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Abstract -This paper proposes a design method of optimal 

H2 integral servo controller. The optimal H2 integral 

controller is to establish a way to find the admissible 

controller such that the controlled plant is stabilized and 

guarantee to track a constant reference signal while 

minimizing the close-loop system H2 norm from the 

disturbance to the controlled output. In this paper the 

derivative state constrained optimal H2 integral servo 

controller is proposed for oscillatory system with a constant 

disturbance. This design method has the advantage that it 

can be applied to reduce the vibration of the two-inertia 

system. The effectiveness of proposed controller is 

evaluated by experiments. 

 

Keywords: Optimal controller, Integral servo, Torsional 

vibration  

1 INTRODUCTION 

In sense of optimal control, the state feedback approaches 

for a linear dynamical system which not only stabilizes but 

also dampens the output responses of closed-loop system is 

generally required [1]. It is also required that the output of a 

system has no steady-state error for a desired input even if 

the parameter variations or disturbances exist. 

Consequently, the integral servo problem was initiated by H. 

W. Smith and E. J. Davison [2], in which they proposed the 

state and output integral feedback approaches by the 

differential state transformations, and gave the feedback 

control which contains a feed forward based on the 

measurable disturbance by the affine transformation. In 

addition, the optimal regulator control theory was primarily 

proposed by R.E. Kalman [3] to minimize the quadratic 

performance index of state variables and inputs. By using 

the regulator theory, the design method of an optimal 

tracking system by introducing the integral action for the 

system was obtained and reported by T. Takeda and T. 

Kitamori [4]. However, it is difficult to select the proper 

values of the weighting matrices of performance index in 

the optimal servo problem to mitigate under damped 

responses of dynamic systems. Besides, the optimal H2 

servo problem is to find the optimal control such that the 

output tracks the desired trajectory, minimizing the tracking 

error cost and state excitation cost in the sense of an 

optimal H2 control [5]-[6]. On the other hand, Anderson 

and Moore [7] introduced an optimal controller with a 

prescribed degree of stability affecting the locations of all 

closed-loop poles. However, it does not necessarily reduce 

the under damping of the closed-loop system. Recently, the 

optimal H2 control for oscillatory system minimizing a 

performance criterion involved time derivatives of state 

vector was formulated to mitigate the vibration  responses 

of dynamic systems [9]-[13]. 

In this paper, the theorem of the derivative state 

constrained optimal H2 integral servo controller is obtained 

by the standard H2 control framework [8]. The proposed 

controller is applied to reduce the vibration of the two-

inertia system. The verification of the effectiveness of the 

proposed controller to reduce the vibration responses and to 

reject the constant disturbance is shown by experiments.  

2 H2 INTEGRAL SERVO PROBLEM 

In order to obtain the optimal H2 integral servo controller, 

the following controlled plant equations are given as 
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where
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denote the state vector, the input vector, the constant 

disturbance and the output vector, respectively. The integral 
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I Rtx   of the error vector 2)( pRte   between the 

reference input 2)( pRtr    and controlled output )(ty  is 
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Using Eq. (1) and Eq. (2), the augmented controlled plant is 

then given by 
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In order to the steady state tracking error )(lim te
t 

should 

be vanished, the derivative augmented state vector defined 

as )(txI
   which should be vanished for approaching t . 

The derivative augmented system is given by combining of 

the derivative state equation of Eq. (3) with design 

parameter matrices as 
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where 211211111111 ,,,,,,, DDDDCCBB III and ID21 are 

denoted the design parameter matrices. 2)( p
I Rty  is added 

to obtain the proposed  integral servo controller.   

The disturbance  
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continuously differentiable in time. By definition of the 

optimal H2 integral servo problem, the augmented general 

plant is given by  

:)(ˆ sP


























































































),(
)(

)(

0

0

)(

)(

))(
)(

)(
)(

)(
0

)(
)(

)(

0

0

)(

)(

21

2

121

2

1

2

twD
tx

tx

I

C

ty

ty

tuD
tx

tx
Ctz

tu
B

twB
tx

tx

C

A

tx

tx

dt

d

II

I

II































     (5) 

where 
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Statement of Derivative State Constrained  H2 integral 

servo problem: 

Let )(tr  denote the step reference vector. Derivative 

State Constrained Optimal H2 servo integral problem is to 

find an admissible optimal integral controller such that the 

controlled plants with augmented integrator is stabilized 

and the output )(ty  tracks the constant reference signal 

)(tr  while minimizing the H2 norm of  the closed-loop 

transfer function with controlled plant from )]([ twL   to 

)]([ tzL   of )(ˆ sP . 

3 SOLUTION OF STATMENT 

The solution to the derivative state constrained H2 optimal 

control defined above is given by the following procedure: 

(i) Variable Linear transformation for the prescribed 

degree of stability [7]. 

(ii) Singular value decomposition and variable 

transformation to obtain the standard H2 

structure. 

(iii) Hamilton matrix for obtaining the stabilizing 

solution of the H2 optimal control problem. 

3.1 Variable transformations 

In order to consider the effect of the prescribed degree of 

stability  to a controller, each vector variable is 

exponentially weighted as follows. 
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Hence, the generalized plant :)(sP shown in Eq. (9) after 

applying the transformed vector variables Eq. (6)-Eq. (8) is 

given by  
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The solution to the derivative state constrained H2 optimal 

control defined above is given by procedure  (ii) and (iii). 

3.2 Singular value decomposition 

There always exist unitary matrices 2,1,, jUV jj
 for the 

singular value decomposition of 12D


 and 21D


; 
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where 21,  are the diagonal singular value matrices. 

Using the results obtained above, the input and output 

vectors as well as the generalized plant are accordingly 

transformed as shown in the following. 

The generalized plant can be obtained by using the 

following variable transformations defined by 
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Substituting Eq. (10)-Eq. (13) into Eq. (9), then the 

transformed generalized plant :)(sP  which is reduced to 

the standard form of the H2 control problem is then 

obtained as 
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Suppose that the transformed generalized plant )(ˆ sP of 

Eq. (14) satisfy the following relations: 
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The first assumption (A1) is for the stabilizability of the 

transformed generalized plant (14). The assumption (A2) is 

sufficient to ensure the controller is proper. The assumption 

(A3) and (A4) guarantee two Hamiltonian matrices belong 

to dom(Ric). 

3.3 Hamiltonian matrices 

Under the above assumptions (A1)-(A4), the optimal H2 

solution to the transformed generalized plant (14) is given 

as follows; 

A couple of Hamiltonian matrices are constituted as 
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Then, it is guaranteed that the solutions exist, which make  
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From the couple of Riccati solutions, 
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it is able to construct the following optimal solution 

 




























0ˆ

ˆˆˆˆˆ
0

0

)(ˆ

2

22222

22

F

LCLFB
C

A

sKH 
    (18) 

International Journal of Informatics Society, VOL.6, NO.2 (2014) 97-104 99



to the transformed generalized plant (14), where  
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The optimal control is then  
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A general control formulation with the derivative state 

constrained optimal H2 integral servo controller
2HK̂ is 

given by the general configuration shown in Fig. 1. 

Consequently, the assumptions supposed above (A1), (A2), 

(A3) and (A4) can be reduced to the following expressions.     
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Lemma: Suppose the system parameter matrix in 

equation (14) satisfy the assumptions (A1), (A2), (A3) and 

(A4), then following assumptions hold; 
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Proof of Lemma: It is clearly shown that the optimal 

solution for the transformed generalized plant (14) can be 

obtained under the assumptions (A1)’-(A4)’by applying the 

facts of the rank properties (A1)-(A4) [13]. 

 

4 MAIN RESULT 

By integrating the transformed generalized plant (14) with 

respect to time t with all initial values equal to zero, the 

optimal servo controller is obtained by following theorem. 

Thus, the optimal H2 servo control solution for the system 

(14) is given by Eq. (18) of the theorem under the 

assumptions (A1)’, (A2)’, (A3)’ and (A4)’. We have the 

following main result. 

Theorem (Derivative State Constrained Optimal H2 

Integral Servo controller) 

The derivative state constrained H2 integral servo 

controller for the controlled plant (5) is given as 
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under the assumptions (A1)’, (A2)’, (A3)’ and (A4)’, where 
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The optimal control is then  
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Using Eq. (21), the optimal control law with integral 

feedback is written by  


t

xx dtteFtxFtu
I 0

22 )()()(  .              (22) 

This theorem can be proved as follow. 

Proof:  As the facts of the rank properties of the Lemma, 

this immediately shows that the optimal solution (20) for 

the generalized plant (5) implies the theorem under the 

assumptions of (A1)’, (A2)’, (A3)’ and (A4)’. This 

concludes the proof of the theorem. □ 

Figure 1: Block diagram of the structure for  closed-

loop system with equation (18). 
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5 OPIMAL FEEDBACK CONTROL AND 

TRACKING ERROR 

For using the feedback control (21), the optimal control 

allows tracking of constant reference input in the infinity of 

time.  
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Then from Eq. (1) and Eq. (23), we have  
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This of Eq. (24) approach zero as t , then the all 

steady-state variables  are constant which is given by  
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This of Eq. (25) approach zero as t , then the output  

is tracked the reference input r(t) and does not effective  the 

disturbance as follow:  
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Then, the optimal control allows that the output is tracking 

of constant reference input in the infinity of time while 

rejecting the constant disturbance of Eq. (1). 

6 EXPERIMENTAL RESULTS 

A torsional vibration is occurred to the speed of motor by 

connecting flexible shaft. The vibration is an impediment to 

improve the characteristics of the two-inertia system. The 

experimental results of the speed control of the two-inertia 

system using the proposed controller will be shown to be 

effective to suppressing the vibration in this section. A 

structure of two-inertia system is shown in Fig. 2.  
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In this system, two motors are connected by long shift 

(90cm) with the spring constant of the shift. The left side of 

motor is driving the right side of the load motor with the 

shift. By using Newton’s second law, the linear dynamic 

equation of the two-inertia system with constant 

disturbance LT is represented by  

),(

,

,)(

Lms
d

LdLL
L

L

dmm
m

m

K
dt

d

TF
dt

d
J

tuF
dt

d
J
















             (27) 

where LmLm FFJJ ,,,  and sK are the inertia of motor, the 

inertia of load, the friction of motor, friction of load and 

spring constant of the shaft, respectively. For tracking 

reference input, the integral )(txI of the error vector )(te  

between the reference input )(tr  and controlled output 

)t(m is defined as 

)()()(,)()(
0

ttrtedetx m

t

I    .  (28) 

The parameters of the augmented controlled plant (3) is  

given by 
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The state variables of Eq. (3) is given by, 

 TIdLm txttttx )()()()()(  , where )(tm denotes 

the speed of motor at time t , )(tL  denotes the speed of 

load at time t , )(td  represents the torque of shaft 

and )(tm  denotes the disturbance torque. The numerical 

values of sLm KJJ ,, are shown in Table 1. In the case of 

the numerical values, the friction of motor, friction of load 

and spring constant of the shaft are neglected, respectively.  

Figure 2: Structure of the two-inertia system. 
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Table 1:  Numerical values of two-inertia system. 

][ 2mKgJ m   ][ 2mKgJ L   ]/[ mNK s  

0.0866 0.0866 400 

   

 

The designing parameters 211211111111 ,,,,,,, DDDDCCBB III  

and ID21  in the generalized plant of Eq. (4) are chosen as: 
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where qi is the standard weighting parameter of C1 and B1 

and ni is the weighting parameter of D11 for reducing the 

vibration. 

By using the theorem of the main result, the feedback 

control laws for ni= -12 and ni= -5.5 are given by Eq. (30) 

and Eq. (31), respectively. 

For ni= -12, the control law is obtained as: 
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For ni= -5.5, the control law is obtained as: 
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Regarding 20 as the prescribed degree of stability, the 

variation of closed-loop poles when the parameter ni vary 

from -9 to -2 is shown in Fig. 3. It is seen that the original 

poles of the open-loop system locate on the imaginary axis. 

It verifies that the pair of poles with imaginary part 

approach to the real axis when the parameter ni becomes 

large. It seems that the vibration of speed is reduced by 

design parameter ni. 
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In experimental results, it is shown that the effectiveness 

of the controller can be reduced the vibration by the 

parameter ni. The experimental results in shown in Fig. 4- 

Fig. 6. In Figure 4, the oscillatory response occurred for 

selecting the weak design parameter ni= -12 of Eq. (32). 

However, the oscillatory response can be reduced for 

selecting the design parameter ni= -5.5. 
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Figure 5 shows the close loop responses of this plant with 

the feedback control gain of Eq. (30) and Eq. (31) for 

setting the reference speed 2500[RPM], respectively. 

Significantly, the output speed of motor is tracking the 

reference speed with removed the torsional resonance by 

the designing parameter ni= -5.5.  
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In order to confirm the rejection of disturbance, Figure. 6 

show that the response of speed is recovered the steady 

state when the load disturbance torque ][ mNTL  is applied 

to the motor after driving steady state speed of motor. 

Figure 5: Responses of speed of motor for 

setting reference speed 2500[RPM]  

when ni= -12 and ni= -5.5. 

 

Figure 3: Closed-loop poles location for  varying 

from ni= -9 to ni= -2 and 20 . 

Figure 4: Responses of input torque of motor 

for ni= -12 and ni= -5.5.  
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7 CONCLUSION 

The optimal H2 controller using derivative state 

constrained optimal H2 integral servo controller has been 

proposed. The proposed controller is effective to reduce the 

vibration responses of the controlled system by H2 control 

framework. It is recognized that the design parameter ni of 

matrix 
11D  can applied to the oscillation system with the 

reference inputs as well as constant disturbance. The 

experimental results have verified that the proposed 

schemes can be effective to reduce the oscillation and to 

mitigate the effect of the constant disturbance for the two-

inertia system. The optimal H2 controller with derivative 

state constraint will provide a method for improving 

vibration by comparing with other optimal control methods 

for future research. 
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