
Verification of a Control Program for a Line Tracing Robot
using UPPAAL Considering General Aspects

Toshifusa Sekizawa†, Kozo Okano‡, Ayako Ogawa*/**, and Shinji Kusumoto‡

†Department of Computer Science, College of Engineering, Nihon University, Japan
‡Graduate School of Information Science and Technology, Osaka University, Japan

* Faculty of Informatics, Osaka Gakuin University, Japan
** Sougou System Service Corporation

†sekizawa@cs.ce.nihon-u.ac.jp ‡{okano, kusumoto}@ist.osaka-u.ac.jp

Abstract - The demand for embedded systems have increased
in our society. Ensuring the safety properties of these systems
has also become important. Model checking is a technique
to ensure such systems. Our target is formal verification of
hybrid systems which contain both continuous and discrete
behaviors. For the goal, we have studied properties of a line
tracing robot built using LEGO Mindstorms with a control
program written in LeJOS. We have already presented verifi-
cation of safety properties of a control program for the appli-
cation using model checker UPPAAL. In the previous study,
we were in a preliminary stage and set limitations. In this
presentation, we extend our previous study. In general, a real
course can be expressed in combinations of straight and arc
courses. First, we verify properties of the same control pro-
gram for arc courses. Next, in case of the line tracer can
not keep track, we analyze turning angle using counter exam-
ples. Above-mentioned two approaches are necessary from
the standpoint of design phase.

Keywords: Embedded Systems, Formal Verification, Timed
Automaton

1 INTRODUCTION

The demand for embedded systems have increased in our
society. In these circumstances, it is important to ensure safety
properties of embedded systems. Formal methods are math-
ematical based techniques for verification and development.
Model checking is one of formal methods and is widely used
in order to ensure properties. Model checking techniques take
model and logical formula as their input. Given a model that
represents a system under consideration, model checking au-
tomatically determines whether or not the model satisfies a
given property by exhaustively searching for the state space
of the model.

There are various kinds of model checking techniques. Most
model checking techniques are based on the finite state ma-
chine. For example, a conventional model checking is based
on Kripke structure and only deals with discrete variables.
However, some embedded systems require time properties in
their specification. Several models have been proposed to deal
with such real-time systems. One of such approaches is the
timed automaton [1]. Timed automaton uses clock variables
which range over real numbers. Therefore, timed automa-
ton model can naturally represent the behavior of real-time

systems. One of major verifier for timed automaton is UP-
PAAL [2] in which extended timed automata is used to con-
struct models. UPPAAL can deal with bounded integer vari-
ables and guard expressions on transitions which allow ex-
pressions of constraints on variables.

Embedded systems sometimes consist of continuous and
discrete dynamics. Such systems are called hybrid systems [3].
We are motivated to verify the behavior of embedded control
systems. Especially if these embedded systems are consid-
ered to be hybrid systems. For the goal, we have presented
verification of safety property of a control program for a line
tracing robot using model checker UPPAAL. In the previous
study, we were in a preliminary stage and set limitations. For
example, we only considered a straight line as a course.

In this study, we extend our previous study. First, we verify
that the same control program can trace an arc course. This
is because a real course can be expressed in combination of
straight and arc courses. Therefore, verifying the tracer for arc
courses should be important to show applicability of model
checking. Next, if the line tracer is not able to run along an
arc course, we analyze turning angle using counter examples.
Above-mentioned approaches will be useful to check perfor-
mance properties in the design phase.

The roadmap of this paper is as follows. Sec. 2 outlines
the foundations of our work and briefly describe our previous
study. Sec. 3 show specification of a line tracer, and its im-
plementation is described in Sec 4. Then, formal models used
in verification are described in Sec. 5. Verification results are
presented in Sec. 6, and Sec. 7 offers some discussion of these
results. Finally, Sec. 8 provides a concluding summary and
outline our future work.

2 PRELIMINARIES

In this section, we outline the background to our work and
briefly show our previous study.

2.1 Model Checking
Model checking [4] is an automatic formal verification tech-

nique. Given a model that represents a system under consid-
eration, and a logical formula that represents a property to be
verified, model checking automatically determines whether
or not the model satisfies a given property by exhaustively
searching for the state space of the model. There are vari-
ous kinds of model checking depending on expressive power

International Journal of Informatics Society, VOL.6, NO.2 (2014) 79-87 79

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

79

of model and logical formula. In this study, we use timed au-
tomata to express models and Computation Tree Logic (CTL)
for formulas. We use a model checker UPPAAL which takes
timed automata as models and CTL formulas as property.

2.1.1 Timed Automata

A timed automaton is an extension of the conventional au-
tomaton with clock variables and constraints for expressing
real-time dynamics. These are widely used in the modeling
and analysis of real-time systems.

Definition 1 (constraints) We use the following constraints
on clocks.

1. C represents a finite set of clocks.

2. Constraints c(C) over clocks C are expressed as in-
equalities in the following BNF (Bacchus Naur Form).

E ::= x ∼ a | x− y ∼ b | E1 ∧ E2,

where x, y ∈ C,∼∈ {≤,≥, <,>,=}, and a, b ∈ R≥0,
in which R≥0, is a set of all non-negative real numbers.

Time constraints are used to mark edges and nodes of the
timed automata and for describing the guards and invariants.

Definition 2 (timed automaton) A timed automaton A is a
6-tuple (A,L, l0, C, T, I), where

• A: a finite set of actions;

• L: a finite set of locations;

• l0 ∈ L: an initial location;

• C: a finite set of clocks;

• T ⊆ L×c(C)×A×2C ×L is a set of transitions. The
second and fourth items are called a guard and clock
resets, respectively; and

• I : L → c(C) is a mapping from location to clock
constraints, called a location invariant.

A transition t = (l1, g, a, r, l2) ∈ T is denoted by l1
a,g,r→

l2.
A map v : C → R≥0, is called a clock assignment (or clock

valuation). We define (v + d)(x) = v(x) + d for d ∈ R≥0

and some x ∈ C.
For guards, resets and location invariants, we introduce

some notation for clock valuations. For each guard g ∈ c(C),
a function g(v) stands for the valuation of the guard expres-
sion g with the clock valuation v. For each reset r, where
r ∈ 2C , we introduce a function denoted by r(v), and let
r(v) = v[x 7→ 0], x ∈ r. For each location invariant I , we
shall introduce a function denoted by I(l)(v), which stands
for the valuation of the location invariant I(l) of location l
with the clock valuation v.

The dynamics of a timed automaton may be expressed via
a set of states and their evaluations. Changes from one state to
a new state may be as a result of either the firing of an action
or an elapsed time.

Definition 3 (state of timed automaton) For a given timed
automaton A = (A,L, l0, C, T, I), let S = L × RC

≥0 be the
complete set of states of A , where RC

≥0 is a complete set of
clock evaluations on C.

The initial state of A can be given as (l0, 0C) ∈ S. For a
transition l1

a,g,r→ l2, the following two transitions are seman-
tically defined. The first one is called an action transition,
while the latter one is called a delay transition.

l1
a,g,r→ l2, g(v), I(l2)(r(v))

(l1, v)
a⇒ (l2, r(v))

,
∀d′ ≤ d I(l1)(v + d′)

(l1, v)
d⇒ (l1, v + d)

The semantics of a timed automaton can be interpreted as
a labeled transition system.

Definition 4 (semantics of a timed automaton) For a timed
automaton A = (A,L, l0, C, T, I), an infinite transition sys-
tem is defined according to the semantics of A , where the
model begins with the initial state. By T (A) = (S, s0,

α⇒),
the semantic model of A is denoted, where α ∈ A ∪ R≥0.

Definition 5 (run of a timed automaton) For a timed automa-
ton A , a run σ is finite or infinite sequence of transitions of
T (A).
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒ · · ·

2.1.2 Computation Tree Logic

In model checking, properties are written as logical formulas.
Computation Tree Logic (CTL) [5] is a temporal logic suited
to dealing with such formulas. Using CTL we are able to
describe properties relating to behaviors of a program for a
line tracer robot.

Let AP be a set of atomic propositions. The syntax of CTL
is defined as follows:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∨ φ | φ ∧ φ | φ → φ
| AXφ | EXφ | A♢φ | E♢φ | A□φ | E□φ
| A[φ1 U φ2] | E[φ1 U φ2],

where p is an atomic proposition in AP. The symbols ⊥, ⊤,
¬, ∨, ∧ and → have their usual meanings. The symbols X
(“next”), ♢ (“eventually”), □ (“globally”), and U (“until”) are
temporal operators. The symbols A (“always”) and E (“ex-
ists”) are path quantifiers. Intuitively, temporal operators rep-
resent statements of a path, and path quantifiers represent
statements on one or more paths which are branching for-
wards from a state. In a CTL formula, temporal operators
are preceded by a path quantifier. Due to space limitation, we
omit semantics. Please refer to Emerson [5] for details of the
semantics of CTL.

For example, a safety property that “variable x is less than
10 for all paths” is written as a CTL formula A□(x < 10).

2.1.3 UPPAAL

UPPAAL [2], is a popular model checker for extended timed
automata. It supports model checking for both conventional
and timed automata. UPPAAL allows verification of expres-
sions described in an extended version of CTL. Note that, a
property to be verified is called a query in the field of ver-
ification of timed automaton. Given a model and a query,

T. Sekizawa et al. / Verification of a Control Program for a Line Tracing Robot using UPPAAL Considering General Aspects80

UPPAAL checks whether or not the model satisfies the query.
If the query does not hold, UPPAAL returns a counter exam-
ple. A counter example is a run of the model, and presents
sequence of locations that query does not hold. In addition,
UPPAAL supports local and global integers and primitive op-
erations on integers, such as addition, subtract and multipli-
cation with constants. Such expressions are also allowed on
the guards of transitions. System models can be created from
multiple timed automata which are synchronized via a CCS
(Common-Channel Signaling)-like synchronization mechanisms.
An important point is that, with the exception of clocks, the
extended timed automaton used in UPPAAL cannot deal with
real valued variables. We, therefore, have to round real values
to integer values when we model the target systems.

2.2 Results from a Previous Study
In this subsection, we briefly mention about our previous

study [6], [7]. The question at the core of our research is
formal verification of embedded systems as hybrid systems.
For that goal, our first step is verifying time-related proper-
ties of a real embedded application using UPPAAL. We set
our application to a line tracing robot constructed by LEGO
Mindstorms [8] with a control program written in Java base
language LeJOS [9].

We presented verification of safety properties of the pro-
gram for line tracing robot in terms of design verification.
In the verification, we constructed two models expressed by
timed automata, one for the control program and one for the
motion control depending to the course. To construct these
models, it is required that behaviors have to be modeled in dis-
crete steps except for time clock. Sampling and quantization
techniques are applied for the purpose. We showed experi-
mental results of verification and presented model checking
has power to check behaviors. We considered time-delay in
the verification. However, the study was in preliminary stage
because we set some limitations, such as no disturbance and
handling only straight lines. Even limitations were set, we
think that our previous study showed applicability of model
checking for verifying real embedded systems.

3 SPECIFICATION

The whole system of line tracer consists of two parts; courses
and a line tracer. We describe specifications in this section.

3.1 Course
For a line tracer robot, a course is a black line painted on

white ground. Assume that course width w is constant. In
general, a real course can be expressed in combination of
straights and arcs. We verified that our control program can
trace a straight course in our previous study. Therefore, we
consider arc courses in this study. An arc course is expressed
by radius r and central angle α.

3.2 Line Tracer
A line tracer is a vehicle which traces a course. In this

study, we fix a line tracer that consists of a body, two motors,

Table 1: State Variables of a Line Tracer
variable description
(x, y) coordinate of the center
θ direction
lsensor sensed value of the left sensor
rsensor sensed value of the right sensor
(xsl, ysl) coordinate of the left sensor
(xsr, ysl) coordinate of the right sensor
vl revolution speed of the left wheel
vr revolution speed of the right wheel
lw half width of the tracer

Figure 1: Constants and State Variables

and two color sensors. Figure 1 illustrates the relationships
between constants and state variables. Table 1 summarizes
state variables associated with the line tracer. Additionally,−→
los and −→ros are vectors from the gravity center (x, y) to left
sensor and right sensor, respectively.

A color sensor can discriminate colors. In this study, we
assume that read value of the color sensor is two-valued, black
and white, by setting threshold. Then the line tracer reads
colors of the course using two color sensors, and determines
its motion by changing left or right wheel speeds. Table 2
shows the controller logic associated with read values of two
color sensors. If, for example, the left sensor and the right
sensor sense white and black respectively, then the line tracer
will “turn right”. This is done by setting left wheel speed to
high speed HS and right wheel speed to low speed LS. Note
that there are delays in sensors and actuators, for example
sleeping time before next sense-act loop and motor reaction.

Table 2: Logic for Color Sensors
RightSensor

black white

LeftSensor black go straight turn left
white turn right go straight

International Journal of Informatics Society, VOL.6, NO.2 (2014) 79-87 8181

4 IMPLEMENTATION

LEGO Mindstorms NXT [8] is a kit for assembling robots
and machines with various actuators and sensors. The default
programming language for LEGO NXT is Mindstorms, but
there are other languages such as NXC (Not eXactly C) [10]
and LeJOS [9] which supply various classes for NXT sensors
and actuators. We use LeJOS for making the control program
of the tracer. This is because Mindstorms is GUI base lan-
guage and does not suit for modeling. Instead, LeJOS is Java
based language and is easier to construct models from a pro-
gram.

Figure 2 shows our implemented controller program writ-
ten in LeJOS. In this research, we use the same program used
in our previous study mentioned in Sec. 2.2. Then, we try to
verify that the program can trace arc courses.

5 MODEL

The line tracer system described in Sec. 3 is converted into
two models; Controller model and Motion model. We
introduce these models in this section,

Both Controller model and Motion model are ex-
pressed in timed automata. However, most of the state vari-
ables used in a line tracer have real values, and UPPAAL can
only handle integer variables except for clock. Therefore, it is
required to approximate state variables for discrete values to
construct models in timed automata. We presented approxi-
mation of the state variables by applying sampling and quan-
tization techniques in our previous study. In this study, we
use the same models. Please refer papers [6], [7] for detail
information of discretization techniques. Note that, we have
modeled in the relative scale in this study. Therefore, units
are not specified.

5.1 Controller Model
Controller model is a timed automaton which repre-

sents controller program for the line tracer. Fig. 3 shows
Controller model which corresponds to the implemen-
tation in Sec. 4. Please refer to Table 1 which summarizes
variables used in Controller model.

As described in Sec. 3, Controller decides motor speeds
according to the four possible combinations of read values of
the two color sensors. From the initial location represented as
double circle, there are four transitions. Each of the transition
corresponds to a pair of real value of sensors.

5.2 Motion Model
Motionmodel is a timed automaton which represents mo-

tions of the line tracer’s coordinates of the gravity center and
read values of color sensors. The line tracer keep on mov-
ing while the control program does not work because of de-
lay or sleep time. Therefore, coordinates of center should
be updated as independent of the Controller model to
express behavior of the tracer. Fig. 4 shows the timed au-
tomaton which updates states variables at regular, discrete
time intervals. The automaton of Motion model periodi-
cally calls functions updateX, updateY, updateTheta, up-

import lejos.nxt.*;
public class Controller {

public static void main(String[] args)
throws Exception {

int rid,lid;
final int HS = 420, LS = 120, BLACK = 7,
MS = 360, HSEC = 500;
Color colorR ,colorL;
ColorSensor sensorR =

new ColorSensor(SensorPort.S3);
// 1(S3):right

ColorSensor sensorL =
new ColorSensor(SensorPort.S4);
// 2(S4):left

Motor motor = new Motor();
motor.B.setSpeed(MS);
motor.C.setSpeed(MS);
Thread.sleep(HSEC);
// wait for devices to be stable

motor.B.forward();
motor.C.forward();
while(true) {
rid = sensorR.getColorID();
lid = sensorL.getColorID();
if (lid == BLACK

&& rid != BLACK) {
motor.C.setSpeed(LS);
motor.B.setSpeed(HS);

} else if (lid != BLACK
&& rid == BLACK) {

motor.C.setSpeed(HS);
motor.B.setSpeed(LS);

} else if (lid == BLACK
&& rid == BLACK) {

motor.C.setSpeed(HS);
motor.B.setSpeed(HS);

} else if (lid != BLACK
&& rid != BLACK) {

motor.C.setSpeed(HS);
motor.B.setSpeed(HS);

}
if (Button.readButtons()

== Button.ENTER.getId())
break;

}
}

}

Figure 2: Controller Program in LeJOS

T. Sekizawa et al. / Verification of a Control Program for a Line Tracing Robot using UPPAAL Considering General Aspects82

Figure 3: Controller Model

dateLSensor, and updateRSensor which update state vari-
ables x, y, θ, lid and rid, respectively. Note that, lid and rid
are two-valued variables associated with read values of the
sensors.

Read values of sensors depend on the coordinates of grav-
ity center, the angle of the line tracer, and the course. Grav-
ity center and angle are expressed by integer variables in this
model. It is also required discretely handling of the course.
There will be two methods for handling. First one is quantiza-
tion, mapping the continuous course to discrete values. Sec-
ond one is equation representation, the course is expressed in
a formula. In this study, we adopt the second method. Let
(sx, sy) be the coordinates of left or right sensor. Then, the
read value of the sensor is decided to be black if (sx, sy) sat-
isfies the following formula. Otherwise, the read value is de-
cided to be white.(

r − w

2

)2

≤ s2x + s2y ∧ s2x + s2y ≤
(
r +

w

2

)2

where r is radius of a circle course, and w is line width.

6 EXPERIMENTAL RESULTS

described in Sec. 5. In this section, we verify correctness
of the control program. Verifications were performed using
UPPAAL 4.0.13 running on Windows 7 (64 bit), Intel Core
i5-2400, 3.10GHz, with 8GB memory.

6.1 Verification of Specification
A line tracer is expected to trace a course. First, we verify

whether or not the controller program satisfies the property.
Therefore, what we need to verify is, i) the tracer runs along
the course within a certain range, and ii) the tracer keeps on
taking its route, i.e., does not get stuck.

To verify these requirements, we need to fix some initial
values. Let initial values be as follows.

• coordinates of gravity center (x, y) = (r, 0)

• direction of the tracer θ = 90◦

• width of the course w = 100

In addition, we set the following values associated with the
tracer.

• half width of the tracer lw = 60

• distance between center and a sensor ds = |−→los| =
|−→ros| = 180

The angle between −→
los and −→ros is 60 degrees.

• high / low wheel speeds HS = 12, LS = 6

• sensing interval is 1, and sensing delay is 1

Note that, sensing interval and sensing delay are modeled as
an unit time of UPPAAL. It should be also noted that the pa-
rameters used in verification are not the same as those used in
implementation.

We then check the correctness of the line tracer by verifying
the following queries.

1. A□ (firstquadrant → inrange)
where firstquadrant is x ≥ 0 ∧ y ≥ 0, inrange is(
r − w

2 − ds
)2 ≤ x2+y2∧x2+y2 ≤

(
r + w

2 + ds
)2

,
and ds is a distance between center and a sensor, i.e.,
ds = |−→ros| = |−→los|.

2. E♢ (x < 0 ∧ y > 0)

International Journal of Informatics Society, VOL.6, NO.2 (2014) 79-87 8383

Figure 4: Motion Model

Query 1 represents that the gravity center of the tracer is al-
ways located within a certain range, w/2 + ds, from the line
in the first quadrant. Note that we consider the gravity center
(x, y) in this query, therefore ds is added to the allowable dis-
tance from the course. Here, target domain is limited to the
first quadrant, because if the whole area is set to be a target,
state explosion problem occurs. In addition, even if the target
area is restricted, query 1 can not be verified because of the
state explosion problem.

To solve these problems, we slightly modified Motion
model. We added a new location named STOP to Motion
model. If the gravity center goes outside the first quadrant,
then transit to the location STOP. This modification works
on verification of query 1. Instead, we also have to modify
query 1 considering the new location STOP. New query 1′ is
as follows.

1′. A□ (firstquadrant → inrange ∨ M.STOP)

where M is the variable name for Motion model in UPPAAL
and M.STOP represents the location STOP in Motion model.

It is easily understand that the verification result for query 1′

depends on the radius of the arc course. We verified query 1′

by changing radius r. As a result, query 1′ holds if r ≥ 277
and does not hold if r ≤ 266.

Query 2 is reachability checking that the line tracer eventu-
ally reaches to the second quadrant. This query is necessary
to check behavior of the tracer, because query 1 only describe
the distance from the course and does not describe movement.
It makes no sense to check query 2 if query 1′ does not hold.
According to the above-mentioned results for query 1′, we
verified query 2 for r ≥ 277. Then, we obtain verification
results that query 2 holds for r ≥ 277.

Ideally, conjunction of the two queries should be verified at
once. Unfortunately, UPPAAL does not allow nesting of path
quantifiers in a formula. Therefore we verified the queries
one by one. However, when we consider both two queries to-
gether, it is possible to judge whether or not the tracer satisfies
the specification. Note that, we verified dependency of radius
by hand, but it is possible to be automated by generating UP-
PAAL model.

6.2 Analysis of Turning Angle
It is easily understand that verification results of query 1′

depend on wheel speeds of the tracer. For example, if the

tracer moves slowly, it will be able to keep on tracing longer.
However, verification results of query 1′ and query 2 do not
describe distance from the initial position.

We calculate turning angle of the tracer by analyzing counter
examples of query 1′ for various wheel speeds. For that pur-
pose, high wheel speed HS and low wheel speed LS are
changed into HS′ = CmsHS and LS′ = CmsLS where
Cms is a coefficient. Then, we verify query 1′ for some Cms.
When the query does not hold, we obtain a counter exam-
ple which consists of a sequence of locations in evidence.
UPPAAL has a function to generate the shortest trace as a
counter example. By analyzing the counter example, it is
possible to calculate the coordinate where the tracer turns
off from the course. As an example, let radius r be fixed
to 250. This is because that we know the tracer is not able
to keeps on track in the first quadrant from the verification
results in Sec. 6.1. Then, we think about intersection of the
course and orbit of the tracer. Let the intersection be P , co-
ordinates of before turning off be Q, and coordinates of af-
ter turning off be Q′. Then, P is an intersection of circle
x2 + y2 = (r ± (w/2 + ds))2 and a line passing through Q
and Q′.

Table 3 shows Cms, Q,Q′, P and α, where α (deg) is an-
gle between x-axis and line passing through the origin and
point P , obtained from the shortest counter examples. Note
that there are no results for Cms = 1/2 in Table 3, because
query 1′ holds. It is not surprisingly that verification results
depend on wheel speeds. Query 1′ holds for Cms = 1/2
should be reasonable because this setting means slower move
that arrows the tracer keeping on track. Fig. 5 shows a re-
sult of the orbit of the tracer obtained from the counter exam-
ple, intersection P , and turning angle α for Cms = 2/3 and
r = 250. From the results except for Cms = 1/2, central an-
gle α is roughly constant. This result can be interpreted that
angle α is the minimum turning radius for r = 250. This re-
sults seems natural, however, it indicates that model checking
can be applied to analyze properties relating to turning angles.

7 DISCUSSION

In this section, we discuss our experiments and future work.

7.1 Discussion on the Experiments
We briefly return to our basic focus on our research ques-

tion. We are motivated to know applicability of formal ver-

T. Sekizawa et al. / Verification of a Control Program for a Line Tracing Robot using UPPAAL Considering General Aspects84

Table 3: Speed Dependency and Turning Angle (r = 250)

Cms Q Q′ P α (deg)
1/2 — — — 90 <
2/3 (214, 428) (213, 435) (213.7, 429.8) 63.6
1 (262, 394) (262, 405) (262.0, 402.2) 56.9
2 (310, 360) (314, 384) (310.9, 365.7) 68.5
3 (310, 336) (213, 396) (310.9, 365.7) 68.5
4 (306, 306) (213, 384) (310.9, 365.7) 68.5

Figure 5: Orbit of the Tracer, Intersection, and Turning Angle

ification to real embedded systems, especially control con-
tinuous systems. Continuous systems are essentially hybrid
systems, but we set our first target to verifying time-related
properties. We also set another research question that we want
to know applicability of verification techniques from the view
point of design verification.

In this study, we divided the circle course into an arc course,
the first quadrant, because of the state explosion problem.
Here, we consider possibility of verification for tracing the
entire route of the circle. To tackle this problem, straight-
forward modeling seems unpromising according to the ver-
ification results in Sec. 6. To reduce the size of state space,
one possibility is applying abstraction techniques such as data
mapping and predicate abstraction. Another possibility will
be combination of theorem proving and model checking.

Experimental results combined with our previous study, be-
havior of a line tracer is verified based on specification and a
control program. We think our verification results indicate
usefulness of model checking. However, there are still prob-
lems remained to verify real embedded system. One prob-
lem is scalability. Through our studies, parameters used in
verification are not the same as those used in implementa-
tion and differ from LEGO Mindstorms kit in size. How-
ever, we believe that our parameter settings are acceptable to
show applicability of model checking. The reason why we
adjust parameters is the state explosion problem. If we set
parameters as the same as real used values, the size of state
space becomes too large, and model checker cannot respond
in a reasonable time or it exhausts its available memory. This

problem is widely known in the field of model checking.
Another problem is that we are not yet consider effects of

errors and distributions. When we think of real embedded
system, behaviors of the systems are disordered by distur-
bances or errors. It is natural that disturbances and error prob-
abilistically occur. However, timed automaton is not suited
for probabilistic event. Here, we give a little more thought to
the tracer constructed by LEGO Mindstorms as a real embed-
ded system. It is reported in [11] that motor speed of LEGO
Mindstorms kit is approximately proportional to the parame-
ter, but has error. Through this study, we have tried to handle
errors associated with wheel speeds. We assumed that wheel
speed includes a certain amount of error. If such error exists,
errors are cumulated and make an impact on the position of
the tracer. We confirmed that such errors affect to the result
of verification. Unfortunately, we have not yet obtained sys-
tematic results.

7.2 Related Work

In this section, we briefly describe related work on formal
verifications associated with control engineering.

One of similar researches is verification of real-time control
program using UPPAAL [12]. In this paper, the authors con-
structed a brick sorter system using LEGO RCX and wrote
control programs in Not Quite C (NQC). The paper presents
verification of safety and liveness properties by automatic trans-
lation from the control program into UPPAAL models. Through
the research, abstraction and reduction techniques are applied
to construct discrete models from continuous systems. This
approach is similar to ours, however, the brick sorter system
is essentially a discrete system even though it contains time
dependencies.

As with many control systems, a line tracer can be consid-
ered as a hybrid system by describing their movements using
differential equations and their control programs in discrete
time. It is generally accepted that real embedded systems are
too big to fully verify. Therefore, it is usual to focus on im-
portant behaviors. As an example of hybrid approaches, pa-
per [13] described the verification of the behaviors of a line
tracer by constructing a model using hybrid I/O automata and
correctness proofs. In that paper, the authors presented veri-
fication of safety property, that is, a line tracer should move
along a straight line and never run off. However, the authors
noted that some time details, such as time delay between two
motors, were not considered

In verification of robotics, a survey of model checking of
the control system of NASA robotics systems is reported [14].
In this survey, the authors summarize various techniques for
verification and show verification of a robot control system.
Safety and liveness properties are verified, but these proper-
ties were not related to continuous dynamics. Even though the
survey does not cover the handling of continuous dynamics,
it is a good resource. As a similar area, the verification of a
real vehicle is presented [15]. Even though our aim is the ver-
ification of continuous systems, our approach in reflects those
above, i.e., conversion to timed automata using quantization
and sampling.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 79-87 85

8 CONCLUSION

In our previous study, we have verified that a line tracer
runs along a straight line. In this research, we used the same
control program for the tracer and showed the same models
can keep track on arc courses. These are verified using UP-
PAAL with timed automata and logical formulas. We also
presented that if the tracer cannot run from the first quadrant
to the second quadrant, it is possible to calculate turning angle
by analyzing counter examples.

We hope to extend this study to the analysis of more real
embedded systems including disturbances and errors. To that
purpose, expressive power of timed automaton is not suffi-
cient as described in Sec. 7. We plan to express models in
probabilistic timed automata (PTAs). We also intend to use
the latest version of probabilistic model checker PRISM [16]
which supports PTAs.

Another direction of future work includes a PID controller
(proportional-integral-derivative controller), which is a widely
used feedback control system. We used simple specification
to control the line tracer, but PID control is widely used in
control systems and control engineering. When PID control
is applied to a line tracer, it enables smooth motion. How-
ever, PID control is essentially hybrid system, which contin-
uous and discrete dynamics are mixed with time progression.
Several approaches have been proposed to handle hybrid sys-
tems. One of these approach is hybrid automata [17] which is
a formal model for describing discrete-continuous systems.

REFERENCES

[1] R. Alur, and D.L. Dill, “A theory of timed automata,”
Theoretical Computer Science, Vol.126, No.2, pp.183–
235 (1994).

[2] J. Bengtsson, and W. Yi, “Timed Automata: Seman-
tics, Algorithms and Tools,” in Lectures on Concur-
rency and Petri Nets, Advances in Petri Nets (4th
ACPN’03), Vol.3098 of Lecture Notes in Computer Sci-
ence (LNCS), pp.87–124 (2004).

[3] A. Schild, and J. Lunze, Control design by means of em-
bedded maps, in Handbook of Hybrid Systems Control,
eds. J. Lunze, and F. Lamnabhi-Lagarrigue, chapter 6.5,
pp.231-247, Cambridge University Press (2009).

[4] E.M. Clarke, O. Grumberg, and D. Peled, Model Check-
ing, MIT Press (1999).

[5] E.A. Emerson, “Temporal and Modal Logic”, Hand-
book of Theoretical Computer Science, Vol.B, chap-
ter 16, pp.995–1072, Elsevier (1990).

[6] K. Okano, T. Sekizawa, H. Shimba, H. Kawai,
K. Hanada, Y. Sasaki, and S. Kusumoto, “Verification
of Safety Property of Line Tracer Program using Timed
Automaton Model,” International Workshop on Infor-
matics (IWIN2012), pp.136–142 (2012).

[7] K. Okano, T. Sekizawa, H. Shimba, H. Kawai,
K. Hanada, Y. Sasaki, and S. Kusumoto, “Verification of
Safety Properties of a Program for Line Tracing Robot
using a Timed Automaton Model,” Special Issue of
the International Journal of Informatics Society (IJIS),
Vol.5, No.3, pp.147–155 (2014).

[8] LEGO Mindstorms NXT official website, http://
www.legoeducation.jp/mindstorms/.

[9] LeJOS Java for LEGO Mindstorms, http://lejos.
sourceforge.net.

[10] NXC Tutorial, http://bricxcc.sourceforge.
net/nbc/nxcdoc/NXCtutorial.pdf.

[11] K. Yamabe, “Measurement of Performance Character-
istic of LEGO NXT using LeJOS,” (2011), (under-
graduate thesis in Osaka Gakuin University, written in
Japanese).

[12] T.K. Iversen, K.J. Kristoffersen, K.G. Larsen,
M. Laursen, R.G. Madsen, S.K. Mortensen, P. Petters-
son, and C.B. Thomasen, “Model-Checking Real-Time
Control Programs - Verifying LEGO MINDSTORMS
Systems Using UPPAAL,” In Proc. of 12th Euromicro
Conference on Real-Time Systems, pp.147–155 (2000).

[13] A. Fehnker, F.W. Vaandrager, and M. Zhang, “Modeling
and Verifying a Lego Car Using Hybrid I/O Automata,”
Models, Algebras, and Logic of Engineering Software,
Vol.191, pp.385–402 (2003).

[14] N. Sharygina, J. Browne, F. Xie, and V. Levin, “Lessons
learned from model checking a NASA robot controller,”
Formal Methods in Systems Design Journal, pp. 241–
270 (2004).

[15] M. Proetzsch, K. Berns, T. Schuele, and K. Schneider,
“Formal Verification of Safety Behaviours of the Out-
door Robot RAVON,” Fourth International Conference
on Informatics in Control, Automation and Robotics
(ICINCO), pp. 157–164 (2007).

[16] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM
4.0: Verification of Probabilistic Real-time Systems,”
Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), eds. G. Gopalakrishnan, and
S. Qadeer, Vol.6806, pp.585–591 (2011).

[17] T.A. Henzinger, “The Theory of Hybrid Automata,” In
Proceedings of the 11th Annual Symposium on Logic in
Computer Science, pp.278–292 (1996).

(Received December 11, 2013)
(Revised May 7, 2014)

Toshifusa Sekizawa received his MSc degree in
physics from Gakushuin University in 1998, and
Ph.D. in information science and technology from
Osaka University in 2009. He previously worked
at Nihon Unisys Ltd., Japan Science and Technol-
ogy Agency, National Institute of Advanced In-
dustrial Science and Technology, and Osaka Gakuin
University. He is currently working at College
of Engineering, Nihon University. His research
interests include model checking and its applica-
tions.

86 T. Sekizawa et al. / Verification of a Control Program for a Line Tracing Robot using UPPAAL Considering General Aspects

Kozo Okano received the BE, ME, and Ph.D de-
grees in Information and Computer Sciences from
Osaka University, in 1990, 1992, and 1995, re-
spectively. Since 2002, he has been an associate
professor in the Graduate School of Information
Science and Technology, Osaka University. In 2002,
he was a visiting researcher of the Department of
Computer Science, University of Kent at Canter-
bury. In 2003, he was a visiting lecturer at the
School of Computer Science, University of Birm-
ingham. His current research interests include for-

mal methods for software and information system design. He is a member of
IEEE CS, IEICE of Japan and IPS of Japan.

Ayako Ogawa received the BSc in informatics from
Osaka Gakuin University in 2014. She is cur-
rently working at Sougou System Service Corpo-
ration. Her research interests include system de-
velopment methodology and verification of behav-
iors of vehicles using model checking.

Shinji Kusumoto received the BE, ME, and DE
degrees in information and computer sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a professor in the Graduate
School of Information Science and Technology at
Osaka University. His research interests include
software metrics and software quality assurance
technique. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 79-87 87

