congestion. 

Grasping the ranges of the congestion is, namely, detecting 

the beginning and ending point of the congestion. Moreover, 

the speed of oncoming vehicles is required in order to grasp 

the ranges. In an image, oncoming vehicles and background 

objects behind them must be distinguished between when 

image processing is applied to the image. In this study, 

optical flows generated between two images are calculated 

in order to grasp the speed of oncoming vehicles. The 

optical flow is a line that represents the movement of objects 

between two images as a vector. The length of optical flow 

(LOF) generated from oncoming vehicles is calculated, and 

the speed of oncoming vehicles is calculated based on the 

length. In this way, the congestion is detected. LOF depends 

on the distance between a moving vehicle with an in-vehicle 

camera and oncoming vehicles, and the relative speed 

between the vehicles. The distance between the moving 

vehicle and oncoming vehicles is smaller than the distance 

between the moving vehicle and the objects behind 

oncoming vehicles.  The movement of oncoming vehicles 

per a unit of time is different from that of the objects behind 

oncoming vehicles. In this way, oncoming vehicles and 

objects behind them are distinguished. In addition, LOF 

changes depending on not only the change in the speed of a 

moving vehicle but also the speed of oncoming vehicles. 

The speed of the moving vehicle can be calculated by using 

location information acquired by the GPS sensor embedded 

in the driving recorder and the smartphone.  

Therefore, the speed of oncoming vehicles can be 

estimated by calculating the speed of the moving vehicle 

and the optical flows on the images from the in-vehicle 

camera. In addition, traffic congestion can be detected and 

images representing the causes of traffic congestion can be 

generated. 

4 PROPOSED METHOD 

4.1 Summary of the Proposed System 

On the basis of the considerations as mentioned above, we 

propose a system to solve these problems. Figure 3 shows 

the positional relation of a moving vehicle, oncoming 

vehicles, and a cause of traffic congestion. 

The proposed system needs to perform the following 

functions. 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 59-68 61



 

Figure 3: The positional relation between vehicles and 

 the cause of congestion  

 

 

A) Detect vehicles in an oncoming lane 

B) Estimate the speed of oncoming vehicles 

C) Detect traffic congestion 

D) Find images representing the causes of traffic 

congestion  

E) Estimate the range of traffic congestion 

 

Figure 4 shows an overview of the proposed system. 

First, a driver mounts a smartphone on the dashboard and 

the smartphone records the front view of an oncoming lane.  

At the same time, the speed of the moving vehicle is 

acquired by a GPS sensor. Second, the system generates the 

optical flows between two images recorded by the 

smartphone. In addition, the system calculates the LOF of 

each relative speed and stores the dataset of LOF and the 

relative speed in the Optical Flow Length Database (Optical 

Flow Length DB). Third, the system defines an interpolation 

function by using the dataset in the database to calculate the 

relative speed from LOFs that are not stored in the database. 

Fourth, the system estimates the speed of oncoming vehicles 

by using the newly calculated LOF and the function. The 

system decides that congestion is occurring in an oncoming 

lane if the estimated speed falls below the specified 

threshold. At the same time, the system generates an image 

representing the cause of the congestion by searching for an 

image recorded at the beginning of the congestion. Finally, 

the system generates the range of the congestion by using 

location information from the beginning and ending point of 

the congestion, and presents the image and the range on a 

map application. 

4.2 The Way to Calculate Optical Flows 

In this section, we explain how to calculate optical flows 

of oncoming vehicles in in-vehicle camera images. There 

are two general ways to calculate optical flows called Phase 

Correlation and Block Matching Method [12, 13].  Phase 

Correlation is a method that calculates optical flows using a 

contrast equation of luminance gradient with constraint 

conditions. Phase Correlation can calculate optical flows, 

but it makes errors and is especially affected by rapid 

luminance changes. Block Matching Method is a method 

that uses a particular part of an image as a template, and 

calculates optical flows by exploring the parts that fit the 

template in the next time image.  It can calculate optical 

flows steadily, but it is more computationally expensive than 

Phase Correlation. In addition, Block Matching Method 

depends on the size and the features of the block in an image 

when optical flows are calculated considering the rotation 

and scaling of an image. 

 

 
Figure 4: An overview of the proposed system 

 

 
Figure 5: Optical flows drawn by LK method 

 

In this study, vehicles and other objects in an oncoming 

lane are enlarged in the image because they are recorded by 

a moving vehicle on an opposite lane. Therefore, in this 

study, Block Matching Method is not appropriate to 

calculate optical flows. Our system uses the LK (Lucas-

Kanade) method that is classified into Phase Correlation and 

calculates optical flows by detecting feature points of an 

image in order to reduce the errors of rapid luminance 

changes (Fig. 5).  

However, in outdoor environment, it is difficult to diminish 

all noises caused by rapid luminance changes even with the 

use of the LK method.  So the extraordinary optical flows 

are generated by these noises. Therefore, the proposed 

method sets thresholds for the length and the angle of the 

flows, and diminishes the flows that are out of the ranges 

decided by the thresholds. As a result, the extraordinary 

flows caused by the false detection of feature points are 

diminished.  

4.3 Grasping the Conditions of Congestion 

In order to grasp the conditions of congestion, the system 

uses two databases. One is an Image Database (Image DB) 

that stores recorded images and location information, and 

the other is an Optical Flow Length Database (Optical Flow 

Length DB) that stores LOF and the corresponding relative 

speed. Optical Flow Length DB is used to detect oncoming 

vehicles and to estimate the speed of oncoming vehicles. 

Table 2 and Table 3 show the structure of each database. 

4.3.1 Detecting Vehicles , Estimating the 

Speed of Oncoming Vehicles 

When optical flows are generated from objects in an 

oncoming lane in images, the flows generated outside the 

zone of an oncoming lane are unnecessary. Therefore, we 

define a region of interest (ROI) so that the oncoming 

R. Shindo et al. / A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera62



vehicles fit into the region in an image (Fig. 6), and optical 

flows are generated from the objects in the ROI. 

The speed of the moving vehicle is calculated by using 

location information acquired by a GPS sensor of a 

smartphone when a driver drives the vehicle. We define the 

value representing the speed of the moving vehicle as Mspeed, 

and the speed of oncoming vehicles as Ospeed. Then the 

relative speed Rspeed is calculated using formula (1). 

 

 𝑅𝑠𝑝𝑒𝑒𝑑 = 𝑀𝑠𝑝𝑒𝑒𝑑 + 𝑂𝑠𝑝𝑒𝑒𝑑 (1)  
 

As this study considers grasping the speed on general 

roads, the ranges of Mspeed and Ospeed are as follows: 

 

 0 ≦ 𝑀𝑠𝑝𝑒𝑒𝑑 ≦ 60 (2)  
 

 0 ≦ 𝑂𝑠𝑝𝑒𝑒𝑑 ≦ 60 (3)  
 

Then the range of Rspeed is as follows: 

 

 0 ≦ 𝑅𝑠𝑝𝑒𝑒𝑑 ≦ 120 (4)  
 

The relative speed is acquired from the Optical Flow 

Length DB by querying the database with the LOF newly 

calculated from images. The system estimates the speed of 

oncoming vehicles by subtracting the speed of the moving 

vehicle from the relative speed. 

However, the relative speed corresponding to the LOF 

specified in a query might not be stored in the database 

because the relative speed is continuous, not discrete. The 

system provides an interpolation function by using LOFs 

stored in the database. Then the relative speed 

corresponding to any LOF can be calculated by using the 

function. The interpolated value is returned as a relative 

speed when LOF that is not stored in the database is given to 

the function as an argument. 

As we described previously, LOFs fluctuate according to 

the distance between an in-vehicle camera and an oncoming 

vehicle, the relative speed, the speed of the moving vehicle, 

and the speed of an oncoming vehicle. The distance between 

the in-vehicle camera and oncoming vehicles is shorter than 

that between the camera and objects behind oncoming 

vehicles. Therefore, the LOF generated from oncoming 

vehicles is longer than that generated from background 

objects by the vehicle’s moving. Consequently, the speed of 

the moving vehicle is higher than interpolated relative speed. 

In this way the system can distinguish oncoming vehicles 

from background objects and detect oncoming vehicles. 

4.3.2 Detecting Traffic Congestion 

The causes of traffic congestion are detected considering 

estimated the speed of oncoming vehicles (SOV). The LOF 

is calculated, and SOV is estimated for each image when the 

system detects oncoming vehicles. According to the VICS’s 

classification of traffic congestion, the speed of vehicles in a 

congested public highway is 10 [km/h]. Therefore, the 

system judges the location of congestion to be a location in 

which SOV is continually estimated to be less than 10 

[km/h]. At the same time, the image of where congestion 

begins is a few images before that of the location where an 

oncoming vehicle is detected at the beginning. In addition, 

the system considers a location where the SOV is 

continually estimated to be less than 0 [km/h] or more than 

10 [km/h] as the end of the congestion. At this time, IDs of 

images taken at the beginning and ending point of traffic 

congestion are saved. The system queries the Image DB 

with the saved IDs, and acquires the location information of 

the beginning and ending point of the congestion and an 

image representing the cause of the congestion. 

5 EXPERIMENT AND DISCUSSION 

5.1 Experiment Environment 

In order to evaluate the effectiveness of our proposed 

method, we conducted two experiments. First, we conducted 

an experiment for determining the statistical value of optical 

flows stored in the Optical Flow Length DB. In addition, we 

conducted an experiment for evaluating the accuracy of 

SOV estimation for detecting the traffic congestion in an 

oncoming lane by using videos recorded in the actual 

environment. 

5.2 Experiment for Evaluation 

To generate optical flows and to estimate SOV, we 

implemented a program with OpenCV libraries. The 

program reads images, generates optical flows between two 

successive images, and draws the optical flows onto output 

images. To calculate optical flows, we used 

“cvGoodFeaturesToTrack” method which finds the most 

prominent corners in the image in OpenCV libraries.  To 

calculate optical flows, we used “cvCalcOpticalFowPryLK” 

Attribute Name Detail 

ID Identification number of images 

Image Recorded image 

Lat Latitude of recording location 

Lon Longitude of recording location 

Attribute Name Detail 

Rspeed Relative speed between a moving 

vehicle and an oncoming vehicle 

Len LOF generated from oncoming 

vehicles 

Table 2: The table structure of Image DB 

Table 3: The table structure of Optical Flow Length DB 

Figure 6: ROI of generating optical flows 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 59-68 63



method which is an iterative Lucas-Kanade method using an 

image pyramid. A vehicle is equipped with an iPhone 3GS 

placed on the dashboard with a cellular phone cradle, to 

record video as the vehicle moves. We call this vehicle a 

‘recording vehicle’. The resolution of videos recorded by the 

iPhone 3GS is 640×480 pixels, and the frame rate of the 

videos is 30 [fps]. The rectangular ROI sized 430×210 

pixels is placed at the bottom right of images so that 

oncoming vehicles fit into the ROI, and optical flows are 

generated within the ROI. To grasp the speed of the 

recording vehicle, we used the GPS sensor of an iPhone 5 

and implemented an iOS application that calculates the 

speed of the recording vehicle by acquiring location 

information. To estimate the SOV, we defined three 

dimensions spline function as an interpolation function by 

using the dataset of the relative speed and LOF stored in the 

Optical Flow Length DB. The system gives the spline 

function with LOF as an argument, and acquires the relative 

speed. Then the system calculates SOV by subtracting the 

speed of the recording vehicle from that of the relative speed. 

In the experiment to determine parameters, four parked 

oncoming vehicles made congestion on a single lane. In 

addition, the distance between the vehicles is changed 

because the distance in actual traffic congestion is non-

constant. The driver drove the recording vehicle and past the 

four parked vehicles five times at different speeds each the 

inter-vehicular distance, while the iPhone 3GS recorded the 

oncoming vehicles. Relative speed was equivalent to the 

speed of the recording vehicle because the oncoming 

vehicles were parked. We examined parameters such as the 

time interval between two successive images and the 

statistical value of LOF for generating optical flows 

considering the 15 recorded videos. In addition, we defined 

the interpolation function with parameters derived from the 

results of the preliminary experiment and the datasets of 

relative speed and LOF in the database. We considered 

estimation accuracy with the interpolation function. 

5.2.1 Deciding Parameters for Generating 

LOF 

We describe the result of the determination of parameters 

for generating LOF. Determined parameters are the time 

interval between two images in the video (Interval), and the 

statistical values of LOF (Len) stored in the Optical Flow 

Length DB. Table 4 shows Interval and Len considered in 

this experiment. 

The LOF generated in an image is counted, and Len is 

calculated. The values of Interval are 2, 3, 4, and 8. Interval 

between successive images is 1 when a video is divided into 

multiple images. For example, if Interval is 2, LOF is 

generated between the nth image and (n+2)th image. It is 

desirable that Len increases in proportion to increasing of 

the relative speed and the degree of increase of Len is large. 

LOF is acquired when a recording vehicle passes beside the 

lead oncoming vehicle.  Figure 7 shows the environment of 

the preliminary experiment. 

Figure 8, 9, 10, and 11 show the changes of Len for each 

Interval. The graph (a), (b) and (c) in each figure show Dist 

= 2, 4 and 6 [m] respectively. Dist means the distance 

between two vehicles in an oncoming lane.  Selecting Len in 

the same relative speed that has the same value on different 

Dist is desirable because the distance of two vehicles is not 

constant in actual environment. In Fig. 8, 9, 10 and 11, blue 

line shows average (ave), red line shows standard deviation 

(stddev), green line shows median (med), and purple line 

shows maximum (max). But these figures do not include 

variance (var) because var is larger than the other Len. 

In Fig. 11, Len in Interval = 8 does not increase 

monotonically depending on the increase of the relative 

speed. We suppose that the movement of objects between 

two images is too large in Interval = 8, and the feature 

points detected in a previous image may disappear in the 

next image, causing extraordinary LOF to be generated.  

Consequently, Len in Interval = 8 is not appropriate to 

generate optical flows.  

Figure 12 shows the changes of variance (var) each 

Interval. In Fig. 12, blue line shows Interval = 2, red line 

shows Interval = 3, green line shows Interval = 4, and 

purple line shows Interval = 8. var fluctuates widely in 

Interval = 3 and 4 shown in Fig. 12. In Interval = 2, var in 

the same relative speed are different in each the distance 

between oncoming vehicles. In addition, standard deviation 

(stddev) is similar to Fig 12. We suppose that var and stddev 

are influenced greatly by the false detection of feature points. 

Therefore, variance and standard deviation are not 

appropriate to Len. 

In Interval = 2, average (ave) and median (med) stand still 

regardless of the increase of the relative speed. In addition, 

maximum (max) increases depending on the increase of the 

relative speed, and the increased amount of it is small. We 

suppose that estimating SOV becomes susceptible to the 

noises of calculating optical flows if increased amount of 

LOF is small. In Interval = 3, ave, med and max increase 

depending on the increase of the relative speed, and the 

increased amount of ave and med are small. In addition, max 

increases with limited influence of the inter-vehicular 

distance. In Interval = 4, ave and max increase depending on 

the increase of the relative speed along with Fig. 11, and the 

increased amount of ave is small. Max in the same relative 

speed is different in each inter-vehicular distance, and med 

fluctuates as the relative speed increases. 

The statistical values of 

LOF (Len) 

The time interval between 

two images (Interval) 

Average (ave) 

Variance (var) 

Standard deviation (stddev) 

Median (med） 

Maximum (max) 

2,3,4,8 

Figure 7: The environment of the preliminary experiment 

Table 4: Interval and Len considered in this experiment 

R. Shindo et al. / A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera64



  

   
(a) Dist = 2 [m] (b) Dist = 4 [m] (c) Dist = 6 [m] 

Figure 8: The changes of Len in Interval = 2 

 

 

   
(a) Dist = 2 [m] (b) Dist = 4 [m] (c) Dist = 6 [m] 

Figure 9: The changes of Len in Interval = 3 

 

 

   
(a) Dist = 2 [m] (b) Dist = 4 [m] (c) Dist = 6 [m] 

Figure 10: The changes of Len in Interval = 4 

 

 

   
(a) Dist = 2 [m] (b) Dist = 4 [m] (c) Dist = 6 [m] 

Figure 11: The changes of Len in Interval = 8 

 

 

   
(a) Dist = 2 [m] (b) Dist = 4 [m] (c) Dist = 6 [m] 

Figure 12: The changes of Len (var) in each distance 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 59-68 65



 
Figure 13: The interpolation function 

 

From these results we can deduce that maximum is 

appropriate to a statistic of LOF stored in the Optical Flow 

Length DB (Len). In addition, Interval = 3 is the candidate 

parameters for an estimation of SOV experiment. We made 

the interpolation function by using the dataset of relative 

speed and LOF acquired through this experiment. However, 

relative speed does not necessarily increase depending on 

the increase of Len. We suppose that Len is influenced by 

extraordinary LOF results caused by false detection of 

feature points. They are generated because the vehicle only 

once drives passing besides the oncoming vehicles at each 

speed. Therefore, we redefined the function after removing 

conflicted data and averaging neighbor data with near values. 

Figure 13 shows the interpolation function by using 

maximum in Interval = 3 and the relative speed. 

5.2.2 Estimation Accuracy 

We evaluated the accuracy of SOV estimation by using 

datasets of Len and relative speed determined in the 

preliminary experiment. For this evaluation, in the same 

conditions as the preliminary experiment, a recording 

vehicle moves in the driving lane at 40 [km/h]. At the same 

time, oncoming vehicles are parked or moving slowly. The 

recorded video is divided into multiple images. We defined 

the interpolation function by using the datasets in Optical 

Flow Length DB. LOF generated from objects in an 

oncoming lane is given to the function as an argument. Then 

relative speed (Rspeed) is calculated by the function according 

to the formula (1). SOV (Ospeed) is calculated according to 

the formula (2). Figure 14 shows the results of estimation. 

In Fig. 14, there are points at which SOV gets near to or 

surpasses 10 [km/h] with time. These speeds are estimated 

when the recording vehicle passes beside oncoming vehicles, 

as in Fig. 15(a).  At other points, SOV is less than 0 [km/h]. 

These speeds are estimated until the recording vehicle 

passes beside the next vehicle shown in Fig. 15(b). 

In addition, we found some factors that increase the 

estimated speed rapidly through this experiment. We 

suppose that the extraordinary flows generated by false 

detection of feature points (shown in Fig. 16) cause the rapid 

increase of the estimated speed. Figure 16(a) shows that 

optical flows are generated from background objects and Fig. 

16(b) shows that the flows are generated from objects on 

road except oncoming vehicles. We discuss how the false 

detection influences the estimated speed in Section 5.2.3. 

5.2.3 Discussion of Experiment Results 

In this section, we discuss the results of the above 

experiments. In the experiment to determine parameters, we 

confirmed that the maximum of LOF is appropriate to 

generation of optical flows. In addition, we confirmed that 

the maximum of LOF in Interval = 3 increases depending on 

the increase of the relative speed. However, we confirmed 

that LOF decreases despite the increase of the relative speed 

at certain points in each Interval. Moreover, we suppose that 

LOF is calculated accurately by diminishing the false 

detection of feature points, and the interpolation function 

that LOF increases depending on increasing of the relative 

speed can be defined. To diminish the noises of false 

detection of feature points, we consider the change of the 

size and position of the ROI and the change of parameters 

such as the number of detection of feature points. Then, the 

interpolation function can be defined accurately. 

Through evaluating the accuracy of SOV estimation, we 

confirmed that SOV is estimated near 10 [km/h] when the 

recording vehicle passes beside oncoming vehicles. In 

addition, we confirmed that SOV less than 0 [km/h] is 

continually estimated until the recording vehicle begins 

passing beside the next oncoming vehicle.  We suppose that 

the reason that LOF remains short is due to the following 

steps. First, an oncoming vehicle which the recording 

vehicle passes by slips from an image. Second, feature 

  

(a) flows generated from 

background objects 

(b) flows generated from 

other objects 

  

(a) passing beside an 

oncoming vehicle 

(b) passing beside the next 

oncoming vehicle 

Ospeed = 12.4 

(Len = 54.74) 

Ospeed = -13.8 

(Len = 26.47) 

Figure 14: The results of estimation 

Figure 15: Changes in Len and estimated SOV in images 

Figure 16:  Extraordinary flows generated by false detection 

of feature points 

 

R. Shindo et al. / A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera66



points generated on the oncoming vehicle are insufficient. 

Finally, feature points are generated anew on the next 

oncoming vehicle.  We noticed certain points at which SOV 

is less than 0 [km/h] even though the recording vehicle is 

passing beside an oncoming vehicle. As we have discussed 

previously in the definition of parameters experiment, the 

system can estimate the SOV more accurately when 

processes to define a more accurate interpolation function 

are applied to the system. 

As we explained in Section 5.2, we use 

“cvGoodFeaturesToTrack” method in the OpenCV library 

in order to generate optical flows. This method is used for 

corner detection, and it has the threshold (ql) as one of the 

arguments. ql is used to make a judgment on accepting the 

detected point as corner. When ql is larger, sharper feature 

points are accepted as corner. We examined how the change 

of ql affects the SOV. Figure 17 shows the estimation result 

in ql = 0.10, 0.50 and 0.70. 

According to Fig.17, the fluctuation of the estimated speed 

is larger as ql decreases. We suppose that when ql is small, 

the vague feature points are detected as corner and 

extraordinary flows are generated. In ql = 0.70, most of the 

estimated results are plotted near 0 [km/h], but some of the 

estimated results are not under 0 [km/h] when oncoming 

vehicles are not in the image. We suppose that the correct 

feature points are diminished by increasing ql. In the future, 

we need to consider how to determine the adequate value of 

ql. 

The experimental results suggested that the estimated 

speed changes when a recording vehicle passes by 

oncoming vehicles. Consequently, detecting the congestion 

in an oncoming lane will be realized by our method that 

estimates the speed of oncoming vehicles by using an in-

vehicle camera. 

6 CONCLUSION 

This study aims to detect traffic congestion in an 

oncoming lane and to present images representing the 

causes of the congestion using an in-vehicle camera. We 

proposed a method that estimates the speed of oncoming 

vehicles using an in-vehicle camera to detect traffic 

congestion. In addition, we conducted the experiment for 

estimating the speed and we estimated the speed of 

oncoming vehicles by using our proposed method. In 

particular, we suggested that the length of optical flows 

changes depending on the speed of oncoming vehicles 

(SOV) and the proposed method based on optical flow is 

potential to detect the traffic congestion in an oncoming lane. 

Our method will realize detecting traffic congestion in an 

oncoming lane based on the results of estimating oncoming 

vehicles. Consequently, drivers can grasp the causes of the 

congestion intuitively by images acquired from the results of 

detecting congestion. 

In the future, to improve the accuracy of detection of 

traffic congestion in an oncoming lane, we will prepare 

more datasets of LOF and the relative speed.  Moreover, we 

will consider a method for detecting congestion on four-lane 

roads and divided roads. Our method is only applicable for 

single lane road. For example, in the case of four-lane roads, 

LOF generated by oncoming vehicles in each lane is 

different. In addition, optical flows in divided roads are 

generated from the median. We will define interpolation 

functions corresponding to multiple-lane roads and divided 

roads to improve our method. 

REFERENCES 

[1] Vehicle Information and Communication System 

Center, “VICS”,  

http://www.vics.or.jp/index1.html 

 (accessed 4 26, 2015). 

[2] H. Kitayama, “New Service and Platform by the Data 

Utilization from Cars,” IPSJ Magazine, Vol.54, No.4, 

pp.337-343 (2013) (in Japanese). 

[3] T. Morikawa, “Prospects of Telematics Based on 

Probe Vehicle Data (<Special Issue> Sophisticated 

Transportation Systems-Toward Transportation 

Services to Satisfy Individual Passengers),” Systems, 

Control and Information Engineers, Transactions of 

the Institute of Systems, Control and Information 

Engineers, Vol.54, No.9, pp.366-370 (2010) (in 

Japanese). 

[4] J. Bai and L. Zhao, “Research of Traffic State 

Identification Based on Probe Vehicle,” Intelligence 

Information Processing and Trusted Computing 

(IPTC), 2010 International Symposium, pp.309-311 

(2010). 

[5] B. Ramon, G. Javier and S. Joaquin, “Road traffic 

congestion detection through cooperative Vehicle-to-

Vehicle communications,” Local Computer 

Networks (LCN), 2010 IEEE 35th Conference, 

pp.606-612 (2010).   

[6] E. Takimoto, T. Ohyama, R. Miura and S. Obana, “A 

Proposal and Consideration on a Management 

Method of Surrounding Vehicle in Vehicle-to-

Vehicle Communication Systems for Safe Driving,” 

The Special Interest Group Technical Reports of IPSJ, 

ITS, Vol.2009, No.24, pp.47-51 (2009) (in Japanese). 

[7] Y. Xu, Y. Wu, J. Xu and L. Sun, “Multi-hop 

broadcast for data transmission of traffic congestion 

detection,” Proceedings of the 10th International 

Conference on Mobile and Ubiquitous Multimedia 

(MUM '11), pp. 100-108 (2011).  

[8] M. Tamai, K. Yasumoto, T. Fukuhara and A. Iwai, 

“Efficient Collection and Delivery of Video Data for 

Traffic Monitoring Utilizing Transition Rate of 

Congestion Situations,” The Special Interest Group 

Figure 17: The estimation result in each ql 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 59-68 67



Technical Reports of IPSJ, Vol.2012-MBL-61, No.29, 

pp.1-8 (2012) (in Japanese). 

[9] M. Tamai, K. Yasumoto, T. Fukuhara and A. Iwai, 

“An Image Processing-based Method for Efficient 

Collection and Sharing of Video Data about 

Conditions of Vehicular Traffic Congestion,” The 

Special Interest Group Technical Reports of IPSJ, 

Vol.2012-MBL-65, No.36, pp.1-8 (2012) (in 

Japanese). 

[10] H. Kutoku, D. Deguchi, T. Takahashi, Y. Mekada, 

Ichiro Ide and Hiroshi Murase, “Detection of General 

Obstacles by Subtraction of Road-Surface with Past 

In-Vehicle Camera Images,” IEICE Technical Report  

Vol.109, No.470, pp.235-240 (2010) (in Japanese). 

[11] K. Hamao, Y. Suzuki, M. Honma, K. Hashimoto, Y. 

Ishikawa, T. takahi, S. Ishiyama and T. Sakurai. 

“Methods for detection opposite lane traffic jam 

using a Smartphone,” Proceedings of the ITS IEICE, 

Vol.112, No.72, pp.19-24 (2012) (in Japanese). 

[12] OpenCV.jp, “Optical flow, 

 http://opencv.jp/sample/optical_flow.html  

(accessed 4 26, 2015). 

[13] G. Bradski and A. Kaehler, Learning OpenCV 

Computer Vision with the OpenCV Library, 

California: O'Reilly Media (2008). 

 

(Received November 18, 2014) 

(Revised March 2, 2015) 

 

Ryo Shindo received his B.E. and M.E. 

degrees in information science from 

Future University Hakodate, Japan in 

2013 and 2015. His research interests 

include probe information system, image 

processing and ITS. He currently works 

in Hokkaido CSK Corporation. 

 

 

 

Yoh Shiraishi received doctor’s degree 

from Keio University in 2004. He is 

currently an associate professor at the 

Department of Media Architecture, 

School of Systems Information Science, 

Future University Hakodate Japan. His 

research interests include database, 

mobile sensing and ubiquitous 

computing. He is a member of IPSJ, 

IEICE, GISA and ACM. 

R. Shindo et al. / A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera68



A Simulator for the Execution Efficiency Measurement 

of Distributed Multi-Database Virtualization 

Daichi Kano*, Hiroyuki Sato*, Jun Sawamoto*, and  Yuji Wada**  
  

* Graduate School of Software and information Science, Iwate Prefectural University, Japan 

** Department of Information Environment, Tokyo Denki University, Japan 

sawamoto@iwate-pu.ac.jp 

 
Abstract –In database virtualization technology, the 

database of a different kind can be used as if it were a kind 

of database.  However decline of execution efficiency is left 

as one of the research subjects.  In improving the execution 

efficiency, it is necessary to measure the execution 

performance of the virtualization processes, especially in a 

distributed environment where multiple databases are 

connected via a network.  In this study, we have designed 

and implemented the simulator for the execution efficiency 

measurement.  This simulator measures the execution 

efficiency by calculating the processing time of 

virtualization processes, database processes and 

communication processes, and totaling them. 

 

Keywords: Distributed database, Multi-database 

virtualization, Simulator, Performance evaluation and 

improvement. 

1 INTRODUCTION 

Today, it is important to discover and analyze the 

knowledge and trends which are hidden in large collections 

of data on ubiquitous network environment using data 

mining technology, and to use them for decision making of 

business, etc. However, since those data exists in various 

types of distributed databases, an appropriate database has to 

be chosen from a variety of databases and accessed properly. 

The work of the preparation process of data mining of 

acquiring appropriate data is needed, and it becomes a 

burden for the data analysis engineer who performs data 

mining in the distributed database environment. 

To reduce this burden, the multi-database virtualization 

technology which enables a user to access various types of 

databases as if accessing a single type of databases has been 

studied [1-3]. The usefulness has been shown when database 

virtualization technology is used to perform data mining.  

However, some research issues are pointed out. 

Degradation of the execution efficiency by virtualization 

processing among the research issues remain by the 

previous work as one of the main subjects to be solved. 

Since virtualization processing is performed in addition to 

normal database processing, it causes execution degradation. 

Virtualization processing transforms commands and the 

processing result based on the schema, and when especially 

the processing result becomes extensively large, 

virtualization processing becomes a burden. An 

improvement can be expected by using load sharing 

technology and parallel processing technology for this issue. 

While each load decreases by distributing data processing 

and parallel processing, we anticipate the generation of 

network delay by low line speed, congestion, etc. Therefore, 

factors about the network, such as communication time and 

transmission speed, become important as well as processing 

of databases. 

In improving the execution efficiency, it is necessary to 

measure the execution performance of the virtualization 

processing, especially in a distributed environment where 

multiple databases are connected via a network. But it takes 

a lot of databases and large-scale network structure, and 

preparation of actual measurement environment is costly 

and very difficult. Therefore, the measurement environment 

using a simulator is considered. 

In this study, we have designed and implemented the 

simulator for the execution efficiency measurement.  This 

simulator measures the execution efficiency by considering 

the processing time of virtualization processes, database 

processes and communication comprehensively. And we 

aim to contribute to quantitative verification and evaluation 

of the execution efficiency improvement technique of 

virtualization processing. 

The rest of this paper is organized as follows: In section 2, 

we describe related works. In section 3, we present our 

proposed solution for database virtualization. In section 4, 

details of the design of the proposed simulator are described. 

In section 5, we report the process and some results of 

acquiring reference parameters for the time of virtualization 

processing. Finally, the paper is concluded in section 6. 

2 RELATED WORKS 

The performance estimation of database system is an 

active research area. They mainly approach this subject by 

building performance models of database servers and 

running the models for the simulation [1]-[3]. 

 Garcia [1] presents a simple model based on the queuing 

network paradigm using fixed distribution for the service 

times of the queues. The parameters used in the model are 

adjusted using measurements taken from real servers. This 

work demonstrates that extreme simple model is capable of 

predicting the performance of metrics of real database 

servers with high accuracy and capturing the essential 

performance aspects of database servers. 

Wu, et al [2]-[3] propose a method for predicting query 

execution time for concurrent and dynamic database 

workloads. Their approach is based on analytic model rather 

than machine-learning model. They use optimizer's cost 

model to estimate the I/O and CPU operations for each 

individual query, and then use a queuing model to combine 

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 69



these estimates for concurrent queries to predict their 

execution times. A buffer pool model is also used account 

for the cache effect of the buffer pool. 

These related works are all targeted for real database 

servers. On the other hand, our target is virtualized 

distributed multi-database system. And we have designed 

and implemented the simulator for the execution efficiency 

measurement by considering the processing time of 

virtualization processes, database processes and 

communication processes. Our main goal is to discover the 

bottlenecks of the database virtualization processing. 

Some earlier reports [4]-[6] have described the study of 

database virtualization technology. 

Mori et al. [4] proposed development of a system to 

disseminate information actively to all users in a mobile 

computing environment. They implemented an experimental 

system using the meta-level active multi-database system as 

the platform in a mobile computing environment. By 

mapping the data of the local database group to a meta-

database through the basic search and build operations, the 

system intends to combine data and include different types 

of local database group. 

The data integration technique, Teiid [5], enables 

virtualization of various types of databases; through such 

virtual databases, one can access such data sources as 

relational databases, web databases, and application 

software such as ERP and CRM, etc. in real time. They can 

all be integrated for use. In fact, Teiid has a unique query 

engine. Furthermore, the real-time data integration is 

accomplished by connecting business application software 

through the JDBC/SOAP access layer with data sources 

which are accessed through the connector framework. 

In [6], they similarly describes a module known as a 

wrapper that allows accessing and integrating data from 

various sources such as RDBs, the Web, and Excel files. 

In our previous study [7], we considered the metadata, 

UML, ER model, and the XML schema as candidates for 

use to accomplish database virtualization. Thereby, 

ubiquitous databases can be used as if they were a single 

database. We then compared the advantages and 

disadvantages of each to analyse them as follows. 

In our previous studies [7]-[10], we examined XML 

schema advantages and proposed a virtualization method by 

which such ubiquitous databases as relational databases, 

object-oriented databases, and XML databases are usable, as 

if they all behaved as a single database. 

3 DATABASE VIRTUALIZATION [7] 

Databases of many kinds exist in terms of their associated 

data model differences and vendor differences. Regarding 

differences among data models, each has different data 

representation, and unique associated manipulation. Some 

typical examples include the table type of relational 

databases (RDB), XML-representation type of XML 

databases (XMLDB), and object-oriented databases 

(OODB). Even the same model database might have 

different features among vendors. Regarding RDB for 

example, there might be some differences in SQL and/or 

data type representation. The typical example is that we 

have MySQL, PostgreSQL, and SQLServer from different 

vendors. 

These differences according to the model and vendor bring 

some undesired results. For example, we might end up 

spending more time and labor during application system 

development because of the different data models that must 

be confronted. For example, we might need to acquire the 

right API to handle data of every different type of database. 

Virtualization of such different types of modelled databases 

to unify the procedures for all of them would probably 

impart less of workload and cost, and facilitate their 

management in a more flexible manner. Consequently, 

virtualization of databases, if it could be done, would 

facilitate application system design and database 

management as well.  

To have a virtualization feature, we will consider the 

inclusion of features to manage distributed databases of 

similar types, the distributed databases of different types, 

and provide location transparency for users, such that they 

notice no differences of database structure or location and 

become able to use databases of all kinds in a flexible 

fashion. Fig. 1 portrays an example view of the database 

virtualization technique. 

For virtualization of ubiquitous databases in our study, we 

will describe the schema information of the real databases, 

of which more than one always happens to exist, by creating 

and using one common XML schema. We also provide 

functionality of data search and update with the XML-based 

common data manipulation API. 

3.1 XML Conversion Program 

We will use an XML schema that provides a flexible 

representation capability and a high transparency capability. 

To do so, we will produce such a virtualization concept in 

which the user would feel as if he or she were locally 

manipulating the remote site RDB from a local RDB process 

environment. That can be accomplished by converting the 

schema information and data information of the local RDB 

into the XML schema, and then storing that information into 

the RDB that the user would like to operate. 

We developed an XML conversion program, XML 

Export/Import, as depicted in Fig. 2. We then used such 

different vendor RDBs as MySQL, PostgreSQL, and 

SQLServer2005 because they are available in the RDB 

virtualization system creation environment. We have to 

rebuild the XML tree with our XML conversion program 

when the distributed database is redefined.  

 

  

XQuery 

DATA 

Schema 

 

XML 

DATA 

Schema 

Result 

RDB 

Schema conversion 

module 

 

DATA 

Schema 

XQuery SQL 

Common schema 
Query conversion 

module 

 

 

User APs 

Query conversion
module

 
Figure 1: An example view of database virtualization. 

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization70



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Virtualization technique for RDB databases. 

3.2 RDB Schema Conversion into XML 

The following describes how the RDB schema is 

converted into XML. Fig. 3 presents results of reading the 

schema information from the RDB and converting it into 

XML. The RDB schema information that is converted into 

an XML format includes "table names", "field names" 

(associated data types and default values), and "constraints" 

(primary key constraint, unique constraint, check constraint, 

NOT NULL constraint, and foreign key constraint) 

capability. 

Regarding the XML tree structure, we described the table 

information in the table structure node with its elements of 

Field="column name", Type="data type", Null="TRUE or 

FALSE" (NOT NULL constraint). We described the schema 

information in the schema node with its elements of TYPE= 

"constraint name", Table= "table name", Column= "column 

name", ReTable= "referenced table name", ReColumn= 

"referenced column name", and Check= "rule". 

3.3 RDB Data Conversion into XML 

The manner in which the RDB data are converted into 

XML is described next. Fig. 4 portrays results of reading the 

data information from the RDB and conversion into XML. 

Because of the XML tree structure, we had 

dbname="database name", tblname="table name", and the 

actual data columns succeed. 

3.4 Virtualization of Databases 

We discuss the virtualization of modelled DBs of different 

types. For virtualization of different types of modelled DB, 

we describe the schema information of each model using a 

single common schema. The common schema we will use is 

an XML Schema. Around it, we will perform virtualization. 

Fig. 1 shows a virtualization method for different database 

types. To accomplish schema conversion from a different 

modelled database, we first get the schema information from 

an RDB to work on. Then we convert it into the correct 

XML schema for that RDB. We currently have to re-build  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Example of RDB schema information 

conversion into XML. 

 

 

Code Name Latitude Longitude 

47401 Wakkanai 45.25 141.41 

47404 Haboro 44.22 141.42 

… ... … … 

RDB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XML DB 

 

Figure 4: Example of actual RDB data conversion into 

XML. 

 

 

 

 

MySQL SQLServer PostgreSQL 

Database virtualization 

XML Schema 

RDB Schema  

information 

Data  

information 

XMLImport program 

 

XML Export program 

<?xml version="1.0" encoding="utf-8" ?>  

<dataset dbname="chihou"> 

     <data tblname="AreaInfo "> 

        <Code>47401</Code>  

        <Name>Wakkanai</Name>  

        <Latitude>45.25</Latitude>  

        <Longitude>141.41</Longitude>  

    </data> 

       <data tblname=" AreaInfo "> 

        <Code>47404</Code>  

        <Name>Haboro</Name>  

        <Latitude>44.22</Latitude>  

        <Longitude>141.42</Longitude>  

    </data> 

    <…> 

<?xml version="1.0" encoding"UTF-8" standalone="yes" 

 
<root> 

   

 <rdb Name="mysql"> 
 

     <database Name="questionnaire" > 
<table_structure Name="member"> 

          <field Field="samplenum"  

Type="integer" Null="FALSE"  Default="  /> 
<field Field="answerday" Type="text"  

Null="FALSE"  Default="  /> 
 

     …. 

 
   </table_structure> 

 
<schema> 

    <constraint Type="PRIMARY KEY" 

Table="member"  Column="samplenum"  /> 

 

…. 
 

<constraint Type="FOREIN KEY" Table="questionnaire"  

Column="samplenum" Retable="member"   
ReColumn="samplenum" /> 

 
…. 

 

 </schema> 
</database> 

</rdb> 
</root> 

 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 71



the XML tree with our schema conversion module when the 

distributed database is redefined.  

Table 1 presents schema conversion correspondences 

between the two. Because any XML DB is already de-

scribed in the XML format, we extract the schema 

information without conversion. On the other hand, when 

the data are manipulated, our query conversion module 

automatically transfers the access results to the application 

program. 

3.5 Techniques of Execution Efficiency 

Improvement 

Methods of the execution efficiency improvement of 

virtualization processing (improvement in the speed) are as 

follows. 

 The place of virtualization processing  

In order to accelerate, the virtual database environment 

which uses load sharing technology and parallel processing 

technology is shown in Fig. 5, and we use both user side 

virtual DBMS and data side virtual DBMS.  

Since the database is distributing through a network and 

communication time influences the whole processing time 

greatly, it becomes important to reduce the amount of data 

transfer for the improvement of the processing speed. Under 

the virtualization processing the data volume changes. Even 

if the same data is processed, data volume differs by the 

schema expression, RDB schema or XMLDB schema. 

Therefore, the place where the virtualization processing is 

performed could be changed, so that the amount of data 

transferred is reduced, and communication time is reduced. 

 Database selection  

When the same table and data are stored in different 

databases, it could be considered to make the load of each 

database uniform by acquiring data from a database with 

little load. In database virtualization technology, since 

virtual processing is added in addition to processing of the 

usual database, balancing of the database load becomes 

important. 

4 DESIGN OF THE SIMULATOR 

In this section, we design a simple model based simulator 

based on the database virtualization technique described in 

Section 3. Only two types of DBs, e.g. RDB and XMLDB, 

are considered here.  

In improving the execution efficiency, it is necessary to 

measure the execution performance of the virtualization 

processing, especially in a distributed environment where 

multiple databases are connected via a network. But it takes 

a lot of databases and large-scale network structure, and 

preparation of actual measurement environment is costly 

and very difficult. Therefore, the measurement environment 

using a simulator is considered. 

Two of the followings are the basic requirements needed 

by the simulator. 

 Measurement for discovering the causes (bottlenecks) 

of delay of database virtualization processing can be 

performed.  

 Measurement when the number of databases connected  

Table 1:  SQL and associated XML 

 

User

Virtual DBMS

Virtual 

DBMS

DB

Virtual 

DBMS

DB

Virtual 

DBMS

DB

Data side

User side

Virtual 

DBMS
Virtual 

DBMS
Virtual 

DBMS

 
Figure 5: Virtual database environment which uses load 

sharing technology and parallel processing technology. 

 

 

or the volume of each database becomes large on the 

virtual database environment using load sharing 

technology and parallel processing technology can be 

performed.  

4.1 Outline of the Simulator 

The main purpose of the simulator is the bottleneck 

discovery of database virtualization processing. For the 

purpose of this bottleneck discovery, actual processing, such 

as virtualization processing, database processing and 

communication processing, are not needed and actual 

processing is not performed in the simulator. The execution 

efficiency is computed simulating and integrating each 

processing time. Random elements such as network 

 SQL XML 

Table 
definition 

CREATE TABLE 

table name… 

<xsd: element 

name=“table 
name”… 

Column 
definition 

CREATE TABLE… 

column name... 

<xsd: element 

name=“column 
name”… 

Data type 
definition 

CREATE TABLE… 

data type.. 

<xsd: element… 

type=“data 
type”… 

Default values 

CREATE TABLE… 

column name DEFAULT 
value 

<xsd: element… 

default=“value”… 

Primary key 
constraint 

PRIMARY KEY <xsd: key… 

Unique 
constraint 

UNIQUE <xsd:unique … 

Foreign key 
constraint 

FOREIGN KEY 
<xsd: keyref … 

refer =… 

NOT NULL NOT NULL 
<xsd:… 

nillable=“false”... 

Method CREATE METHOD  

Inheritance 

CREATE TABLE… 

UNDER upper level 

table name 

<xsd: 

complexType … 

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization72



congestion, user's command input timing are simulated and 

computed repeatedly to obtain average and variance. 

Prerequisites for database access for the simulation are 

specified as follows. The data mining and distributed 

database environments are considered in the simulator and it 

assumes a limited range of database operations here. For 

example, database updating and join operations are excluded 

in the simulator. 

By realizing each component such as database processing 

of the simulator as a process and performing inter-process 

communication with TCP protocol, the simulator can be 

implemented on a single PC or on two or more PCs. 

Followings are prepared as an item which can be changed 

by setup.  

 Number of users 
 Number, scale, and kind of databases  
 Network line speed 

4.2 Measurement Items 

The following measurement is performed for the overhead 

identification of virtualization processing. About the 

reference parameters for the simulation, some preliminary 

simple virtual processings are performed beforehand and 

they are determined from the result at the time of 

implementation. 

 Time of virtualization processing 

This mainly considers time of conversion such as query 

conversion from XQuery to SQL and result conversion from 

RDB result into XML format. The measuring method 

computes and converts the processing time according to the 

length of a query, the data volume of the result, etc. based 

on the reference parameters. 

 The change in the data volume after virtualization 

processing 

The data volume fluctuated by virtualization processing of 

query result is measured. 

 Processing time of a database  

The processing time of a database is computed from a 

query. For example, in 'Selection', processing time changes 

by the existence of indexes. Processing time is changed also 

by the timing of the database usage and the number of users. 

If there are some database processing performed during 

system usage of a user, the wait time of the database 

processing will be added to the processing time for the user.  

 The amount of data transfer  

The data transfer rate is adjusted by changing the network 

utilization factor according to the number of users, users' 

usage timing, etc. of databases. The system determines the 

amount of data volume by what kind of query is issued to 

which database by each user, then decides the amount of 

data transfer by which network is used for the data transfer. 

 Communication time  

Communication time is computed using the following 

formulas.  

 

 

 

 

Since the network of a database is classified to class 3 in 

Network Quality of Service (QoS) of Y.1541 of ITU, delay 

by congestion is generated in the probability of 10-3 based 

on the class 3 of QoS. Time to be delayed in this case, being 

unspecified in the class 3 of QoS and not restricted, we 

make it the interval of the retransmission-of-message packet. 

The process on the data reception side performs the 

measurement of communication time. 

4.3 Size of Packet  

Packet size is needed for the determination of the rate of 

control data or the number of times of communication. The 

maximum size (MSS: Maximum Segment Size) of the 

packet changes with MTU (Maximum Transmission Unit) 

of the data link assuming that the database uses TCP.  

The main current data links are Ethernet and PPPoE, and 

assuming the protocol uses TCP, MTU of Ethernet is used.  

The maximum data volume per packet is set to 1460 bytes, 

and the number of times of communication is (Amount of 

data transfer /1460) and the rate of control data is (1-1460 / 

1518). 

4.4 System Configuration 

Each component is realized by a process so that the each 

component, such as virtual DBMS, can be executed 

concurrently. Each component performs inter-process 

communication with TCP protocol, and the simulator is run 

on a single PC or two or more PCs. Development language 

is C and execution environment is Linux.  

In order to decide to implement virtualization on user side 

or data side depending on the measurement result, 

virtualization process could be performed on both sides. 

Although designed supposing virtualization of RDB and 

XMLDB at this time, when adding virtualization of other 

DB kinds, it is made to be easy to extend. By saving the last 

setting environment in a file, and calling it easily, the time 

and effort for the setup for every simulator use is reduced. 

The system configuration of the simulator based on Fig. 5 

is shown in Fig. 6. And the component processes of the 

simulator are classified into following three. 

 Interface process for the simulator user 

Processing of a simulator user's interface and management 

of the whole simulator are performed. The setup of the 

simulator and directions of a simulation start are performed. 

 User's process  

Processing corresponding to each user using a database is 

performed. Execution of XQuery, reference of an XML 

schema, etc. are performed and processing time is sent to the 

interface process for the simulator user. In a communication 

module, calculation and conversion of communication time 

are performed from the data volume of the received result. 

In a virtualization process module, calculation and 

conversion of time of virtualization processing from the data 

volume of a result are performed. 

 Handling process of each database  

Processing of data side virtual DBMS and database 

accesses are performed. The processing time for processing 

of a database and virtualization processing according to a 

setup of the number of data etc. is computed and converted. 

factornutilizatioNetworkspeedLine

datacontrolofRatetransferdataofAmount
timeionCommunicat






)1(

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 73



In a communication module, calculation and conversion are 

performed for the communication time of query reception 

based on the received query. By DB module, calculation and 

conversion of the processing time concerning query 

execution are performed and data size or the number of data 

of the result data are determined. In the virtualization 

process module, calculation and conversion of time for 

virtualization of data from the number of result data, etc. are 

performed. 

In a communication module, since a transmitting side 

process does not need to consider the existence of delay, 

such as a collision, about measurement of a communication 

time, the communication module of the receiving side 

process measures communication time. Specifically, 

measurement of communication time in case a command is 

sent to data side virtual DBMS from user side virtual DBMS 

is performed by the database side communication module 

and in case a result is sent to user side virtual DBMS from 

data side virtual DBMS, measurement is performed by the 

user side module. 

5 REFERENCE PARAMETERS FOR THE 

TIME OF VIRTUALIZATION 

PROCESSING 

In this section, we determine necessary reference 

parameters for the simulator model in Section 4. The 

parameters are determined using measurements taken from 

real virtualization processing and database access.  

Simple and preliminary virtualization processing was 

performed and the reference parameters of the processing 

time of virtualization processing and the fluctuation of the 

data volume after virtualization processing were determined. 

Although implementation was carried out in Java by the 

previous work [7], since Java operates on a virtual machine 

and delay by insufficient memory occurs, we re-

implemented the system in C.  

At this stage, since database virtualization of only RDB 

and XMLDB is assumed, only the reference parameters of 

these virtual processings are obtained. Moreover, execution 

using an actual database is not performed about processing 

of a database, but the function which returns dummy data is 

prepared. The execution environment of preliminary 

virtualization processing is as shown in Table 2. 

The reference parameters obtained in this section are the 

references only for the environment shown in Table 2. The 

reference parameters should be reconsidered and modified 

under other environments. 

About the composition of a database, RDB 'Chihou' 

assumes the database with the table and column shown in 

Table 3, and assumes the XMLDB database 'Tenkou' which 

is shown in Fig. 7. 

The XQuery used for the execution is as follows. 

 

for $A in fn:doc('Tenkou')//Item let $B := 

fn:doc('Chihou')//areainfo[@Code=$A/Station/Code] 

let $C := fn:doc('Chihou')//observ[@Code=$A/Station/ 

Code] return <result>{$B/@Code, $B/Area, $B/Kana, 

$C/Observ, $A//Precipitation, $A//Precipitations} 

</result> 

 

Virtualization 

process module

Communication 

module

Virtualization 

process module

Communication 

module

Communication 

module

Virtualization 

process module

DB module

Communication 

module

Virtualization 

process module

DB module

Communication 

module

Virtualization 

process module

DB module

Interface process for 

the simulator user User's process

Virtualization 

process module

Communication 

module

Virtualization 

process module

Communication 

module

Handling process of each database
 

Figure 6: System configuration. 

 

Table 2: Preliminary virtualization process execution 

environment 

OS Windows 8.1 pro 64bit 

CPU Core i5-3317U1.70GHz 2threads 

Memory 4GB 

 

Table 3: Structure of RDB 'Chihou'. 

Table name Column name 

Areainfo Code, Area, Kana 

Observ Code, Observ 

 

 

 
 

Figure 7: Structure of XMLDB 'Tenkou'. 

 

Table 4: The virtualization processing time of the 

execution result of the query of RDB (microseconds). 

Number of

result data
1 3 5

500,000 657,763 1,660,663 2,658,075

1,000,000 1,280,225 3,270,225 5,205,550

2,000,000 2,501,350 6,092,450 10,225,800

Number of columns

 

 

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization74



Table 5: The virtualization processing time of the 

execution result of the query of XMLDB (microseconds). 

Number of

result data
1 3 5

500,000 855,000 2,285,700 3,721,778

1,000,000 1,714,250 4,554,200 7,202,556

2,000,000 3,398,000 8,741,800 14,397,000

Number of items

 

    
Figure 8: Graph of the virtualization processing time of the 

execution result of the query of RDB 

 

This XQuery is a query which acquires data from RDB 

named 'Chihou' and XMLDB named 'Tenkou'. It is the 

query of returning the result which acquired from 'Chihou' 

of the 'let' phrase based on the result of 'Tenkou' acquired 

with the 'for' phrase, in the form described after 'return' 

phrase. From the simple execution result of virtualization 

processing, virtualization processing of a query execution 

result has measured time. 

To determine the reference parameters, queries for above 

mentioned processing which return 500,000, 1,000,000 or 

2,000,000 result data, are created and executed multiple 

times. From the execution results, reference parameters are 

determined as shown in Table 4, 5. 

For the virtualization processing time of the execution 

result of the query of RDB, it is proportional to the number 

of result data and the number of columns, as shown in Fig. 8. 

Moreover it can be expressed by a linear equation of 0.953 

microseconds of inclination and 0.208 microseconds of 

intercept of the number of columns. Value by these 

parameters and actual measurement are shown in Fig. 9. 

For the virtualization processing time of the execution 

result of the query of XMLDB, it is proportional to the 

number of result data and the number of items, like RDB. 

Therefore, it can be expressed by a linear equation of 1.393 

microseconds of inclination and 0.317 microseconds of 

intercept of the number of item. 

The determined reference parameter of each processing 

time is shown in Table 6. As mentioned before, these 

reference parameters are the references only for the 

environment shown in Table 2. But, the main purpose of our 

simulator is the bottleneck discovery of database 

virtualization processing. So, we do not need to know 

absolute virtualization processing time. We need to know 

the relative ratio between the virtualization processing time 

and the database processing time. Although the database 

processing time is not shown yet in this paper, it should be 

measured in the same environment as this time, and we 

could use it. 

 
Figure 9: Value by reference parameters and actual 

measurement of the query of RDB 

 

Table 6: Reference parameter of processing time 

(microseconds). 

Processing Processing time 

Virtualization processing 

time of the execution 

result of the query of RDB 

(0.953 x Number of columns 

+0.208) x Number of result 

data 

Virtualization processing 

time of the execution 

result of the query of 

XMLDB 

(1.393 x Number of items 

+0.317) x Number of result 

data 

 

 

6 CONCLUSION 

In this research, the design and implementation of the 

simulator which measure the execution efficiency of the 

database virtualization processing in the distributed 

environment where multiple heterogeneous databases were 

connected with the network have been performed. 

However, verification and evaluation of this simulator 

itself is left yet. Therefore, it is necessary to advance to the 

next stage of performing verification and evaluation of the 

simulator, and perform quantitative measurement of 

database virtualization processing. From the result, we 

discover the bottleneck of database virtualization processing, 

and plan to accelerate the bottleneck parts in the future. 

ACKNOWLEDGEMENTS 

This work was supported by JSPS KAKENHI Grant 

Number 24500122. 

 

 

 

REFERENCES 

[1] D. F. Garcia, "Performance Modeling and Simulation 

of Database Servers." The Online Journal on 

Electronics and Electrical Engineering Vol.2, No.1, 

pp.183-188 (2010). 

[2] W. Wu, et al., "Predicting query execution time: Are 

optimizer cost models really unusable?." IEEE 29th 

International Conference on Data Engineering (ICDE), 

pp.1081-1092 (2013). 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 69-76 75



[3] W. Wu, et al., "Towards predicting query execution 

time for concurrent and dynamic database workloads." 

Proceedings of the VLDB Endowment, Vol.6, No.10, 

pp.925-936 (2013). 

[4] K. Mori, S. Kurabayashi, N. Ishibashi, and Y. Kiyoki, 

"An Active Information Delivery Method with 

Dynamic Computation of Users' Information in Mobile 

Computing Environments." DEWS2004 1-A-04, 

(2004). (in Japanese) 

[5] Teiid: http://www.jboss.org/teiid, Red Hat 

[6] DB2: Information Integrator V8.1, 

http://www.jpgrid.org/documents/pdf/WORK4/sugawa

ra_ws4.pdf 

[7] Y. Wada, Y. Watanabe, K. Syoubu, H. Miida, J. 

Sawamoto, "Virtual Database Technology for 

Distributed Database in Ubiquitous Computing 

Environment," American Journal of Database Theory 

and Application, Vol. 1, No.2, pp.13-25 (2012). 

[8] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and 

T. Katoh, "Virtualization Technology for Ubiquitous 

Databases," Proc.  4th Workshop on Engineering 

Complex Distributed Systems (ECDS), pp.555-560 

(2010). 

[9] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and 

T. Katoh, "Virtual Database Technology for 

Distributed Database,"  Proc. IEEE 24th International 

Conference on Advanced Information Networking and 

Applications Work-shops (FINA2010), pp.214-219 

(2010). 

[10] Y. Wada, Y. Watanabe, K. Syoubu, H. Miida, J. 

Sawamoto and T. Katoh, "Technology for Multi-

database Virtualization in a Ubiquitous Computing 

Environment," International Workshop on Informatics 

(IWIN2010), pp. 89-96 (2010). 

 

(Received October 23, 2014) 

(Revised February 9, 2015) 

 

Daichi Kano received M.S. degree in 

2015 from Iwate Prefectural University, 

Japan. His research interests include 

distributed parallel processing and 

simulation. He is currently working for 

Tokyo Computer Service Co., LTD. 

 

 

Hiroyuki Sato is currently a Professor 

of Faculty of Software and Information 

Science, Iwate Prefectural University, 

Japan. He received the B.E. in 

information engineering from Tsukuba 

University in 1982. He joined 

Mitsubishi Electric Corporation in 1982. 

He received his PhD degree from Tsukuba University in 

2003. His research interests include parallel processing, and 

high performance computing. He is a member of IPSJ, 

IEICE and IEEE-CS. 

 

Jun Sawamoto is currently a Professor 

of Faculty of Software and Information 

Science, Iwate Prefectural University, 

Japan. He received the B.E. and M.E. in 

mechanical engineering from Kyoto 

University in 1973 and 1975. He joined 

Mitsubishi Electric Corporation in 1975. 

He received his PhD degree from Tokyo Denki University 

in 2004. His research interests include ubiquitous computing, 

human-interface system, multi-agent systems, and 

cooperative problem solving. He is a member of IPSJ, 

IEEE-CS, ACM. 

 

Yuji Wada received the B.E. and the 

M.E. in electrical engineering from 

Waseda University in 1974 and 1976, 

respectively. He joined Mitsubishi 

Electric Corporation in 1976. He 

received the PhD degree in computer 

science from Shizuoka University of 

Japan in 1997. He is currently a Professor in the Department 

of Information Environment, Tokyo Denki University.  His 

research interests include database systems, data mining, 

and recommendation. He is a member of the IPSJ, the 

IEICE, the JSAI, the JSSST and the DBSJ.  

 

D. Kano et al. / A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization76



Formal Verification Technique for Consistency Checking between equals and
hashCode Methods in Java

Kozo Okano††, Hiroaki Shimba†, Takafumi Ohta†, Hiroki Onoue†, and Shinji Kusumoto†

††Department of Computer Science and Engineering, Shinshu University
†Graduate School of Information Science and Technology, Osaka University

{okano, h-shimba, t-ohta, h-onoue, kusumoto}@ist.osaka-u.ac.jp

Abstract - Java objects used with the standard collection
should override both of its equals and hashCode methods.
Both methods need to satisfy the consistency rules or unex-
pected behaviors may cause faults that are hard to detect. A
previous study checked whether an equals method satisfies
part of the consistency rule. To avoid unexpected behaviors,
however, it is necessary to check that both the equals and the
hashCode methods satisfy the rules. This research proposes
a method which checks the consistency between equals and
hashCode methods in Java. We model Java source code and
check whether both methods satisfy the rules using an SMT
solver called Z3. We applied our proposed method to some
practical projects. As results, we detected some Java source
code that violates the rules.

Keywords: Java, equals method, hashCode method, For-
mal Verification, Satisfiability Modulo Theories (SMT)

1 INTRODUCTION

In Java, an equals method should be rightly overridden in a
class, if its objects are compared. To guarantee the appropri-
ate behavior of the collection framework, when a class over-
rides its equals method, its hashCode method should also be
overridden [1]. Therefore, a document of Oracle API defines
some rules for the methods in an Object class [2]. For exam-
ple, an equals method is necessary to satisfy reflexive, sym-
metric, and transitive properties. A method violating the rules
may cause faults. It is well known that such faults are hard to
detect [1][3][4]. Rupakheti et al. [5]-[7] presented a checker
called EQ, which is designed to automatically detect an equals
method violating the rules. EQ models an equals method and
performs model checking to check whether the equals method
satisfies part of the rules. Since EQ checks only equals meth-
ods, it cannot detect a class that may cause a fault when its ob-
ject interacts with the collection framework. Also, EQ uses a
model description language called Alloy, which cannot model
bit operations. Hence, EQ cannot model equals methods us-
ing bit operations. To avoid the unexpected behavior, we
propose a new method which checks the inconsistency be-
tween equals and hashCode methods. We use a Satisfiability
Modulo Theories (SMT) solver called Z3 [8] to manipulate
arithmetic operations and bit operations which are often used
in hashCode methods. Since the implementation patterns of
equals and hashCode methods are different, we propose new
implementation patterns of hashCode methods. Also, we pro-
pose a method which converts Java code to an expression in a
model description language called SMT-LIB [9]. We applied

our proposed method to some practical projects. As results,
we detected some Java source code violating the rules. The
rest of this paper is organized as follows. Section 2, Section 3,
Section 4, Section 5, Section 6, and Section 7 present the con-
sistency rules for equals and hashCode methods, a details of
Z3, a motivating example, how to convert Java code to SMT-
LIB, an evaluation of our proposed method and discussion,
and the conclusion of this paper, respectively.

2 CONSISTENT RULES

This section presents the rules that equals and hashCode
methods must satisfy.

2.1 Java Object Class

The Java Object class is defined as the “root of the class
hierarchy. Every class has Object as a superclass. All objects,
including arrays, implement the methods of this class.” by an
Oracle API document [2].

2.2 Consistent Rules for equals Methods

An equals method for Object class determines whether some
other object supplied through its argument equals this object.
An equals method must satisfy the following four rules except
for a null object [2].

• reflexive: for any non-null reference value x, x.equals(x)
should return true.

• symmetric: for any non-null reference values x and y,
x.equals(y) should return true if and only if y.equals(x)
returns true.

• transitive: for any non-null reference values x, y, and z,
if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.

• For any non-null reference value x, x.equals(null)
should return false.

The equals method for Object class is defined as follows
[2]. “The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that
is, for any non-null reference values x and y, this method
returns true if and only if x and y refer to the same object
(x == y has the value true). Note that it is generally neces-
sary to override the hashCode method whenever this method

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 77



public class Sample{

private int val;

private String str;

public boolean equals(Object obj){

if (obj == null)

return false;

if (this == obj)

return true;

if (!(obj instanceof Sample))

return false;

Sample that = (Sample) obj;

if (this.str == null){

return that.str == null;

}

return this.val == that.val && this.str.equals(that.str)

}

public int hashCode(){

return val + (this.str == null ? 0 : this.str.hashCode());

}

}

Figure 1: Example of correct implementation of equals and
hashCode methods

is overridden to maintain the general contract for the hash-
Code method, which states that equal objects must have equal
hash codes.”

2.3 Consistent Rules for hashCode Methods
The hashCode method returns a hash code value for the ob-

ject. This method is supported for the benefit of hash tables
such as those provided by HashMap. The hashCode method
must satisfy the following two rules [2]. In this definition,
information implies the returned value from the method in-
voked by its equals method or a field value used in the equals
method. Thus, if some inconsistency exists between equals
and hashCode methods, a rule violation occurs.

• Whenever it is invoked on the same object more than
once during the execution of a Java application, the
hashCode method must consistently return the same in-
teger, provided no information used in equals compar-
isons on the object is modified. This integer does not
need to remain consistent from one execution of an ap-
plication to another execution of the same application.

• If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of
the two objects must produce the same integer result.

The hashCode method for an Object class returns a differ-
ent integer value for each different instance. Figure 1 shows
an example of a correct implementation of equals and hash-
Code. The sample class has val and str as the integer and
String type field values, respectively. The equals method for
the sample class determines whether an argument is the in-
stance of the sample class after it determines whether an ob-
ject passed as the argument is identical to itself. Next, if the

field value str is null, the equals method checks whether the
str in passed object is also null. Finally, it determines whether
the value of val and the string of str are identical. The hash-
Code method for the sample class concatenates the value of
val and the hash value of str. The sample class satisfies the
consistent rules for both the equals and the hashCode meth-
ods.

3 RELATED WORK

Research on the implementation and the design of a method
in Object class proposed a method that automatically gener-
ates the equals and hashCode methods. Rayside et al. pro-
posed a method which automatically generates the equals and
hashCode methods which match the user demands by using
an annotation of classes and methods [10]. This study per-
forms a dynamic analysis of source code. Grech et al. solved
the problem of the Rayside research, which consumes a long
time to verify cyclic objects by analyzing source codes stati-
cally [11]. Also, Jensen et al. proposed an annotation which
guides the user when the user copies objects by the clone
method [12]. Recently, research using model checking by
the Boolean Satisfiability Problem (SAT) solver and the SMT
solver have gained attention. Anastasakis et al. proposed a
conversion method that converts class diagrams of the Unified
Modeling Language (UML) with the Object Constraint Lan-
guage (OCL) to Alloy [13]. This research helps the developer
who would like to perform verification about Alloy without
knowledge of Alloy. Liu et al. suggested scalable bounded
model checking by representing object-oriented languages as
a bit vector of the SMT solver [14]. This research supports
high-speed verification. Balasubramaniam proposed the con-
straint solver MINION that has high scalability and provides
many functions [15]. Also, they proposed a method that auto-
matically generates a constraint solver optimized to each do-
main [16]. This research helps the generation of the domain-
specific constraint solver. Burdy et al. proposed a method that
statically verifies Java source code [17]. This method speci-
fies the code location that may cause exceptions, such as a
NullPointerException. Also, it can verify Java source code
annotated with JML. It is able to check whether each method
satisfies its constraints based on JML.

3.1 EQ

EQ [7] checks whether the equals method in Java satisfies
the consistency rules. EQ receives a type hierarchy and out-
puts whether the equals method satisfies the consistency rules.
Hereafter, a type hierarchy is a structure of classes and inter-
faces represented as a directed acyclic graph (DAG). Except
Object class, the classes and interfaces which have an inheri-
tance relation belong to the same type of hierarchy. EQ con-
sists of the following four steps. 1) Perform path analysis
for the equals method. 2) Analyze the pattern of the equals
method. 3) Convert Java code to a model described as Al-
loy. 4) Verify the model by an Alloy analyzer. EQ has two
problems. One problem is that EQ does not check whether
a hashCode method satisfies the consistent rules. The other
is that, since Alloy cannot model bit operators, Alloy cannot

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java78



public class COSString extends COSBase{

public byte[] getBytes(){

…

}

public boolean equals(Object obj){

return (obj instanceof COSString)&& 

java.util.Arrays.equals

(((COSString)obj).getBytes(),getBytes())

}

public int hashCode(){

return getBytes().hashCode();

}

}

Figure 2: hashCode methods violating consistency rules in
PDFBox of Apache

model usual hashCode method using bit operators. In this
study, to solve those two problems, we use Z3 not Alloy.

3.2 Z3

The SMT problem is a decision problem for logical for-
mulas expressed in first-order logic. An SMT solver solves
SMT problems automatically. The SMT solver determines if
a given logic formula, which is a combination of theories ex-
pressed in first-order logic, is satisfiable. If the theories are
satisfied, the SMT solver outputs assignments for variables
that make the given theory satisfied. SAT problems are de-
scribed as theories that consist of only propositional variables.
On the other hand, SMT problems are described as theories
that consist of many propositional types, such as Int, which
are similar to the types in programming language. Also, SMT
problems can define and use functions. In this study, we de-
termine whether both the equals and the hashCode methods
satisfy the consistency rules by using the SMT solver called
Z3 exhaustively [3]. Z3 can use arithmetic operations, bit vec-
tors, arrays, and recode types. Since an SMT solver searches
the answer in bounded space exhaustively, it can verify that
no assignment violates the consistency rules.

4 EXAMPLE SHOWING MOTIVATION OF
THIS STUDY

In this section, we present the motivation of this study by
showing an example.

EQ [7] detected equals methods violating the consistency
rules by experiments for four open-source projects. The class
implemented equals methods which may cause a fault that is
hard to detect. If an instance of a class which implements its
equals method violating the consistency rules is used in the
standard collection, unexpected behavior might cause faults.
For example, if an instance of a class which has the equals
method violating the reflexive rule is used in a standard col-
lection, a contains method of the standard collection cannot
determine correctly whether the collection contains such an
instance. To check the equivalence of instances, a contains

int [] array1 = {3, 6, 2, 9};

int [] array2 = {3, 6, 2, 9};

COSString a = new COSString (array1);

COSString b = new COSString (array2);

// let assume that a.equals(b) but a.hashCode() != b.hashCode()

Set<COSString> database = new HashSet<COSString>();

database.add(a);

if (database.contains(b)) }

// expect behavior

System.out.println(“Users want this.”);

} else {

// but this clause is executed

System.out.println(“However this statement is executed.”);

}

Figure 3: Motivation Example

method of a collection such as List uses equals methods, an
unexpected behavior might occur. Also, if equals methods
judge two instances are equivalent but these two instances
return different hash values, the hashCode methods cannot
perform the correct behavior. For example, HashMap may
contain two instances judged equivalent by the equals meth-
ods. Figure 2 shows an example of the motivation of this
study. This example shows an implementation of the hash-
Code method violating the consistency rules in PDFBox of
Apache [18].

PDFBox uses java.util.Arrays.equals as the equals method
of the COSString class. Also, PDFBox uses the hashCode
method of a byte array as the hashCode method of the COSString
class. Hence, the equals method checks whether two arrays
have the same number of the elements and all corresponding
pairs of the elements in the two arrays are equal. The hash-
Code method checks whether these two arrays have the same
memory address. Therefore, if instances of the arrays are dif-
ferent and these arrays have the same elements with the same
order, the equals method judges these two objects are equiv-
alent but the hashCode method returns a different hash value
for each. In this case, HashSet may contain two instances
judged equivalent by the equals methods.

It is important that both of equals method and hashCode
method are rightly implemented, because incorrect implemen-
tation will causes unwanted behavior when programmer uses
Java Collection Frame Work with it.

For example, let us consider the program in Fig. 3. Let
assume that a.equals(b) holds but a.hashCode() !=
b.hashCode() also holds, in other words, we implement
incorrectly hashCode method against its equals method. The
program in Fig. 3 executes else clause which we do not
expect.

Thus, it is important that we check whether both of equals
method and hashCode method to be rightly implemented. The
paper (EQ [7]) already has proposed a method for checking
equals method, and therefore we focus on hashCode method.

To avoid such unexpected behavior, we propose a new method
that checks whether both equals and hashCode methods sat-
isfy the consistency rules.

Note that the implementation of both of equals method and
hashCode method is programmers’ obligation regardless the

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 79



public class ArEntry implements ArConstants{

private String filename;

public String getFilename() {

return this.filename;

}

public boolean equals(Object it) {

if (it == null || getClass() != it.getClass())

return false;

return equals((ArEntry) it);

}

public boolean equals(ArEntry it)

if (this.filename == null)

return (it.getfilename() == null);

else

return   

this.getFilename().equals(it.getFilename());

}

public int hashCode() {

return super.hashCode();

}

}

Figure 4: Conversion example of Java source code

version of Java.

5 OUR PROPOSED METHOD

Our proposed method analyzes the Java code and models
the behavior of both the equals and the hashCode methods in
the model description language called SMT-LIB. The model
is checked by Z3. Our proposed method receives the type
hierarchy of the code and then outputs whether each equals
method satisfies the consistency rules. The proposed method
is based on static analysis.

Our proposed method consists of the following four steps.
1) It performs path analysis for the equals method. 2) It ana-
lyzes the pattern of the equals method. 3) It converts a given
Java code to a model described in SMT-LIB. 4) It verifies
the model by Z3. The path analysis generates a control flow
graph and performs data flow analysis. The data flow analy-
sis specifies what class is referred by a reference variable at
each position of the source code and specifies what methods
are called. Then, specified methods are inlined into equals or
hashCode methods if needed. The equals or hashCode meth-
ods perform some types of procedures. Therefore, pattern
analysis classifies each method into some patterns. Because it
is difficult to directly convert the hashCode procedures which
contain loops including arithmetic operation or library calls,
we analyze this procedure by using heuristic operations. After
pattern analysis, we convert Java code to SMT-LIB based on
information from the pattern analysis. Also, to check for vi-
olations of the obtained consistency rules, we give some con-
straints to the SMT-LIB model. It is very difficult to model
the first consistency rule of the hashCode method. It should

be recalled that the rule is “Whenever it is invoked on the
same object more than once during an execution of a Java ap-
plication, the hashCode method must consistently return the
same integer, provided no information used in equals com-
parisons on the object is modified. This integer need not re-
main consistent from one execution of an application to an-
other execution of the same application.” To model this rule,
it is necessary to model the concept of time. However, since
first-order logic cannot represent the concept of time, an SMT
solver cannot check the first consistency rule of the hashCode
methods. Therefore, to resolve this problem, we introduce a
more strict consistency rule which replaces the first hashCode
rule. On the other hand, since the second consistency rule
of the hashCode methods is representable in first-order logic,
an SMT solver can check the second consistency rule of the
hashCode methods directly. The substituted consistency rule
of the hashCode method is as follows. We define the first rule
below as the subset rule and the second one as the equivalence
rule.

• Subset rule: Set of fields used in hashCode methods
must be subsumed by the set of fields used in equals
methods.

• Equivalence rule: If two objects are equal according to
the equals(Object)method, then calling the hash-
Code method on each of the two objects must produce
the same integer result.

As Equivalence rule, Java specification gives a one-way
rule. Therefore the rule (1)“a.equals(b) then a.hashCode()
== b.hashCode()” is necessary while(1’) “a.hashCode()
== b.hashCode() impies a.equals(b)” does not need
to be held. Our proposed method uses only (1) as Equivalence
rule.

Figures 4 and 5 show examples of converting Java source
code (Fig. 4) to a model written by SMT-LIB (Fig. 5). In
this example, the type hierarchy has three classes. That is,
the classes are an ArConstants interface, ArEntry class which
implements ArConstants and overrides equals and hashCode
methods, and a class implementing ArConstants that does not
override equals and hashCode methods (this class is repre-
sented as UnderARC in Fig. 5). Figure 5 represents the SMT-
LIB model of the source code in the type hierarchy. Figure 5
represents the declaration of types by the class information, a
definition of the method behavior by the method information,
and the constraints used for validation by an equality check.

5.1 Path Analysis
The path analysis is similar to that of [7]. First, our method

searches equals and hashCode methods. Our method traces
the inheritance relation for a class which does not override its
equals and hashCode methods. If we detect the class which
overrides the equals and hashCode methods, we regard the
equals and hashCode methods of its parent class as the equals
and hashCode methods of such a class. If no overrides of the
equals and hashCode methods are found in an inheritance re-
lation, we regard the equals and hashCode methods of Object
class as the equals and hashCode in such a class. Next, we an-
alyze Java byte code using Soot [19] and generate its control

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java80



;Class information
(declare-datatypes () ((Type ArEntry ArConstants UnderARC Object Null)) )
...
(declare-datatypes () (( Ref(Rfield (eqnum Int) (hsnum Int) (pointer Int)) )) )
(declare-datatypes () ((ArEntry(Arfield (filename Ref)) )) )
(declare-datatypes () (( Object(Ofield (ar ArEntry)(pointer Int)(class Type)))))
(declare-const this Object)
(declare-const that Object)
(declare-const other Object)
(declare-const nobj Object)
...
;method information
(define-fun equalsRef ((r1 Ref)(r2 Ref)) Bool

(ite (and (and (not (= (pointer r1) 0)) (not (= (pointer r2) 0))) (= (eqnum r1)(eqnum r2))) true false ))
(define-fun equalsMain ((o1 Object)(o2 Object)) Bool

(and (=> (or (= (class o1) ArConstants) (or (= (class o1) UnderARC)(= (class o1) Object))) 
(= (pointer o1)(pointer o2)))
(=> (= (class o1) ArEntry) (and (and (not(= (pointer o2) 0)) (= (class o1)(class o2))) 
(or (and (= (pointer(filename (ar o1))) 0) (= (pointer(filename (aro2))) 0)) 
(equalsRef (filename (ar o1)) (filename (ar o2)))) ) )

)
)
(define-fun hashCode ((o1 Object)) Int(pointer o1))
;equality check
...
(assert (not (equalsMain this this) ) )
...
(assert (not(iff (equalsMain this that) (equalsMain that this)) ) )
...
(assert (not(=> (and (equalsMain this that) (equalsMain that other))
(equalsMain this other)) ) )
...
(assert (not(=> (not(= (pointer this) 0)) (not(equalsMain this nobj))) ) )
...
;hashCode check
(assert (not(=> (equalsMain this that) (= (hashCode this) (hashCode that) )) ) )
...

Figure 5: Conversion example of SMT-LIB

flow graph. This control flow graph is represented by Jim-
ple. Jimple represents a Java source code as a three-address
code, in which each expression consists of one operator, two
operands, and one variable which stores the result of the op-
eration. Hereafter, we analyze a Jimple code generated by
Soot.

Our method performs a path analysis. First, our method
enumerates paths by using the obtained control flow graph.
Next, our method performs a data flow analysis for each path,
and specifies what class is referred from a reference variable
at each source code location and what methods are called.
With this information, our method performs inlining of the
method invocations in equals or hashCode methods. How-
ever, since the number of method invocations is very large,
our method limits the inlining. Our method inlines the method
invocations only in the type hierarchy. Also, our method does
not inline a getter method, which is modeled as directly re-

ferring the field values. Although our method does not inline
outer methods, it models methods of Object class, wrapper
classes, Array classes, and Collections, because the behaviors
of these methods are already well known.

Finally, our method trims the path which is unreachable
and not necessary to our model. Since our method models
the equals method as returning true, we trim the path which
returns false. Also, to avoid modeling the null pointer excep-
tion, our method trims the path which includes uninitialized
reference variables. In other words, our method enhances the
performance by trimming the path not necessary to a model.

5.2 Analyzing the Pattern of Methods

In this step, our method analyzes the pattern of the proce-
dure in equals and hashCode methods. By referring to the
modeling rules for each pattern, our method converts Java
source code to SMT-LIB. In addition to the pattern analysis,

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 81



our method checks whether a subset rule is violated in this
step.

5.2.1 Analyzing Patterns of equals Methods
EQ introduce the six pattern of procedures in equals meth-

ods. Our method analyzes what pattern matches the equals
methods. The six procedure patterns are equivalence check-
ing of array, equivalence checking of List, equivalence check-
ing of Set, equivalence checking of Map, type checking, and
state checking. Type checking looks for the existence of the
following: checking by an instance operator in an if expres-
sion, typecasting by a cast operator, type checking by getClass
method in Object class. State checking looks for the existence
of the equivalence checking of field values and checking a
reference variable that is not null. Equivalence checking of
Array, List, Set, and Map checks whether elements in each
structure can be compared by a loop.

5.2.2 Analyzing Patterns of hashCode
Methods

We introduce the pattern of the procedure of hashCode meth-
ods and define the rules of each procedure. The hashCode
method procedure patterns are converting to int, a bit opera-
tion, and an arithmetic operation in loop. Converting to int
checks for the existence of type converting by cast operation
and type converting by library method of wrapper class. The
arithmetic operation in loop checks the existence of the pro-
cedure of an add operation in loop.

5.2.3 Checking of the Subset Rule
Our method performs checking of the subset rule. Our

method collects a set of field variables used in equals and
hashCode methods by analyzing the equals method and the
hashCode methods, and checks whether the set of field vari-
ables used in hashCode methods are subsumed by the set of
field variables used in equals methods. If a hashCode method
invokes the method of the parent classes and other methods,
since the path analysis inlines the method of the parent classes
and other methods in hashCode methods, the set of field vari-
ables used in the hashCode method contains field variables
used in such method. If the values of variables in the method
of parent classes and other methods are changed, the change
affects the return value of equals and hashCode methods. There-
fore, since it is necessary to consider such field values, we
substitute a subset rule for the first rules of hashCode meth-
ods. Two cases occur in the consistence rule of hashCode
methods. One is that hashCode methods use fields values
used in the equals method. In this case, if field values used
in the equals method are not changed, hash values also do
not change. The other case is that hashCode methods use not
only field values used in the equals method but also field val-
ues not used in equals methods. In this case, nevertheless, the
field values used in the equals method do not change, but hash
values possibly change. To check this case, it is necessary to
check relations of field values used in equals and hashCode
methods. Since it is necessary to check all methods which
modify field values, analyzing consumes many resources.

(declare-datatypes () ((Type ArEntry ArConstants UnderARC
Object Null)) )

(define-fun subof ((t1 Type) (t2 Type)) Bool
(ite (or (= t1 Null) (= t2 Null)) false

(ite (and (= t1 ArEntry) (= t2 ArConstants)) true
(ite (and (= t1 UnderARC) (= t2 ArConstants)) true

false
)

)
)

)
(declare-fun instanceof (Type Type) Bool)
(assert (forall ((x Type) (y Type))

(=> (subof x y) (instanceof x y))))
(assert (forall ((x Type) (y Type))

(=> (and (instanceof x y) (instanceof y x))
(= x y))))

(assert (forall ((x Type) (y Type) (z Type))
(=> (and (instanceof x y) (instanceof y z))

(instanceof x z))))
(assert (forall ((x Type)) (= (instanceof Null x) false) ))
(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x 

Object) )))
(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x x) )))
(assert (forall ((x Type)) (=> (not(= x ArEntry)) (not(instanceof x

ArEntry)) )))
(assert (forall ((x Type)) (=> (not(= x UnderARC)) 
(not(instanceof x UnderARC)) )))

Figure 6: Model of the instanceof operation

5.3 Conversion of Java Source Code to
SMT-LIB

This step consists of the following two steps. 1) The basic
structure conversion converts methods, inheritance relations,
classes, and field values to SMT-LIB. 2) The procedure of
the method conversion converts the procedure of the method
to SMTLIB by using information obtained from the step of
analyzing the pattern of methods.

5.3.1 Basic Structure Conversion

Our method represents classes and fields by records in SMT-
LIB. Our method defines fields used in equals and hashCode
methods. It converts all primitive values to Ints in SMT-
LIB. Since equals methods perform only comparisons, Int has
enough power to represent the result of equivalence checking.

Since hashCode methods perform any type of arithmetic
operations and usually perform typecast to int type before
arithmetic operations, our method always converts primitive
types used in hashCode methods to Ints. Our method con-
verts the enumeration field to the enum type in SMT-LIB.
Since reference variables of enum types possibly refer null,
our method models add a NULL value to the identifier intro-
duced by the enum type. Also, since the enum type of hash-
Code methods invokes a hashCode method of Object class,
our methods models the enum type of hashCode methods as
returning different values for each identifier. Our method de-
fines reference type fields by introducing the new record Ref

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java82



Table 1: Some of the simple µ conversion rules
µ(n1+n2 ) = + µ(n1) µ(n2)
µ(n1−n2 ) = - µ(n1) µ(n2)
µ(n1∗n2 ) = * µ(n1) µ(n2)
µ(n1/n2 ) = / µ(n1) µ(n2)
µ(a1==a2 ) = = µ(a1) µ(a2)
µ(n1<n2 ) = < µ(n1) µ(n2)
µ(n1>n2 ) = > µ(n1) µ(n2)
µ(n1>=n2 ) = >= µ(n1) µ(n2)
µ(n1<=n2 ) = <= µ(n1) µ(n2)
µ(n1! =n2 ) = not(= µ(n1) µ(n2))
µ(b1||b2 ) = or µ(b1) µ(b2)

µ(b1&&b2 ) = and µ(b1) µ(b2)
µ(!b1 ) = not µ(b1)

µ(a1instanceofa2 ) = instanceof µ(a1) µ(a2)
µ(a1.getClass() ) = class µ(a1)

µ(T1.class ) = µ(T1)
µ(b1?a1:a2) = ite (µ(b1)) (µ(a1)) (µ(a1))
µ(n1|n2 ) = bvor µ(n1) µ(n2)
µ(n1&n2 ) = bvand µ(n1) µ(n2)
µ(n1 ˆn2 ) = bvxor µ(n1) µ(n2)

representing a reference type. Ref represents the object that
is out of the type hierarchy. Our method models such an ob-
ject based on the hypothesis that such a method satisfies the
consistency rules of equals and hashCode methods. Ref de-
fines a field variable that represents the reference of its object.
It is used in equivalence checking as the Int type field. Our
method defines the equals methods of Ref when a Ref object
is used. Our method does not define hashCode methods of
Ref. It models this as a reference of the hash values. Our
method models the data structure of Java by arrays and lists.
Our method represents arrays, Sets, and Maps using arrays
of SMT-LIB. An array of SMT-LIB is defined by specifying
the type of its index and its type of elements. For example,
specifying the type of index as Int represents the array. Set
is also represented by adding a constraint in which elements
are different from each other in this array. Our method repre-
sents the inheritance relation of a class by the nest of records.
However, it cannot model the behavior of instanceof, which
checks whether a class has an inheritance relation between
other classes. Hence, our method introduces the type named
Type which enumerates the type of adds null to all classes in
the type hierarchy. Our method models the instanceof oper-
ator by representing the relation of Type. Figure 6 shows an
example of an instanceof operation model. The definition of
Object class defines all classes as a field. Object class repre-
sents the runtime objects and defines a pointer as an Int type.
Type defines a field representing where the instance comes
from.

5.3.2 Conversion of the Procedure of Methods

Conversion of the procedure of methods converts Java source
code to SMT-LIB based on information obtained from the
step of analyzing the pattern of methods. First, our method
generates expression trees for each expression represented as
Jimple. Our method specifies the final expression returned by

the return expression by tracing the expression tree and ana-
lyzing how the values of variables are calculated. The opera-
tion in expressions is converted by the converting rules. Table
1 shows the simple converting rules of Java source code to
SMT-LIB. The convert function converts Java source code to
SMT-LIB, where bm and am represent subexpressions of the
boolean type and the numerical type, respectively. Tm repre-
sents arbitrary types. Java represents an expression with infix
notation, whereas SMT-LIB represents expressions by prefix
notation. Also, our method converts the instanceof operator
based on modeling previously described.

5.3.3 Conversion of equals Methods

Our method converts equals methods based on the six pat-
terns obtained from the pattern analysis. The operations used
in type checking are converted as shown in Table 1. Since ver-
ification by an SMT solver is performed on the object level,
cast operations used in the equals method are not converted.
Since statement checking compares values, the comparison
expression is converted as in Table 1. With regard to the
equivalence checking of arrays, Lists, Sets, and Maps, our
method models the method which performs a comparison in
the loop as it performs a comparison of each element of an ar-
ray. For example, let us consider an instance of a class which
has the array as the field, and performs an equals method.
Our method checks whether this equals method performs a
comparison of its field array with the array of its argument by
the same index. Next, our method checks whether a variable
used in the loop header is used as the index of the array. If
those two conditions are satisfied, our method determines it
performs a comparison. Most loop operations in an equals
method match this pattern. Since other loop operations are
rarely performed and SMT-LIB cannot evaluate statements
dynamically, our method does not model such loop opera-
tions.

5.3.4 Conversion of hashCode Methods

Our method converts hashCode methods based on the six
patterns obtained from the pattern analysis. A variable changed
by its type by a cast operation or a method of the Java class li-
brary is represented as the Int type of SMT-LIB. Operands of
bit operations are represented as 8-bit type vector types. Con-
version results of the operations to Int types are obtained by
applying bv2int functions to the result. Although Int of Java is
32 bits, if it models it as 32 bits, modeling takes an enormous
amount of time. Therefore, our method models it as an 8-
bit integer. Bit operations of hashCode methods operate two
operands and do not performs bit operations on one specific
bit. Hence, our method can perform verification. Arithmetic
operations in a loop are analyzed and our method determines
what pattern matches the operations. An arithmetic operation
in a loop can be represented as expression, if the number of
iterations is identical to the length of the array and arithmetic
operations performed in loop do not contain nondeterministic
values. However, the result of this operation is decided after
the loop is terminated. Therefore, our method limits the loop
iteration. This is well used in bounded model checking. Our

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 83



unsat
(error "line 74 column 17: model is not available")

unsat
(error "line 80 column 22: model is not available")

unsat
(error "line 86 column 28: model is not available")

unsat
(error "line 92 column 22: model is not available")

sat
((this (Ofield (Arfield (Rfield 8 9 7)) 3 ArEntry))
(that (Ofield (Arfield (Rfield 8 9 10)) 2 ArEntry)))

Figure 7: Results of verifying the code of Figure 5

method calculates the result of the loop after 0 to 10 itera-
tions. Our method cannot verify all cases but if our method
decides a hashCode method violates the rule, this decision is
absolutely true. Similarly to the equals method, our method
does not model other loop operations.

5.3.5 Additional Constraints
Our method verifies the four consistency rules of equals

methods and the equivalence rule of hashCode methods by
an SMT solver. The SMT solver solves the constraint and
shows the assignment, which is a set of values for the vari-
ables that satisfies all constraints. Therefore, to obtain an ex-
ample of a type hierarchy which violates the consistency rule,
our method introduces the negation of consistency rules as the
constraints.

5.4 Solving Constraints by an SMT Solver
Our method verifies the SMT-LIB expression which mod-

els Java source code by using an SMT solver called Z3. In
general, Z3 determines whether a given set of constraints is
satisfiable. If it is unsatisfiable, Z3 also outputs a counter
example, which is a set of assignments of variables and inter-
pretation of functions.

Since our method uses the negation of the consistency rules
as the constraints in SMT-LIB, if Z3 outputs unsatisfiable,
then we conclude that the source code does not violate the
consistency rules. On the other hand, if Z3 outputs satisfi-
able, we conclude that the source code violates the consis-
tency rules In such a case, Z3 can output a set of assignments
which makes the input true.

Figure 7 shows the results of verification by Z3 for the
source code in Fig. 5. The bottom line shows that the re-
sult of verifying the equivalence rule of the hashCode method
and the other four lines are the results of verifying the consis-
tency rules of equals method. Figure 7 shows that violation of
the equivalence rule is detected. The optional outputs as as-
signments show that two ArEntry objects have the same field
values but their references are different.

6 EXPERIMENTS

In this section, we evaluate our proposed method by exper-
iment. We implement the verification function of the subset

public class HCatFieldSchema implements Serializable {

public enum Category {

PRIMITIVE,ARRAY,MAP,STRUCT

};

String fieldName,typeString;

Category category ;

・・・

public boolean equals(Object obj) {

if (this == obj)

return true;

if (obj == null)

return false;

if (!(obj instanceof HCatFieldSchema))

return false;

HCatFieldSchema other = (HCatFieldSchema) obj;

if (category != other.category)

return false;

if (fieldName == null) {

if (other.fieldName != null) {

return false;

}

} else if (!fieldName.equals(other.fieldName)) {

return false;

}

if (this.getTypeString() == null) {

if (other.getTypeString() != null) {

return false;

}

} else if (!this.getTypeString().equals(other.getTypeString())) {

return false;

}

return true;

}

public int hashCode() {

int result = 17;

result = 31 * result + (category == null ? 0 : category.hashCode());

result = 31 * result + (fieldName == null ? 0 : fieldName.hashCode());

result = 31 * result + (getTypeString() == null ? 0 :

getTypeString().hashCode());

return result;

}

}

Figure 8: A fixed HCatFieldSchema class

rule, part of the modeling to SMT-LIB and the verification
function of our tool. We did not implement the converting
of bit operations and loops. This is some of our future work.
Subsection 6.1 shows the results of applying our tool to some
projects. The results show the effect of methods violating the
subset rule. Subsection 6.2 shows the results for whether our
tool can detect violation of the consistency rules of equals
methods. In the experiments, we first converted Java source
code to SMT-LIB manually. Then, we applied our tool to
that model. Subsection 6.3 shows the execution time of our
tool. Subsection 6.4 shows how often the projects violated the
rules.

6.1 Evaluation of the Subset Rule
We applied our tool to Lucene 4.6.0. Table 2 shows the

results. Numclass represents the number of classes in which
the equals or hashCode methods are overridden. Subset rep-
resents the number of classes satisfying the subset rule. Vi-
olation represents the number of classes violating the subset
rule.

We discuss the four classes that violate the subset rule.
Two of the four classes contain a field variable that stores the

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java84



Table 2: Results of violation of the subset rule

Name NumClass Subset Violation
Lucene 110 106 4

length of the array and is used in only hashCode methods.
The length of array can be calculated by the fields variable of
the array. Also, array is used in both equals and hashCode
methods. Therefore, these classes do not completely violate
the subset rule. Although these fields are declared with a key-
word “final”, our method guarantees that the reference vari-
ables refer always to the same object, but it does not guarantee
that the objects are not changed. Therefore, if the length of
the array changes, the field variable is not renewed and it does
not store the correct value.

One of the four classes contains a field variable that stores
the hash value already calculated for performance improve-
ment. This class returns the hash value generated by convert-
ing the memory address of object to an integer value. Since
this value does not change at runtime of the application, the
class does not completely violate the subset rule.

The last class does not override its equals method and in-
vokes the equals method of Object class. The equals method
of Object class does not use field values. However, this class
overrides its hashCode method and uses a field value. There-
fore, this class violates the subset rule.

6.2 Evaluation of the Equivalence Rule

We evaluated the equivalence rule through the HcatField-
Schema class of Apache Hive. This class receives a bug re-
port which states that the class overrides its equals method but
does not override its hashCode method in the past revision.
This bug is fixed in the later revision. We manually modeled
the two revisions of this class. One contains the bug and the
other fixes the bug. We conclude that our tool works correctly,
if the following two conditions are satisfied. 1) Our tool de-
tects that an unfixed class violates the consistency rules. 2)
Our tool detects that a fixed class does not violate the con-
sistency rules. Figure 6 shows the source code of the fixed
class. This class does not have its parent class. The unfixed
class does not override its hashCode method. If the hashCode
method of the unfixed class is invoked, the unfixed class in-
vokes the hashCode method of Object. The equals method of
this class determines the equivalence of two objects by com-
paring field values. However, the hashCode method returns
true if two objects are the same. Hence, this class violates the
equivalence rule. Since the hashCode method of the fixed
class returns a hash value by performing arithmetic opera-
tions involving a field value used in the equals method, the
fixed class does not violate the equivalence rule. We check
the violation of the equivalence rule by Z3. Z3 determines
the unfixed class violates the equivalence rule, but the fixed
class does not violate the equivalence rule. This result shows
that our method can detect the implementation which violates
the equivalence rule.

Table 3: Comparison of execution times
Name Path length Path analysis Pattern analysis Execution

procedure time
Lucene 16,970 12s 29s 1s 48s
Tomcat 257,590 38s 240s 2s 285s

JFreeChart 3,538,281 11,181s 11,491s 6s 22,689s

Table 4: Number of violated rules
Name equals method hashCode method totalreflexive symmetric transitive null subset equivalence

Lucene 2 0 0 0 4 1 7
Tomcat 11 3 4 3 14 7 35

JFreeChart 1 1 2 0 76 36 113

6.3 Execution Times
To evaluate the cost of checking, we applied our tool to

Lucene 4.6.0, Tomcat 8.0.1, and JFreeChart 1.0.17. We com-
pared the execution times. Figure 3 shows the results of this
experiment. The path length, the name of each step, and the
time represent the total path length of each project, the exe-
cution time of each step, and the total execution time, respec-
tively. Time represents the total execution time.

These results show that our proposed method is effective
when it checks small or medium-sized projects. Our method
can check large projects by limiting and reducing the search
space. The execution time is approximately in proportion to
the total pass length. We do not have an obvious answer to
the cause of this result. Analyzing the cause is future work.
Also, analyzing the procedure of a method and converting the
Java source code to SMT-LIB model consume over 50% of
the total execution time. We can reduce the total execution
time by improving the performance of these steps.

6.4 Evaluation of Projects
We evaluated how often the projects violate the consistency

rules. We applied our tool to Lucene 4.6.0, Tomcat 8.0.1, and
JFreeChart 1.0.17.

Table 4 shows the results of this experiment. Each name
in the rule column represents the number of implementations
violating that rule.

We discuss the causes of the violations of the consistency
rules. The causes of violating the rules of the equals methods
are those of [7]. That is, they are asymmetry null checking,
invalid type checking at type hierarchy, and mistyping. Also,
we model the method invocations for fields as a nondetermin-
istic function, and such modeling may generate wrong mod-
els. Three type hierarchies violating the rules are caused by
the wrong models. This problem can be solved by improving
our tool. For example, we can solve this problem by using
the information of method behavior from users for a method
which is not inlined.

Regarding the subset rule of hashCode methods, some classes
contain a field variable which stores the hash value already
calculated for improving the performance. This method re-
turns the hash value generated by converting the memory ad-
dress of the object to an integer value. Since this value does
not change at runtime of the application, the class does not
completely violate the subset rule. Also, regarding the equiv-
alence rule, many classes override their equals methods but

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 85



do not override their hashCode methods, and so they violate
this rule. This violation is only in JFreeChart, not the other
two projects. Therefore, the policy of implementation of the
project may affect this result. Consequently, we claim that the
projects policy must contain the rule that if a class overrides
the equals methods, then the class must override the hashCode
methods. Also, two classes violate the equivalence rule of the
hashCode methods. This violation is caused by their equals
methods that violate the consistency rules.

7 CONCLUSION

In this paper, we proposed a method that verifies the consis-
tency between both equals and hashCode methods. Also, we
evaluated our method by experiments. Our method analyzes
Java source code and converts the code to SMT-LIB. By using
Z3, our method verifies whether the source code violates the
consistency rules. If thee code violates any of the consistency
rules, our method is able to output counter examples. The
experimental results show that our method detects that some
of the real code includes incorrect method implementations
which violate some of the consistency rules.

We will implement the functions which are not yet imple-
mented in our tool. Also, we will evaluate the performance of
our tool by applying our tool to many practical projects. Ex-
perimental results show that our method detects the inconsis-
tency of some projects, but does not show how many projects
can be checked by our tool. We will apply our method to
many projects and examine the results. These are all future
work.

REFERENCES

[1] J. Bloch, “Effective Java,” Addison-Wesley (2008).
[2] Oracle, “Java Platform, Standard Edi-

tion 7 API Specification” (2013)
http://docs.oracle.com/javase/7/docs/api/.

[3] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
ACM SIGPLAN Notices Homepage archive, pp.92-106
(2004).

[4] M. Vaziri, F. Tip, S. Fink, and J. Dolby, “Declarative
Object Identity Using Relation Types,” Proceedings of
the21st European Conference on Object-Oriented Pro-
gramming, pp.54-78 (2007).

[5] C. R. Rupakheti and D. Hou, “An Empirical Study of
the Design and Implementation of Object Equality in
Java,”’ Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting
of minds, pp.111-125 (2008).

[6] C. R. Rupakheti and D. Hou, “An Abstraction-Oriented,
Path-Based Approach for Analyzing Object Equality in
Java,” Proceedings of the 17th Working Conference on
Reverse Engineering, pp.205-214 (2010).

[7] C. R. Rupakheti and D. Hou, “Finding Errors from Re-
verse Engineered Equality Models using a Constraint
Solver,” Proceedings of the 28th IEEE International
Conference on Software Maintenance, pp.77-86 (2012).

[8] L. deMoura and N. Bjorner, “Z3: An Efficient SMT
Solver,” Proceedings of the 14th international confer-

ence on Tools and algorithms for the construction and
analysis of systems, pp.337-340 (2008).

[9] C. Barrett, A. Stump and C. Tinelli, “The SMT-LIB
Standard Version 2.0” (2010).

[10] D. Rayside, Z. Benjamin, R. Singh, J.P. Near, A. Milice-
vic, and D. Jackson, “Equality and Hashing for (almost)
Free: Generating Implementations from Abstraction
Functions,” Proceedings of the 31st International Con-
ference on Software Engineering, pp.342-352 (2009).

[11] N. Grech, J. Rathke, and B. Fischer, “JEqualityGen:
Generating Equality and Hashing Methods,” Proceed-
ings of the 9th international conference on Generative
programming and component engineering, pp.177-186
(2010).

[12] T. Jensen, F. Kirchner, and D. Pichardie, “Secure the
clones: Static enforcement of policies for secure ob-
ject copying,” Proceedings of the 20th European confer-
ence on Programming languages and systems: part of
the joint European conferences on theory and practice
of software, pp.317-337 (2010).

[13] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“UML2Alloy: A Challenging Model Transformation,”
Proceedings of the ACM/IEEE 10th International Con-
ference on Model Driven Engineering Languages and
Systems, pp.436-450 (2007).

[14] T. Liu, M. Nagel, and M. Taghdiri, “Bounded Program
Verification using an SMT Solver: A Case Study,” Pro-
ceedings of the 5th International Conference on Soft-
ware Testing, Verification and Validation, pp.101-110
(2012).

[15] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A Fast,
Scalable, Constraint Solver,” Proceedings of the 17th
European Conference on Artificial Intelligence, pp.98-
102 (2006).

[16] D. Balasubramaniam, C. Jefferson, L. Kotthoff, I.
Miguel, and P. Nightingale, “An Automated Approach
to Generating Efficient Constraint Solvers,” Proceedings
of the 2012 International Conference on Software Engi-
neering, pp.661-671 (2012).

[17] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An
overview of JML tools and applications,” International
Journal on Software Tools for Technology Transfer,
pp.212-232 (2005).

[18] Apache, “Apache PDFBox - A Java PDF Library”
(2012) http://pdfbox.apache.org/.

[19] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E.
Gagnon, and P. Co, “Soot a Java Optimization Frame-
work,” Proceedings of the 1999 conference of the Cen-
tre for Advanced Studies on Collaborative research,
pp.125-135 (1999).

(Received November 20, 2014)
(Revised Feburary 23, 2015)

K. Okano et al. / Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java86



Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2015, he

has been an Associate Professor at Department of Computer Science and En-
gineering, Shinshu University. His current research interests include formal
methods for software and information system design. He is a member of
IEEE, IEICE, IPSJ.

Hiroaki Shimba received her BI and MI degrees
from Osaka University in 2012 and 2014, respec-
tively. His research interests include model driven
software development, and consistency checking
between equals and hashCode Methods in Java.
He now works at Fuji Xerox Corp.

Takafumi Ohta received his BI and MI degrees
from Tohoku University in 2013 and from Osaka
University in 2015, respectively. His research in-
terests include bug identification using concolic
execution. He now works at NS Solutions Cor-
poration.

Hiroki Onoue received her BI from Osaka Uni-
versity in 2014. His theme for the bachelor degree
is“ implementation of consistency checking be-
tween equals and hashCode Methods in Java.”He
now works at Sharp Corp.

Shinji Kusumoto received his BE, ME, and DE
degrees in Information and Computer Sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a Professor at the Graduate
School of Information Science and Technology of
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 77-87 87



88



Proposal for Knowledge Model Using RDF-based Service Control for Balancing 

Security and Privacy in Ubiquitous Sensor Networks 

Makoto Sato*, Yoshimi Teshigawara**, and Ryoichi Sasaki*,** 
  

*Graduate School of Advanced Science and Technology, Tokyo Denki University, Japan 
**Cyber Security Laboratory, The Research Institute of Science and Technology, Tokyo Denki University, 

Japan 

{sato_m, teshiga}@isl.im.dendai.ac.jp, sasaki@im.dendai.ac.jp 

 
Abstract -In ubiquitous sensor networks, various sensors 

and tag readers automatically collect information in space 

and relevant information is acquired. Efficient utilization of 

the acquired information is important for providing high-

quality services that meet the users' privacy requirements. 

We use RDF triples that represent spatial information at the 

granularity of the requested security levels. In earlier work, 

we created a knowledge model that considers privacy by 

representing user information hierarchically, and we verified 

its feasibility by a simulator that we developed. Then, we 

extended this knowledge model. In this paper, we discuss 

our newly proposed extended knowledge model and its 

applicability to various spaces. In addition, we evaluate the 

feasibility of the model by using a test simulator that we 

developed. 

 

Keywords: Security and Privacy, Knowledge Model, RDF, 

Semantic Sensor Network Ontology, Sensor Network. 

1 INTRODUCTION 

In ubiquitous sensor networks, various sensors and tag 

readers automatically collect information in space and 

relevant information is acquired. It is expected that the 

amount of information in the sensor network space will 

further increase due to advances of these networks. It is also 

expected that personal information on users will be 

presented with various levels of granularity. For example, 

GPS can acquire rough location information, and cameras 

can acquire detailed location information. Efficient 

utilization of the acquired information is important for 

providing high-quality services that meet the users' privacy 

requirements. In this regard, it is possible to identify users' 

personal information by combining sensor information with 

user information that seems to be trivial by itself. Therefore, 

the risk of an indirect violation of privacy makes it difficult 

to provide high-quality services, because protecting the 

user's privacy means limiting the information obtained. Thus, 

it is necessary to consider privacy and security. Privacy 

requires protection from a third party and meeting the user’s 

privacy requirements. Security requires that the network 

does not leak information to the outside. Terminals that use 

privacy information must preserve confidentiality by means 

such as encryption or anonymity protection, and must 

impose security measures to prevent privacy information 

leakage or tampering.  

 Our research objective is RDF-based service control for 

balancing security and privacy. In this study, privacy 

information is defined as information about a behavior of 

the user that the sensor collects. In this paper, we focus on 

privacy protection. 

We have been developing a platform that integrates all the 

information in a space by using the Resource Description 

Framework (RDF). An RDF represents information about a 

resource (subject, predicate, object) in the form of an RDF  

triple [1]. An RDF triple is represented by a graph in Fig. 1. 

The RDF expresses the subject of the resources associated 

with the object through the predicate. By combining 

inference rules and a set of vocabulary, it is possible to 

connect different types of data and to make the aggregation 

of over the partial sums. RDF triples are represented with 

the granularity of any spatial information. Therefore, service 

control information or privacy information is represented 

flexibly. For this reason, using the information efficiently to 

provide a flexible service requires organizing the RDF 

triples of the control information and the service state 

information of the space required by each service. 

 On the other hand, protecting personal information 

requires collecting this information with restrictions and 

proper control [2]. In our previous study, we discussed only 

the use of restrictions, because collecting restrictions is 

outside our work scope. Thus, we define privacy protection 

as follows. Services are allowed to use only intended 

information on users. Sensors are not permitted to collect 

unintended information on users. 

We previously proposed a knowledge model that can be 

applied to a platform using RDF-based practical services [3]. 

We created a knowledge model, which is a set of vocabulary 

required for expressing services provided by the RDF and 

analyzing the RDF obtained at that time. Because our 

knowledge model considers privacy by representing user 

information hierarchically, we were able to control user 

information by adding a function that reflected user requests 

[4]. In addition, we verified the feasibility of the knowledge 

model by developing a test simulator. 

 

affiliation

located

Makoto

Security

Lab

University

 
Figure 1 Example of RDF Triple 

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.2 (2015) 89-97 89



The knowledge model is represented by simple and 

common logic. The service provider benefits by verifying 

whether personal information is properly used when the 

service is under development. The user benefits by limiting 

personal information in accordance with the user's intention. 

Our current work provides a level of service management 

for a particular space. That is, we extended the same service 

to a different service management system. In this paper, we 

discuss the applicability of our extended knowledge model 

to various services and various spaces, and we evaluate the 

feasibility of the extended model by using the test simulator. 

2 RESEARCH BACKGROUND 

2.1 Related Work 

Various integrated management methods for sensor 

networks have been proposed [5]. Some of the studies 

represent sensor network information by using the RDF. 

Fujinami et al. represented a physical environment model by 

a location model and an object model using the RDF [6]. 

The location model is represented by relations between a 

unit space, such as a room and a building, and unit territories, 

such as an entrance and a kitchen. The object model is 

represented by object information, such as specification 

information and operating conditions. By using these 

models, developers can handle directly required information 

for a variety of applications. Held et al. represented user-

specific information, such as user preferences, by using the 

RDF [7]. By evaluating context information and managing 

user profiles, the RDF allows for personalized, context-

aware service mediation and content adaptation. Noguchi et 

al. managed sensor information by using the RDF to realize 

intelligent support systems in a room in a home [8]. In this 

case, the system needed a mechanism for automatically 

understanding information such as the sensor configurations 

of rooms. Therefore, they proposed an RDF sensor 

description to inclusively portray sensor information. It not 

only could describe the characteristics of the sensors, but 

could also easily realize an extension of the description in 

collaboration with other knowledge information, including 

new information. With these features, it allowed unified 

processing of sensor data. An example of the applied RDF 

description is the implementation of applications, such as 

component discovery in middleware. In our study, the 

service execution rules and the user requirements are 

centrally managed in the same way as the sensor 

information. Therefore, our model is expected to provide 

both high-quality service and protection of privacy. 

Some research has discussed access control on the Web. 

Sacco et al. proposed the Privacy Preference Ontology that 

enables fine-grained access control [10]. This ontology has a 

vocabulary for defining fine-grained privacy preferences for 

RDF data. This ontology restricts a resource, a particular 

triple and a group of triples. By using this ontology, access 

control to privacy information is restricted by the properties 

that a requester must satisfy. Carminati et al. proposed an 

access control framework for social networks by specifying 

privacy rules using SWRL (Semantic Web Rule Language) 

[9]. 

Sensor Group

Services

Platform

Sensor data acquisition unit

RDF triple generation rule management unit

RDF triple management unit

Service control unit

Service execution rule 

management unit

Service execution 

judgment unit

 
 

Figure 2: Overview of system functions 

 

Additionally, user/resource relations were modeled by using 

RDF/OWL (Web Ontology Language). Because the Web 

contains a lot of privacy information, access control is 

effective as a method of privacy protection. Similarly, 

privacy protection using the RDF in a sensor network was 

studied. Jagtap et al. investigated privacy protection by 

using the RDF [11]. They proposed a model for representing 

the user's environment, position, and activities. An 

important element of their study was the use of collaborative 

information among sharing devices, which share and 

integrate knowledge about the contexts of the collaborative 

information. Therefore, mechanisms for privacy and 

security were required. They used the RDF to specify a 

high-level declarative policy describing the settings for 

sharing user information.  

Our study presents a framework to provide users with an 

appropriate level of privacy for a mobile device and to 

protect the personal information gathered, including 

personal information that can be inferred from other 

information. Our study assumes an environment where the 

mobile devices are owned by individuals, and sensors, such 

as camera sensors and positioning sensors, are placed in 

each location. Therefore, our model is expected to protect 

privacy while providing a variety of services.  

2.2 Development of Platform 

As described in Section 1, we have been studying a 

method to integrate all the information in a space by 

describing sensor information, user information, and service 

states for using the RDF [12]. We aim to control services in 

the sensor network space by using RDF triples to provide 

services and information corresponding to the users' requests. 

Furthermore, to provide a high-quality service and to protect 

the privacy information of the user by reflecting the user 

requirements into the usage rights of RDF triples, we have 

been developing a platform that uses the appropriate 

information that satisfies the users' requirements. Figure 2 

shows an overview of the functions of this platform. The 

functions are to generate RDF triples from the spatial  

 

M. Sato et al. / Proposal for Knowledge Model Using RDF-based Service Control for Balancing Security and Privacy in Ubiquitous Sensor Networks90



Table 1: Generated RDF triple rule 

Rule Generated RDF triple

userA is located at (x, y) (userA, locate, (x, y) )  
 

Table 2: Service execution rule 

Subject Predicate Object

Lighting

control
User locate Room Light on

RDF triple
Service

Excutive

instruction

 
 

information acquired from sensors and to select provided 

services based on the RDF triples. These processes are 

carried out in "the RDF triple generation rule management 

unit" and "the service execution rule management unit". In 

the RDF triple generation rule management unit, RDF 

triples are generated from the acquired sensor information 

based on the RDF triples from the RDF triple generation 

rules. Here, the generating rule for the RDF triples is 

managed as a set of rules, or triggers, for generating new 

and already generated RDF triples. Table 1 shows an 

example of a generated RDF triple rule. The service 

execution rule management unit selects the services that can 

be provided by checking the RDF triples passed from the 

service control unit to the service execution rules. In 

addition, the service providing service execution rules, the 

RDF triples that trigger the service, and the service 

execution instruction are managed as a single set of rules. 

Table 2 shows an example of a service execution rule. 

2.3 Creation of Knowledge Model 

As described in Section 2.2, spatial information is 

represented by an RDF. We define the vocabulary and the 

relations of spatial information as a knowledge model 

expressed by the RDF. To create a knowledge model that 

can provide a service, it must be created after stipulating the 

service requirements envisioned. However, the service that 

runs on this platform is not yet defined. Therefore, an 

effective approach is to create a primary knowledge model 

first and then extend it gradually. 

The primary knowledge model is created with a clear 

description of the technical issues for practical use, while 

considering and evaluating the services as a prototype. 

Specifically, the resources required for the services are 

assumed. Next, the state transition of the resources is 

expressed by an RDF graph (a set of RDF triples). Then, the 

resources within the RDF graph are classified into sets of 

the same type. A knowledge model is created to represent 

the relation between sets. For example, the primary 

knowledge model is applied to a service of the same type. A 

new service concept is introduced when one is lacking. Thus, 

by extending the knowledge model, a more general 

knowledge model is created. 

 

 
Figure 3: An example of the created knowledge model 

 

In such a manner, we created the knowledge model shown 

in Fig. 3, which is intended for a university. In this figure, 

an ellipse represents a resource, and an arrow expresses a 

predicate. A feature of this knowledge model is that the 

domain corresponds to a subject, and the range corresponds 

to an object, shown as (predicate_property, domain, 

domain_name), (predicate_property, range, range_name). 

This RDF triple expresses a resource that is the subject of 

the relation and the object of the relation. Thus, when RDF 

triples are added to the RDF graph, the inference is that 

resources belong to a classification with a focus on the 

predicate [3]. In addition, by using a hierarchical 

representation of the affiliation information of the user, it 

becomes possible to restrict the use of privacy information 

[4]. We examined the flexibility of the service execution 

rules by an experiment using this knowledge model in a 

simulator [3]. 

2.4 Development of Simulator 

No real system has been developed to provide services by 

using the knowledge model created in Section 2.3. Because 

the platform includes ambiguous parts, such as the storage 

method of the service execution rules, we cannot clearly 

verify the feasibility of the knowledge model. Therefore, we 

developed a simulator to apply the knowledge model [13]. 

In the simulator, we developed several functions, such as 

input of RDF triples, introduction of new RDF triples by 

inferring, reflection of user requests, and selection of 

executable services. Jena was used for development of the 

simulator [14]. Jena provides a framework for processing 

RDFs, and an inference engine. Graphviz was used to 

visualize the RDF graph [15]. We demonstrated the 

operation of each function and verified the feasibility of a 

service control by the knowledge model [4]. 

One of the beneficial features of the simulator is a 

function for reflecting user requests in order to limit the 

information used in the sensor network space. In Fig. 2, this 

function is executed in the RDF triple management unit. The 

user requests are managed in the form of inference rules. 

Specifically, RDF triples representing the restrictions (user 

information, permit, no) are added by using the inference 

rules, and only usable information is outputted based on 

these added RDF triples. Here, “no” means permit is denied. 

 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 89-97 91



 
Figure 4: RDF graph for entry permit information for a faculty user 

 

 

2.5 The Need for the Sensor Concept and 

 Collecting Restrictions 

The main resources in the sensor network space can be 

divided into space, user and service. Space is divided into 

"environment" and "sensor". "Environment" is a place for 

providing services. For example, the environment is stations, 

a university or a home. "Sensor" obtains the spatial 

information. In the previous study, we also focused on the 

service control using the RDF, but it was limited to only 

"environment" in spatial information. We considered service 

control information as information directly related to the 

service. We did not discuss the sensor at that time. 

Therefore, as a next step, it is necessary to incorporate the 

concept of the sensor to create a more general knowledge 

model. 

In addition to introducing the concept of the sensor, it is 

also necessary to consider again the restrictions on 

collecting information, as discussed in our previous study 

[4]. To meet the requirements of more users, the RDF triples 

acquired from a sensor only use information allowed by the 

user. In addition, RDF triples are not applied except for 

those uses. The results of the study are as follows. 

3 EXTENDED KNOWLEDGE MODEL 

3.1 Assumed Service 

The assumed service is entry management in a university 

campus according to the affiliation information of a user. 

For example, one service is unlocking the entrance door if 

the user is enrolled in the affiliated faculty. We make the 

following assumptions. The service manager is able to 

attach the affiliation information for the user (faculty), and 

the user is able to specify the affiliation information for  

Table 3: Service execution rule for room entry 

Subject Predicate Object

User permit Room

User affiliation
Affiliation

information

Executive

instruction

Entry

Management
Open

Service
RDF triple

 
 

which the service is available. We considered the 

"environment" as a cafeteria, three buildings, five rooms in 

each building and the main gate to the university campus. 

Figure 4 illustrates the relation between entry permission 

and user affiliation. A user must belong to the university in 

order to pass through the main gate. Similarly, the faculty 

must belong to the university in order to enter a building. 

The faculty must also belong to the corresponding 

department in order to enter a classroom. For example, users 

can enter room A1110 if they have the affiliation 

information of faculty. They can enter the cafeteria if they 

have the affiliation information of the university. Each entry 

has a keycard system in conjunction with the entry permit 

information outputted from the service, and the RDF triples 

are assumed to have been inputted into the system in 

advance by the service administrator.  

As described in Section 2.3, our RDF-based service 

extracts the information required for the service provision 

from the assumed service. Service execution rules are 

created by analyzing the information to trigger the service 

execution from the service contents. The service is then 

provided when the affiliation information for the user is 

inputted and room entry is allowed. For example, an RDF 

triple indicates whether a user can pass through the main 

gate of the university (university, entrypermit, maingate). In 

another example, the trigger for room entry is represented 

by the RDF triples (user, affiliation, Department of 

Information Media), (user, permit, Room A1110). Table 3 

shows the service execution rule for room entry.  

 

M. Sato et al. / Proposal for Knowledge Model Using RDF-based Service Control for Balancing Security and Privacy in Ubiquitous Sensor Networks92



3.2 Privacy of Extended Knowledge Model 

We created an extended knowledge model based on the 

assumed service described in Section 3.1 [4]. Specifically, 

the model contains the affiliation information for the user 

and the model of the university's sensor network space 

corresponding to "environment". 

For the "sensor" that obtains spatial information, we used 

the Semantic Sensor Network Ontology (SSN) proposed by 

the W3C [16]. This ontology describes sensors, observations, 

and related concepts. For example, Sensor, Sensor Output, 

Sensor Input, and Device are basic resources of the sensor 

[17]. Therefore, we consider that these resources are 

sufficient as a primary model of the sensor. 

It is necessary to incorporate the collecting restrictions, as 

described in Section 2.5. The collecting restrictions can be 

realized by sensors that are not permitted to collect 

unintended information on users. For example, a camera 

sensor can acquire position information, but a user who does 

not want to be recorded might feel that he or she wants to 

stop this camera sensor. If sensors are permitted to simply 

reflect the user's request, all sensors will be stopped. Thus, 

the services are likely to be provided frequently. Therefore, 

in terms of efficiency, we decided to stop the sensor only 

when all users in the space do not wish to collect the 

information. For this reason, to indicate the availability of 

the sensor, we added a predicate "hasAvailability". The 

predicate is the relation between the user and the sensor. In 

addition, a word with the prefix "ssn." indicates that it is a 

vocabulary of the SSN. Figure 5 shows the extended 

knowledge model based on this information. 

Moreover, we needed to introduce new inference rules on 

the collecting restrictions. The collecting restrictions are 

realized by the following formulas using SWRL. If the user 

does not have the "hasAvailability" predicate, the simulator 

does not use the affiliation information of the user (Formula 

1). If the RDF triple (user, hasAvailability, sensor) is not 

added, the sensor stops working (Formula 2).  

 

no) ,Permit( 

ilability)ssh.hasAva ,noValue(

 ) ,(nAffiliatio

onof?affiliati

?user

onof?affiliati?user





 (1) 

 

down) ,Permit( 

) y,ilabilityBssh.hasAvanoValueof(

?Sensor

?Sensor


 (2) 

 
 

 
Figure 5: A part of the extended knowledge model 

 

4 SIMULATION EXPERIMENTS  

This section describes our simulation experiments. The 

experiments were executed to verify that the extended 

knowledge model is able to protect privacy information by 

using the user affiliation information.  

4.1 Experimental Environment 

The environment is the same as that described in Section 

3.1. We made the following assumptions for the experiment. 

Each user has a smartcard. The physical location of the 

university is the sensor network space. The physical location 

can be uniquely identified by the geographical coordinates 

of latitude and longitude. All locations in the university have 

the names of identified strings assigned by public authorities. 

Sensors are installed in the vicinity of the door or the gate 

for each location. Sensors used in this space are a camera 

sensor and a smartcard reader. The camera sensor obtains 

name information for the users present in the space. The 

smartcard reader obtains affiliation information for the users. 

The individual can then be authenticated by comparing the 

information in the smartcard and the information acquired 

by the camera sensor. The acquired sensor information is 

converted to RDF triples automatically. The difference from 

the previous experiment [4] is the sensor information and 

increased number of relations. The relations of entry 

permission and affiliation information for the user are 

shown in Table 4. 

We assumed the following two scenarios in the 

experiments. The difference between the two scenarios is 

that sensor information input is added only in scenario A 

(Steps 2 and 3). Then, service execution rules and the 

knowledge model are assumed to be stored in the database 

in advance. The user is assumed to be a student of Faculty of 

Engineering at this university in the Department of 

Electronic Engineering. 

Scenario A: 

1) Input the initial state of the assumed space. 
Specifically, the service administrator enters RDF 

triples indicating the building permit and the space 

information into the simulator. 

2) Enter the user requirements. The user selects the 

available user information and the available sensors 

and enters them into the simulator. All sensor and 

user information is supposed to be available at this 

time. 

3) The acquired sensor information, such as affiliation 

information, is inputted in the simulator. 

4) Generate new RDF triples to perform inference 

processing by using the input information. 

5) Determine whether the entry management service 

can be performed by using an RDF graph. 

6) Suggest the possible entry locations. 

Scenario B: 

A similar scenario is carried out, but this one does not use 

the available sensors in Step 2 above. 

 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 89-97 93



 

 
Figure 7: RDF graph after inference processing (Scenario A) 

 

Table 4: Some of the inputted RDF triples 

Subject Predicate Object

University department Engineering

University department Future Science

Future Science faculty Information Media

A room A1101

University entrypermit Maingate

Engineering entrypermit A

Information Media entrypermit A1110  
 

 
Figure 6: A part of the knowledge model 

 

We evaluated the feasibility and flexibility of the 

extended knowledge model. In addition, we evaluated the 

feasibility of collecting restrictions to meet the user 

requirements. 

4.2 Experimental Results 

Here we present the results of the experiments described 

in Section 4.1, where the scenarios were executed by the 

simulator. Figure 6 illustrates a part of the result of Step 1. It 

can be seen that the smartcard and the camera sensor were 

associated with the SSN. 

 
Figure 8: Screenshot of the list of locations that user is 

permitted to enter (Scenario A) 

 

 

Figure 7 illustrates the result of Step 4 in scenario A. 

From this figure, it can be seen that by inference processing, 

many RDF triples were automatically generated. Figure 8 

shows a list of the rooms where the user is permitted to enter.  

Figure 9 shows the results of applying the inference rule 

collecting restrictions on the user request inputted in Step 2 

in scenario B. The available information was eliminated 

because the user does not have the "hasAvailability" 

predicate. Figure 10 illustrates the result of Step 4. As 

compared with Fig. 7, Fig. 10 shows that the RDF graph is 

divided into two groups. This is because the affiliation 

information for the user is not bound to the entry permission 

information. Figure 11 shows a list of the rooms where the 

user is permitted to enter. 

 

M. Sato et al. / Proposal for Knowledge Model Using RDF-based Service Control for Balancing Security and Privacy in Ubiquitous Sensor Networks94



  

 
Figure 10: RDF graph after inference processing (Scenario B) 

 

 
Figure 9: Screenshot of the result of collecting restrictions 

(Scenario B) 

4.3 Discussion 

The RDF graph in the upper part of Fig. 9 shows the user 

requirement. The RDF graph in the middle part of Fig. 9 can 

be derived from the inference rule in Formula 1 and the 

RDF graph in the upper part of Fig. 9. One example is 

(Makoto, affiliation, Electronic Engineering). The "Makoto" 

subject does not have the "hasAvailability" predicate. 

Therefore, (Electronic Engineering, use permit, no) is 

generated. The RDF graph in the lower part of Fig. 9 shows 

that the user’s affiliation information was eliminated. For 

this reason, collecting restrictions was executed in 

accordance with the user by using the extended knowledge  

 
Figure 11: Screenshot of the list of rooms that the user is 

permitted to enter (Scenario B) 

 

model. Moreover, the derived RDF graph shows the user 

affiliation information cannot be used. Therefore, it was 

considered that the restriction of privacy information that 

satisfies the users' requirements was fulfilled. However, the 

resource indicating the user name remained in the RDF 

graph of the lower part of Fig. 9. Therefore, it seems that 

this privacy information needs to be removed. 

In Scenario A, all user information is supposed to be 

available. As compared with Fig. 4 and the user’s affiliation 

information (University: TDU, department: Engineering, 

faculty: Electronic Engineering), all the permitted rooms are 

found. As a result, the entry management service lists all the 

permitted rooms, as shown in Fig. 8. In Scenario B, all 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 89-97 95



sensors are not supposed to be available. Thus, the permitted 

room does not exist. Figure 11 shows that the entry 

management service is not provided. For this reason, entry 

into permitted rooms was properly listed in the newly 

defined space. In the two scenarios, we confirmed that the 

provision of services can be automatically executed. This 

result shows the feasibility of the sensor network space by 

using the knowledge model in a variety of spaces. 

The results of this study show a possible resolution to the 

security issue in privacy protection. 

5 CONCLUSION 

The purpose of this study was to confirm whether an 

RDF-based service implementation method keeps balance of 

service provisions that efficiently employ state information 

and privacy protection at the same time in a ubiquitous 

sensor network. In this paper, we extended the knowledge 

model by introducing the concept of a sensor by Semantic 

Sensor Network Ontology. In addition, we expressed the 

collecting restrictions by adding inference rules. We also 

verified the feasibility of the extended knowledge model and 

collecting of restrictions by experiments on the simulator 

that we developed. As a result, we found a possible 

resolution to the issue of balancing security and privacy. 

REFERENCES 

[1] W3C, RDF Primer (online), 

<http://www.w3.org/TR/2004/REC-rdf-primer-

20040210/>. 

[2] IPA, Survey on IT Technology and Personal 

Information protection, IPA (2012), 

<http://www.ipa.go.jp/security/fy23/reports/pdata/>  

(in Japanese). 

[3] M. Sato, K. Awazu, K. Kato, and Y. Teshigawara, 

“A Study on RDF Based Service Implementation in 

Ubiquitous Sensor Networks,” Proc. of Multimedia 

Distributed Cooperative and Mobile Symposium 

(DICOMO2011), pp. 749-756 (2011) (in Japanese)． 

[4] M. Sato, and Y. Teshigawara, “A Proposal of a 

Knowledge Model in Consideration of Privacy for 

the RDF-based Service Control in Ubiquitous Sensor 

Network,” Proc. Computer Security Symposium 

(CSS2012)，pp. 246-253 (2012) (in Japanese). 

[5] Y. Hirota, H. Kawashima, T. Umezawa, and M. Imai, 

“Design and Implementation of Real World Oriented 

Metadata Management System MeT for Semantic 

Sensor Network,” The IEICE Transactions, Vol.J89-

A, No 12, pp. 1090-1103 (2006) (in Japanese). 

[6] K. Fujinami, and T. Nakajima, “An Information 

Management Infrastructure for Sentient Artefact-

based Smart Spaces,” IPSJ Transactions on 

Computing System, Vol. 47, No. SIG12(ACS 15), pp. 

399-410 (2006) (in Japanese). 

[7] A. Held, S.Buchholz, and A. Schill, “Modeling of 

Context Information for Pervasive Computing 

Applications,” In Procceding of the World 

Multiconference on Systemics, Cybernetics and 

Informatics, Springer (2002). 

 [8] H. Noguchi, K. Tanaka, T. Mori, T. Sato, “Room 

Situation Search System Based on RDF Describing 

Room Object as Target of Human Behavior,” 

Technical Report of IEICE, Vol. 104, No. 725, pp. 

31-36 (2005) (in Japanese). 

[9] B. Carminati, E. Ferrari, R. Heatherly, M. 

Kantarcioglu, and B. Thurainsingham, “A Semantic 

Web Based Framework for Social Network Access 

Control,” Proceedings of the 14th ACM symposium 

on Access control models and technologies, pp. 177-

186 (2009). 

[10] O. Sacco and A. Passant, “A Privacy Preference 

Ontology (PPO) for Linked Data,” Procs of the 4th 

Workshop about Linked Data on the Web(LDOW-

2011) (2011). 

[11] P. Jagtap, A. Joshi, T. Finin, and L. Zavala, 

“Preserving Privacy in Context-aware Systems,” 

2011 Fifth IEEE International Conference, pp. 149-

153 (2011). 

[12] K. Awazu, D. Hirashima, K. Kato, and Y. 

Teshigawara, “A Study on Dynamic Space 

Administration and Service Control by Using RDF in 

Consideration of Privacy in Ubiquitous Sensor 

Networks,” Proc. Multimedia Distributed 

Cooperative and Mobile Symposium 

(DICOMO2010), pp. 1318-1325 (2010) (in 

Japanese)． 

[13] M. Sato, K. Awazu, and Y. Teshigawara, “A 

Proposal of a Simulator for the RDF Based Service 

Control in Ubiquitous Sensor Networks,” Proc. 

Multimedia Distributed Cooperative and Mobile 

Symposium (DICOMO2012), pp. 921-928 (2012) (in 

Japanese)． 

[14] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, “A. 

Seaborne, and K. Wilkinson, Jena: Implementing the 

Semantic Web Recommendations,” Proc. 13th Int’l 

World Wide Web Conf. Alternate Track Papers and 

Posters, pp. 74-83 (2004). 

[15] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North 

and G. Woodhull, “Graphviz and Dynagraph – Static 

and Dynamic Graph Drawing Tools,” Graph 

Drawing Software, pp. 127-148, Springer Berlin 

Heidelberg (2004). 

[16] W3C Semantic Sensor Network Incubator Group, 

Semantic Sensor Network Ontology (online), 

<http://www.w3.org/2005/Incubator/ssn/ssnx/ssn >. 

[17] M. Compton et al., “The SSN Ontology of the W3C 

Semantic Sensor Network Incubator Group,” Web 

Semantics: Science, Services and Agents on the 

World Wide Web, Vol. 17, pp. 25-32 (2012). 

 

(Received November 20, 2014) 

(Revised April 23, 2015) 

 

 

 

 

 

 

 

M. Sato et al. / Proposal for Knowledge Model Using RDF-based Service Control for Balancing Security and Privacy in Ubiquitous Sensor Networks96



 

 

 

 

Makoto Sato received his B.E. 

and M.E. degrees from Soka 

University in 2011 and 2013, 

respectively. He is currently 

doing his Ph.D. project at Tokyo 

Denki University. His research 

interests include sensor network 

system, ubiquitous computing 

and privacy issue. 

 

Dr. Yoshimi Teshigawara is 

currently a senior researcher of 

Department of Information 

Systems and Multimedia Design, 

School of Science and 

Technology for Future Life as 

well as Cyber Security 

Laboratory, the Research 

Institute of Science and 

Technology at Tokyo Denki University since 2013. 

He began his professional career in 1970 at NEC 

Corporation, engaged in the design and 

developments of network architecture and computer 

systems via satellite. He worked for Soka University 

from 1995 to 2013, and served Dean of Faculty of 

Engineering and Graduate School of Engineering. 

His current interests are network security, e-learning, 

ubiquitous computing. Dr. Teshigawara received his 

PhD from Tokyo Institute of Technology, Japan, in 

1970. 

 

Ryoichi Sasaki is a professor of 

Dept. of Information Systems 

and Multi Media, School of 

Science and Technology for 

Future Life, Tokyo Denki 

University. He received his B.S. 

Degree in health science and 

Ph.D. Degree in system engineering, both from the 

University of Tokyo in 1971 and 1981, respectively.  

From April of 1971 to March of 2001, he was 

engaged in the research and research management on 

systems safety, network management and 

information security at Systems Development 

Laboratory of Hitachi Ltd. From April of 2001, he is 

a professor of Tokyo Denki University, and engaged 

in the research and education on information 

security. Now, he is also an advisor of Information 

Security in Cabinet Secretariat for Government of 

Japan, and a visiting professor of National Institute 

of Informatics, Japan. 

International Journal of Informatics Society, VOL.7, NO.2 (2015) 89-97 97



98



                                            

Submission Guidance 
About IJIS 
International Journal of Informatics Society (ISSN 1883-4566) is published in one volume of three issues a year.  

One should be a member of Informatics Society for the submission of the article at least. A submission article is 

reviewed at least two reviewer. The online version of the journal is available at the following site: 

http://www.infsoc.org. 
 
Aims and Scope of Informatics Society 
The evolution of informatics heralds a new information society. It provides more convenience to our life. 

Informatics and technologies have been integrated by various fields. For example, mathematics, linguistics, 

logics, engineering, and new fields will join it. Especially, we are continuing to maintain an awareness of 

informatics and communication convergence. Informatics Society is the organization that tries to develop 

informatics and technologies with this convergence. International Journal of Informatics Society (IJIS) is the 

journal of Informatics Society.   

Areas of interest include, but are not limited to: 

Computer supported cooperative work and groupware 

Intelligent transport system 

Distributed Computing 

Multi-media communication 

Information systems 

Mobile computing 

Ubiquitous computing 
 
Instruction to Authors 
For detailed instructions please refer to the Authors Corner on our Web site, http://www.infsoc.org/.  

Submission of manuscripts: There is no limitation of page count as full papers, each of which will be subject to a 

full review process. An electronic, PDF-based submission of papers is mandatory. Download and use the 

LaTeX2e or Microsoft Word sample IJIS formats. 

http://www.infsoc.org/IJIS-Format.pdf 

LaTeX2e 

LaTeX2e files (ZIP) http://www.infsoc.org/template_IJIS.zip 

Microsoft WordTM 

Sample document  http://www.infsoc.org/sample_IJIS.doc 

Please send the PDF file of your paper to secretariat@infsoc.org with the following information:  

Title, Author: Name (Affiliation), Name (Affiliation), Corresponding Author. Address, Tel, Fax, E-mail: 
 
Copyright 
For all copying, reprint, or republication permission, write to: Copyrights and Permissions Department, 

Informatics Society, secretariat@infsoc.org. 
 
Publisher 
Address:  Informatics Laboratory, 3-41 Tsujimachi, Kitaku, Nagoya 462-0032, Japan 

E-mail:   secretariat@infsoc.org 



Guest Editor's Message           57
      R. Kiyohara

A Method for Detection of Traffic Conditions in an Oncoming Lane Using an In-vehicle Camera   59
      R. Shindo, and Y. Shiraishi

A Simulator for the Execution Efficiency Measurement of Distributed Multi-Database Virtualization  69
      D. Kano, H. Sato, J. Sawamoto, and Y. Wada

Formal Verification Technique for Consistency Checking between equals and hashCode Methods in Java  77
      K. Okano, H. Shimba, T. Ohta, H. Onoue, and S. Kusumoto

Proposal for Knowledge Model Using RDF-based Service Control for Balancing Security and Privacy         
in Ubiquitous Sensor Networks          89
      M. Sato, Y. Teshigawara, and R. Sasaki

CONTENTS


	1_IJIS-omote.pdf
	2_IJIS-omote-u
	3_IJIS7-2
	Guest Editors Message vol.7no2.pdf
	3-1-paper120
	3-2-paper104
	3-3-paper103
	3-4-paper117

	4_IJIS-ura-u
	5_IJIS-ura_v3



