
A Proposal of P2P Content Delivery System

for Supporting Streaming Applications

Takanori Kashiwagi*, Jun Sawamoto*, Hiroyuki Sato*, Norihisa Segawa*, Eiji Sugino*, Yuji Wada**

*Graduate School of Software and Information Science, Iwate Prefectural University
**Department of Information Environment, Tokyo Denki University
*{sawamoto, sato_h}@iwate-pu.ac.jp, **yujiwada@sie.dendai.ac.jp

Abstract - Streaming large files such as video and audio

contents from the internet has become an increasingly

common practice with users and content providers. Content

delivery presents serious challenge for content providers,

with the increased cost of hosting and transmitting large

video files, the existing client server system is experiencing

problems. The high server load incurred by the client model

is costing hosts considerable resources. Peer to Peer (P2P)

technology alleviates some of these problems by distributing

transfer work among multiple hosts (peers). P2P works by

sending and receiving data directly with other peers that are

participating in the network. It distributes resources and load

across the network. This can solve the problem of the client

server system resource overload. The purpose of this

research is to propose a method which is suitable for

streaming using P2P and solve the problem of client server

system’s resource overload. We aim to realize stable video

streaming, low latency playback, and reduction of the

number of breaks due to buffering protocol.

Keywords: Content delivery, Streaming, Peer to Peer

network, BitTorrent, BiToS.

1 INTRODUCTION

1The video and audio content delivery service using the

internet, such as YouTube [1] and NicoNico Douga [2], has

become an increasingly common practice, and it is capturing

the attention from broad directions, such as political use and

commercial use, etc. Moreover, by the development of

broadband service and improvement of terminal

performance of individual use, it is expected that the video

and audio content as a medium for disseminating

information continues to grow. In the prediction and

investigation of Cisco [3], it is expected that two-thirds of

the world's mobile data traffic will be video by 2017. Mobile

video will increase 16-fold between 2012 and 2017,

accounting for over 66 percent of total mobile data traffic by

the end of 2017. As streaming large files such as video and

audio content from the internet has become an increasingly

common practice with users and content providers, the

content delivery presents serious challenge for content

providers, with the increased cost of hosting and

transmitting large video files, the existing client server

system is experiencing problems. The high server load

1This work was supported by JSPS KAKENHI Grant Number

24500122.

incurred by the server-client model is costing hosts

considerable resources.

Peer to Peer (P2P) technology alleviates some of these

problems by distributing transfer work among multiple hosts

(peers). BitTorrent [4] is one of the most popular P2P

protocols. File transfer operates by splitting the file into

many pieces. Peers transfer the pieces out of order in a

distributed fashion then re-assemble the original file. The

order of the pieces transferred is determined by the

RarestFirst algorithm [5, 6]. However, it is bad for

streaming because pieces are transferred out of order and it

is hard to predict the next piece. BiToS (BitTorrent

Streaming) [7] was proposed to solve the streaming P2P

problems of BitTorrent. This allowed somewhat smoother

playback, but there were still delays or pauses (breaks). And

some new methods to shorten breaks’ time and reduce the

number of times of breaks are called for.

We propose a method which is suitable for streaming

using P2P. The emphasis must be placed on reduction of the

number of breaks in playback. To this end, we must do

something different if there is a gap in download pieces

between current playback position and the next available

piece. Improved peer and piece selection methods, such as

special priority for pieces near playback position may

hopefully alleviate the problems with BiToS and RarestFirst

algorithm. Specifically, if the piece closest to the playback

position is not yet downloaded then the proposed method

will set an emergency priority. Within the high priority

group we must request missing pieces from the peer with the

fastest connection. In order to verify the proposed method’s

effectiveness when compared to the established methods of

RarestFirst and BiToS, we performed simulations and

experiments.

The rest of this paper is organized as follows: In section 2,

we describe detailed algorithm of BitTorrent and BiToS. In

section 3, we present our proposed solution for better peer

and piece selection. In section 4, details of the

implementation on software simulator is described. In

section 5, we report experimental evaluation of our proposed

method. Finally, the paper is concluded in section 6.

2 BITTORRENT AND BITOS

BitTorrent is one of the most popular P2P protocols.

Holding, sending, and receiving of all content are performed

by only the peers. The tracker manages information about

peers in a swarm; it coordinates initial connections and

International Journal of Informatics Society, VOL.6, NO.2 (2014) 89-96

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

89

keeps a table of connected hosts and the download/upload

statistics of each peer (Fig.1).

As shown in Fig.2, BitTorrent uses swarming techniques

in which the torrent file (the content that is distributed), is

split in pieces. A user who wants to upload a file first acts as

a seed and distributes content information through

BitTorrent nodes. Peers (leecher) can simultaneously

download pieces from other peers. While the peer is

downloading pieces of the file, it uploads the pieces that it

has already acquired to its peers. Each time the peer has a

new piece, it advertises this information to its peer set (the

peers that the peer is connect to).

Peers transfer the pieces out of order in a distributed

fashion then re-assemble the original file. This distributed

method is suitable for large-capacity content delivery.

The order of the pieces transferred is determined by the

RarestFirst algorithm. This algorithm tells peers to send the

least common pieces amongst the swarm first, causing

convergence faster. RarestFirst transfer makes P2P very

efficient when compared to the random out of order method.

However, it is bad for streaming because pieces are

transferred out of order and it is hard to predict the next

piece. Streaming requires in-order transfer for smooth

playback. The method proposed in this paper aims to

provide more predictable transfer to allow for smooth

playback.

BiToS was a previous attempt to solve the streaming P2P

problems (Fig.3). It was a research to reduce the number of

breaks when streaming using BitTorrent. The BiToS method

changed from RarestFirst so that pieces near deadline mark

have higher priority than later pieces. This allowed

somewhat smoother playback, but there were still pauses.

BiToS method works by assigning a priority to two groups

of pieces. If the probability of selecting a piece from the

high priority group is “p” then low priority group probability

is “1-p”. The parameter “p” represents the balance between

the immediate need for a piece and the future need. Within

each priority group we simply use RarestFirst method.

Currently downloading pieces in high priority group and

low priority group are moved to the group of received pieces

after they are downloaded. If a piece cannot meet its

playback deadline, then it will not be asked to be

downloaded (or its download can be aborted) and will be

marked Missed. A peer at any given time can have at

maximum a fixed number of currently downloading pieces.

The number of pieces (cardinality) of the higher priority

group remains fixed. Using BiToS, we receive pieces closer

to the playback position sooner. This is more suitable for

content delivery than pure RarestFirst method.

However within each group the RarestFirst method is still

used, so there may be breaks if the priority group has not

rare pieces close to the playback position. This means pieces

are still sent out of order within each priority group. This

causes gaps in playback when the playback position reaches

a missed piece.

3 PROPOSED SOLUTION

To propose a method which is suitable for streaming using

P2P, emphasis must be placed on the reduction of the

number of breaks in playback. To this end, we must do

something different if there is a gap in download pieces

between our deadline position and the next available piece.

Here, the deadline is the time limit after that, the received

piece is not useful and will be discarded.

Tracker

Peers

Content
(Torrent file)

Tracker

Leecher/
Peer

Seed Download

Upload

Upload

Downloaded piece

Un-downloaded piece

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

All pieces of content

Deadline

High priority
group

Low priority group

To player
buffer

Received
pieces

Missed player deadline

Currently
Downloading piece

Figure 1: Network configuration of BitTorrent.

Figure 3: Outline of BiToS piece selection

method.

Figure 2: File transfer operates by splitting the file

into many pieces

T. Kashiwagi et al. / A Proposal of P2P Content Delivery System for Supporting Streaming Applications90

Improved peer and piece selection methods, such as

special priority for pieces near deadline position may

hopefully alleviate the problems with BiToS and RarestFirst.

Specifically, if the piece closest to the deadline position is

not yet downloaded then the proposed method will set an

emergency priority (Fig. 4). Within the high priority group

we must request emergent pieces from the peer with the

fastest connection (Fig. 5).

If there is enough buffered content then the new method

may download pieces from a lower priority group using

simple RarestFirst (Fig. 6). Thus it is still possible to

contribute to the distribution of rare pieces on low priority

groups and improve convergence speed.

The proposed method solves the problem of BiToS where

pieces close to playback position are not always chosen.

This leads to a more stable delivery and smooth playback.

4 IMPLEMENTATION ON A SOFTWARE

SIMULATOR

In order to verify the proposed method’s effectiveness

when compared to the established methods of RarestFirst

and BiToS, it is necessary to perform simulations and

experiments. One such proposed experiment is to provide a

peer that implements each method on a software simulator.

We used General Purpose Simulator for P2P network (GPS)

[8] which is capable of simulating BitTorrent algorithm.

As for the software structure of GPS, various search

protocols such as Chord [9], CAN [10], etc. are located on

top of the physical network layer at the bottom of the

structure. The layer of P2P algorithms come on the search

layer. Some Hybrid P2P algorithms including BitTorrent

exist in the same layer as the search layer, because they

don't use provided general search protocols like Chord etc.

but they mostly implement original search protocols using

the server systems.

The methods of previous works and our proposed method

are implemented on top of the P2P algorithms layer, and

they can be switched according to the experimental situation.

However, it is not possible to make peers who adopt

different methods on the same network at present.

Moreover, in the operation of the various methods, since it

is necessary to acquire the information of the playback

position, and to measure the number of times of breaks and

duration and frequency of breaks, which is the evaluation

indices, we added virtual video player part on top of the P2P

algorithm layer.

All pieces of content

Deadline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

High priority Low priority

If the piece closer to the deadline position is not yet
downloaded then set an emergency priority

Received
pieces

5

Fast connenction peer

5

Slow connection peer

All pieces of content

Deadline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

High priority Low priority

Request emergent piece
from the peer with fastest
connection

Received
pieces

All pieces of content

Deadline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Apply RarestFirst within
the low priority group

Received
pieces

Figure 4: Introduction of emergency priority.

Figure 5: Request emergent pieces from the peer

with the fastest connection.

Figure 6: Enough buffered content then download

pieces from a lower priority group.

Figure 7: Display image of the simulation by

General Purpose Simulator for P2P network.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 89-96 91

5 EXPERIMENTS

The peer and piece selection method proposed by this

research, RarestFirst and BiTos are compared by measuring

evaluation indices such as the number of breaks and the total

duration of breaks under various video download conditions.

5.1 Outline of the Experiment

First, the peer who had all the pieces (original content) is

generated on the simulator. Then a peer who does not have

any piece participates one at a time to the network with

certain interval and starts content downloading. Playback is

started when the head piece of the content is downloaded at

the peer. All the peers continue remaining in the network

until the last peer completes the download. All the peers

who participated to the network complete the download of

whole content and finish the playback then the simulation

stops.

The transmission speed of peers are classified into two

types such as high speed and low speed, and randomly

assigned to each peer. In the communication between low-

speed peers, bandwidth is set to 5Mbps, between a high-

speed peer and a low-speed peer 10Mbps, and between

high-speed peers 15Mbps.

Simulations are iterated 10 times for each method

respectively, and the results are compared on the average

basis.

5.2 Contents and Parameters used for the

Simulation

The details of parameters used for the simulation are

shown in Table 1. The content sizes are two kinds, 128 MB

and 256 MB.

The size per one piece, in consideration of the size length

used widely when dividing a file by BitTorrent, is set as 1

MB. Even if the content size is the same, the playback time

differs according to the content quality, high and low image

quality. We experiment two cases of playback time, i.e., 0.5

seconds and 4 seconds per one piece, supposing two content

qualities.

 Table 1: Details of the contents and parameters used for

the simulation

5.3 Experimental Results and Evaluation

5.3.1 Content Size 128MB ， 4 Seconds of

Playback Time per One Piece

The experimental result in case of content size is 128 MB

and the playback time per one piece is 4 seconds is shown

here. Fig.9 is a graph of the total of the duration of breaks in

average at each peer and total average of all peers during the

playback by each method. The total duration of breaks at the

peer which completed download earlier is large and

decreases as the number of peers increases for all methods.

This is because when few peers are in the network, the

number of downloadable peers is small, but it increases as

more peers participate to the network and the feature of P2P

algorithm that a download speed rises using a

communication line effectively as the number of peers

increase is shown here. From the graph, significant

difference is not seen as a whole by each method, but when

the total average of all peers was taken for each method, it

turned out that the total of the duration of breaks in average

is the shortest in our proposed method (105.2) than

RarestFirst (110.0) or BiToS (108.3).

Physical network

Search protocol (Chord,CAN…)

P2P Algorithm (BitTorrent, Gnutella …)

RarestFirst, BiToS, Proposed method Virtual video player

General P2P Simulator

Content size (Mbyte) 128MB 256MB

Size of a piece (Mbyte) 1MB

Playback time per a piece (sec) 4 0.5 4 0.5

Number of peers 50

Participating interval of new peers (sec) 60

Ratio of the high priority group (%) 5

Probability of selecting a piece from high
priority group (%)

90

Total average (seconds)

RarestFirst BiToS Proposed method
110.0 108.3 105.2

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

SEC

Total of the duration of breaks in average

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Proposed method

Figure 8: Software structure of GPS.

Figure 9: Total of the duration of breaks in

average at each peer and total average of all peers

(Content size 128MB，4 seconds of playback

time per one piece).

.

T. Kashiwagi et al. / A Proposal of P2P Content Delivery System for Supporting Streaming Applications92

Figure 10 shows the frequency distribution of the duration

of breaks at each peer for each method. In our proposed

method, many peers have shorter duration of breaks

compared to other methods. For example, as shown in Table

2, 24 peers have duration of brakes less than 90 seconds in

our method compared to 18 in RarestFirst and 20 in BiToS.

Therefore it could be assumed that many peers have

achieved shorter download time of the content as a whole.

Table 2: Accumulated number of peers of duration of

brakes less than 90 and 110
 RarestFirst BiToS Proposed method

<90 sec 18 20 24

<110 sec 35 32 36

On the other hand, about the number of times of breaks, as

shown in Fig.11 of number of times of breaks in average at

each peer and total average, no method is stable and no

significant difference is seen in average here.

5.3.2 Content Size 128MB ， 0.5 Seconds of

Playback Time per One Piece

The experimental result in case of content size is 128 MB

and the playback time per one piece is 0.5 seconds is shown

here. Form the graph of Fig.12, the total duration of breaks

in average at each peer and total average of all peers during

the playback shows similar trend as the case of 4 seconds of

playback time per one piece, and it turned out that the total

of the duration of breaks is the shortest in average in our

proposed method (106.3) than RarestFirst (110.9) or BiToS

(116.2).

Fig.13 shows the frequency distribution of the duration of

breaks at each peer for each method. In our proposed

method, many peers have shorter duration of breaks

compared to other methods. For example, 34 peers have

duration of brakes less than 100 seconds in our method

compared to 25 in RarestFirst and 22 in BiToS.

On the other hand, about the number of times of breaks, ,

as shown in Fig.14 of number of times of breaks in average

<
50
sec

<
60
sec

<
70
sec

<
80
sec

<
90
sec

<
100
sec

<
110
sec

<
120
sec

<
130
sec

<
140
sec

<
150
sec

<
160
sec

<
170
sec

<
180
sec

<
190
sec

<
200
sec

<
210
sec

<
220
sec

<
230
sec

<
240
sec

<
250
sec

>
250
sec

RarestFirst 0 2 6 5 5 12 5 2 0 4 1 1 0 0 2 0 0 0 0 1 1 2

BiToS 1 5 1 8 5 9 3 5 2 1 3 0 0 1 0 1 1 1 0 0 1 1

Proposed method 2 0 7 7 8 6 6 0 2 2 1 3 0 1 1 0 1 0 0 0 1 1

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

p
e

e
rs

Frequency distribution of the duration of breaks

Total average (Times)

RarestFirst BiToS Proposed method

3.3 3.4 3.7

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849

N
u

m
b

e
r o

f b
re

aks
Number of times of breaks in average at each peer

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Proposed method

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

SEC

Total of the duration of breaks in average

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Total average of all peers (seconds)

RarestFirst BiToS Proposed method
110.9 116.2 106.3

Proposed method

< 10
sec

< 20
sec

< 30
sec

< 40
sec

< 50
sec

< 60
sec

< 70
sec

< 80
sec

< 90
sec

<
100
sec

<
110
sec

<
120
sec

<
130
sec

<
140
sec

<
150
sec

>
150
sec

RarestFirst 0 0 0 0 0 2 3 5 8 7 6 8 1 1 1 0

BiToS 0 0 0 0 0 1 6 5 7 3 10 4 2 1 2 0

Proposed method 0 0 0 0 1 1 7 10 9 6 2 3 1 2 0 0

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f p

e
e

rs

Frequency distribution of the duration of breaks

Figure 10: Frequency distribution of the duration

of breaks at each peer in average (Content size

128MB，4 seconds of playback time per one piece).

Figure 11: Number of times of breaks in average

at each peer and total average (Content size

128MB，4 seconds of playback time per one

piece).

Figure 12: Total of the duration of breaks in

average at each peer and total average of all peers

(Content size 128MB，0.5 seconds of playback

time per one piece).

Figure 13: Frequency distribution of the duration of

breaks at each peer in average (Content size 128MB，
0.5 seconds of playback time per one piece).

International Journal of Informatics Society, VOL.6, NO.2 (2014) 89-96 93

at each peer and total average, no big difference is seen

among methods just like the case of 4 seconds of playback

time per one piece.

5.3.3 Content size 256MB ， 4 seconds of

playback time per one piece

The experimental result in case of content size is 256 MB

and the playback time per one piece is 4 seconds is

discussed here. The proposed method has shown poor

performance here and the total duration of breaks in average

at each peer is the largest (Proposed metod:244.0,

RarestFirst:169.8, BiToS:231.5) as shown in Fig.15.

Figure 16 shows the frequency distribution of the duration

of breaks at each peer for each method. For example, the

number of peers of less than 150 seconds of duration of

breaks is 23 in our method compared to 20 in RarestFirst

and 19 in BiToS.

As shown in Fig.17, the number of times of breaks in

average at each peer and total average, no big difference is

seen among methods (Proposed method: 3.7, RarestFirst:

3.3, BiToS: 4.0).

5.3.4 Content size 256MB， 0.5 seconds of

playback time per one piece

The experimental result in case of content size is 256 MB

and the playback time per one piece is 0.5 seconds is

discussed here. Here also the proposed method performed

poorly in terms of total duration of breaks in average as

shown in Fig.18.

The frequency distribution of the duration of breaks shows

the distribution is high in the area of 130-200 seconds and

over 250 seconds area in all methods as shown in Fig.19.

As shown in Fig.20, the number of breaks in average is the

smallest in our method (Proposed method: 4.0, RarestFirst:

4.1, BiToS: 4.5), but no significant difference is seen by

methods here also.

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

N
u

m
b

e
r o

f b
re

ak
s

Number of times of breaks in average at each peer

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Total average (Times)
RarestFirst BiToS Proposed method

4.2 4.0 4.7

Proposed method

Total average of all peers (seconds)

RarestFirst BiToS Proposed method

169.8 231.5 244.0

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849

SEC

Total of the duration of breaks in average

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Proposed method

<50
sec

<100
sec

<150
sec

<200
sec

<250
sec

<300
sec

<350
sec

<400
sec

<450
sec

<500
sec

<550
sec

<600
sec

<650
sec

<700
sec

RarestFirst 0 3 17 16 7 6 0 0 0 0 0 0 0 0

BiToS 0 0 19 11 3 5 2 3 2 0 2 0 2 0

Proposed method 0 1 22 11 2 1 1 1 2 1 1 2 1 3

0

5

10

15

20

25

N
u

m
b

e
r

o
f

p
e

e
rs

Frequency distribution of the duration of breaks

Total average (Time)

RarestFirst BiToS Proposed method

3.3 4.0 3.7

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849

N
u

m
b

e
r o

f b
re

aks

Number of times of breaks in average at each peer

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Proposed method

Figure 15: Total of the duration of breaks in

average at each peer and total average of all peers

(Content size 256MB，4 seconds of playback

time per one piece).

Figure 14: Number of times of breaks in average

at each peer and total average (Content size

128MB，0.5 seconds of playback time per one

piece).

Figure 16: Frequency distribution of the duration of

breaks at each peer in average (Content size 256MB，

4 seconds of playback time per one piece).

Figure 17: Number of times of breaks in average

at each peer and total average (Content size

256MB，4 seconds of playback time per one

piece).

T. Kashiwagi et al. / A Proposal of P2P Content Delivery System for Supporting Streaming Applications94

.

5.4 Consideration

In case of content size 128MB, in both cases of 4 and 0.5

seconds of playback time per one piece, the number of times

of breaks is rather small in all peers and no significant

difference was seen by each method. It is considered that

since the communication with sufficient bandwidth is

secured by any method because the size of the content is

small enough for the environment with assumed number of

peers and line speed. On the other hand, there is less number

of times of breaks in case the playback time per one piece is

4 seconds rather than the case of 0.5 second. This indicates

that long playback contents with low image quality have less

frequent breaks. About the duration of breaks, in both cases

of 4 and 0.5 seconds of playback time per one piece, the

average duration of breaks is the smallest by our proposed

method. In many peers, average duration of breaks

distributes between 50 and 120 seconds. In case of 0.5, the

duration came between 50 and 100 in most of peers by our

method, and our proposed method performed better than

other methods.

In case of content size is 256MB, in cases of 4 and 0.5

seconds of playback time per one piece, average number of

times of breaks is smallest by RarestFirst and by our method

respectively, but no significant difference is seen among

methods. This is because the content size is rather large and

pieces are too many for the assumed environment in this

case. For the duration of breaks, in both cases of 4 and 0.5

seconds of playback time per one piece, the average

duration of breaks is the largest by our method. And from

the frequency distribution of the duration of breaks,

distribution of short breaks is almost same by all methods,

but breaks of long duration are seen in many peers by our

method. This is considered that when the system downloads

pieces with emergency priorities, download requests from

other peers also swarm about a certain peer and causes a

long waiting time for the download request.

6 CONCLUSION

The purpose of this research is to propose a method which

is suitable for video streaming using P2P while solving the

problem of client server system resource overload in the

content delivery market. The research has proposed a new

method of peer and piece selection in a P2P streaming

environment using BitTorrent. The proposed simulations

examine the effectiveness of the new methods for improving

on the established BiToS and RarestFirst methods. It is the

research’s sincerest hope that the proposed method

alleviates some of the current challenges facing streaming

content delivery.

REFERENCES

[1] YouTube : http://www.youtube.com/

[2] NicoNico Douga : http://www.nicovideo.jp/

[3] Cisco®, “Cisco Visual Networking Index: Global

Mobile Data Traffic Forecast Update 2012–2017,”

(2013).

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

SEC

Total of the duration of breaks in average

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Total average of all peers (seconds)

RarestFirst BiToS Proposed method
180.5 198.0 218.1

Proposed method

<100
sec

<110
sec

<120
sec

<130
sec

<140
sec

<150
sec

<160
sec

<170
sec

<180
sec

<190
sec

<200
sec

<210
sec

<220
sec

<230
sec

<240
sec

<250
sec

>250
sec

RarestFirst 4 2 1 3 3 5 3 7 3 2 2 0 1 3 0 0 10

BiToS 0 1 1 2 3 9 5 1 6 3 0 1 1 1 3 3 9

Proposed method 1 1 0 3 5 5 7 4 3 5 2 0 2 0 0 1 10

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

p
e

e
rs

Frequency distribution of the duration of breaks

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

N
u

m
b

e
r o

f b
re

ak
s

Number of times of breaks in average at each peer

RarestFirst

BiToS

提案手法

Peer number (in order of download completion)

Total average (Times)

RarestFirst BiToS Proposed method

4.1 4.5 4.0

Proposed method

Figure 18: Total of the duration of breaks in

average at each peer and total average of all peers

(Content size 256MB，0.5 seconds of playback

time per one piece).

Figure 19: Frequency distribution of the duration of

breaks at each peer in average (Content size 256MB，

0.5 seconds of playback time per one piece).

Figure 20: Number of times of breaks in average

at each peer and total average (Content size

256MB，0.5 seconds of playback time per one

piece).

International Journal of Informatics Society, VOL.6, NO.2 (2014) 89-96 95

[4] B. Cohen, “Incentives build robustness in bittorrent,”

In 1st Workshop on the Economics of Peer-2-Peer

Systems, Berkley, CA (2003).

[5]BitTorrentSpecifications.

https://wiki.theory.org/BitTorrentSpecification .

[6]Arnaud Legout, G. UrvoyKeller, and P. Michiardi,

“Rarest First and Choke Algorithms Are Enough,”

IMC '06 Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, pp.203–216

(2006).

[7] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS:

Enhancing Bittorrent for Supporting Streaming

Applications,” INFOCOM 2006, Proc. of 25th IEEE

International Conference on Computer

Communications, pp.1–6 (2006).

[8] Weishuai Yang, Nael Abu-Ghazaleh, “GPS: A General

Peer-to-Peer Simulator and its Use for Modeling

BitTorrent,” Proceedings of 13th Annual Meeting of

the IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS '05) (2005).

[9] I. Stoica, et al. “Chord: A scalable peer-to-peer lookup

service for Internet applications,” In Proceedings of

ACM SIGCOMM, Volume 31 Issue 4, pp.149-160

(2001).

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker, “A scalable content-addressable network,” In

Proceedings of ACM SIGCOMM, Volume 31 Issue 4,

Pages 161-172 (2001).

(Received December 4, 2013)

(Revised July 28, 2014)

Takanori Kashiwagi received M.S.

degree in 2013 from Iwate

Prefectural University, Japan.

Currently, he works for Caunets Corp.

Jun Sawamoto is currently a

Professor of Faculty of Software and

Information Science, Iwate

Prefectural University, Japan. He

received the B.E. and M.E. in

mechanical engineering from Kyoto

University in 1973 and 1975. He

joined Mitsubishi Electric

Corporation in 1975. He received his

PhD degree from Tokyo Denki

University in 2004. His research

interests include ubiquitous

computing, human-interface system,

multi-agent systems, and cooperative

problem solving. He is a member of

IPSJ, IEEE-CS, ACM.

Hiroyuki Sato is currently a

Professor of Faculty of Software and

Information Science, Iwate

Prefectural University, Japan. He

received the B.E. in information

engineering from Tsukuba University

in 1982. He joined Mitsubishi

Electric Corporation in 1982. He

received his PhD degree from

Tsukuba University in 2003. His

research interests include parallel

processing, and high performance

computing. He is a member of IPSJ,

IEICE and IEEE-CS.

Norihisa Segawa received Ph.D.

degrees in Information Sciences from

Tohoku University, Sendai, Japan, in

2004. Currently, he is working at

Faculty of Software and Information

Science, Iwate Prefectural University.

His research interests are

developments of long-range out-door

sensor networks.

Eiji Sugino was a researcher at ICOT

for the Japanese 5th Generation

Computer Project from 1987 to 1990.

He received Ph.D. in Information

Science from Japan Advanced

Institute of Science and Technology

in 1997. He is a full-time Lecturer at

the Faculty of software and

information science, Iwate

Prefectural University. His research

interests include operating system,

parallel software, and dependable

computing. He is a member of IPSJ,

IEICE, and IEEE.

Yuji Wada received the B.E. and the

M.E. in electrical engineering from

Waseda University in 1974 and 1976,

respectively. He joined Mitsubishi

Electric Corporation in 1976. He

received the PhD degree in computer

science from Shizuoka University of

Japan in 1997. He is currently a

Professor in the Department of

Information Environment, Tokyo

Denki University. His research

interests include database systems,

data mining, and recommendation.

He is a member of the IPSJ, the

IEICE, the JSAI, the JSSST and the

DBSJ.

T. Kashiwagi et al. / A Proposal of P2P Content Delivery System for Supporting Streaming Applications96

