
New Metrics for Program Specifications Based on DbC

Kozo Okano†, Yuko Muto†, Yukihiro Sasaki†, Takafumi Ohta†, Shinji Kusumoto†, and Kazuki Yoshioka†

†Graduate School of Information Science and Techlology, Osaka University, Japan
{okano, t-ohta, kusumoto}@ist.osaka-u.ac.jp

Abstract - For realizing dependable and maintainable soft-
ware, Design by Contract (DbC) is a useful approach. DbC
utilizes constraints as contracts between the caller and the
callee routines in programs. Verifiers for the programs are
able to check whether the given source code satisfies the given
constraints. However, it is difficult to measure the exhaustive-
ness for a specification, i.e., how well the constraints cover the
ideal specification for the source code. This paper proposes
Variable Coverage, a simple set of metrics to check the ex-
haustiveness of specification for source code in Java and other
object-oriented programming languages. The proposed cov-
erage observes the occurrence of variables in the constraints,
such that the variables are also used in the target method/-
constructor. We applied the metrics to three actual programs
to evaluate the ability of Variable Coverage to find variables
that should have been referred in specifications as important
variables. As a result, the shortage of JML annotations found
in the target programs shows the usefulness of the proposed
metrics.

Keywords: DbC, Coverage, Specification,Testing, Metrics

1 INTRODUCTION

Formal methods [1], which are mathematical techniques
for the specification, development and verification of software
and hardware systems, have attracted much attention because
they are said to play important roles for designing software,
especially since the size of software has increased. The larger
the program size, the more frequently the software testing
misses the corner case. Formal methods can perform exhaus-
tive checking. In various industries, such as public transporta-
tion systems, real and large programming projects have been
successful by using formal methods [2]. Formal methods are
classified into three technologies: deductive methods, model
checking, and model-based simulation or testing.

Design by Contract (DbC) [3] is a well-known approach
for clarifying the responsibility between callers and callees.
Java Modeling Language (JML) [4]–[6] is a specification lan-
guage for Java based on DbC. A program based on DbC can
be verified with static checking and runtime checking. For
example, ESC/Java2 [7] and jml4c [8] are such tools for Java.
As an example in another language, Spec# [9] is a superset of
C#, and the static checker for Spec#, developed by Microsoft,
uses Boogie [10].

However, it is difficult to determine whether the specifica-
tion is well-written (exhaustive). If the specification is low
exhaustive, the correctness of the program is not clear. In
runtime checking, as an example, a runtime checker produces
a violation when the source code and its specification do not

match. No violation is reported by the runtime checkers if
the code has no specification, because no constraint has been
specified. Consequently, we cannot do anything about the
quality of the source code.

Some papers have studied coverage metrics for hardware
verification. Chockler et al. [11] summarized coverage met-
rics for simulation-based verification, such as code coverage
and assertion coverage. To generate a test efficiently, Moun-
danos et al. [12] proposed functional coverage as the amount
of control behaviors covered by a test suite using abstraction
techniques. Nevertheless, few coverage metrics can be ap-
plied to general-purpose programming languages at the im-
plementation level. This includes Java and JML.

In this paper, we propose Variable Coverage as coverage
metrics for formal specifications at the implementation level.
Variable Coverage consists of the coverage for the pre-condition,
post-condition, assignable and invariant.

In experiments, we used a prototype that measures the Vari-
able Coverage of three kinds of programs. As a result, we
found a shortage of JML annotations in the target programs.
The result shows the usefulness of our proposed metrics.

The paper is organized as follows. Section 2 provides def-
initions of important terms and Section 3 introduces related
work. Section 4 shows our proposed method, Variable Cov-
erage, followed by experiments and discussion in Sections 5
and 6, respectively. Finally, Section 7 concludes this paper.

2 PRELIMINARIES

This section provides some concepts and definitions.

2.1 Design by Contract
Design by Contract (DbC) was proposed by Bertrand Meyer

[3]. In DbC, suppliers (callee routines) and clients (caller rou-
tines) make contracts with each other. The clients should sat-
isfy the pre-conditions, and the suppliers should satisfy the
post-conditions under the pre-conditions. This mechanism
makes it easier to identify bugs.

Some programming languages support DbC as a standard,
and others have a specification language that is separate from
the core grammar of the language. Eiffel [13] supports DbC
as the standard. C# and Java have no standard contract sys-
tem but some specification languages are proposed separately.
Spec# [9] is a superset of C# to describe contracts. For Java,
JML [4] is the de-facto standard specification language.

2.2 Constraints
The pre-condition for a routine (method) is a set of Boolean

constraints. It should be true prior to the routine execution.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

67

Clients are responsible to meet the pre-condition.
The post-condition for a routine is a set of Boolean con-

straints. It should be true after the routine execution, pro-
vided that its associated pre-condition holds. Suppliers are re-
sponsible to meet the post-condition under the pre-condition.

The routine is permitted to assign values to only the vari-
ables specified in Assignable. The constraints help the devel-
opers to detect side effects.

Invariant is a set of Boolean constraints. Invariants should
be always true. Depending on the target of a constraint,
invariants are divided into class invariant and loop invariant.
This paper deals with only the class invariant.

2.3 Java Modeling Language
JML is a specification language based on DbC for Java.

JML supports the pre-condition, post-condition, assignable
and invariant. We explain them through class BankAccount,
an account for a customer of a bank, as an example.

Figure 1 is the source code of class BankAccount with
JML.

1 public class BankAccount {
2

3 private int balance;
4 // @invariant balance >= 0;
5

6 // @ensures balance == 0;
7 // @assignable balance;
8 public BankAccount() {
9 this.balance = 0;

10 }
11

12 // @requires amount >= 0;
13 // @requires balance >= amount;
14 // @ensures balance == \old(balance) -

amount;
15 // @assignable balance;
16 public void withdraw(int amount) {
17 this.balance -= amount;
18 }
19

20 // @requires amount >= 0;
21 // @ensures balance == \old(balance) +

amount;
22 // @assignable balance;
23 public void deposit(int amount) {
24 this.balance += amount;
25 }
26

27 // @ensures \result == balance;
28 // @assignable \nothing;
29 public int getBalance() {
30 return this.balance;
31 }
32

33 // @pure
34 public void inquiry() {
35 System.out.println("Balance is " + this.

balance);
36 }
37

38 }

Figure 1: Source Code of Class BankAccount with JML

Pre-conditions Keyword @requires expresses the pre-

condition. In Fig. 1, methods withdraw and deposit
have pre-conditions in lines 12,13 and 20.

Post-conditions Keyword @ensures expresses the post-
condition. The constructor and methods withdraw,
deposit and getBalance have post-conditions. Line
6 in Fig. 1 means that field balance is 0 after the in-
stance creation.

Assignables @assignable expresses the assignable. The
following @assignable classes, fields that can be
assigned, are listed. If every field is prohibited to be as-
signed, then @assignable \nothing is used, as
in line 28 in Fig. 1. To shorten the code, @pure is
equivalent to @assignable \nothing .

Invariants The JML description of invariants is
@invariant. Also, attribute a with @non_null is
equivalent to @invariant a != null. In Fig. 1,
line 4 is an invariant clause that means field balance
must be 0 or more at any time.

2.4 Global Variables

Generally, the term “global variables” is not used in object-
oriented programming language. In this paper, as a matter of
convenience, we define global variables as follows.

Definition 2.1 (Global Variables)
When a method m is a member of class c, a global variable g
is defined as:

• g is not a member of c, and

• g is visible from m.

Figure 2 shows an example of a global variable. The vari-
able font of class Config is a global variable for method
draw.

1 public class Config {
2 public static Font font;
3 }
4

5 public class Customer {
6 public void draw(Graphics g) {
7 g.setFont(Config.font);
8 g.drawString("An example for a global

variable", 10, 10);
9 ...

10 }
11 }

Figure 2: An Example of a Global Variable

3 RELATED WORK

This section introduces some of the work related to this
paper.

K. Okano et al. / New Metrics for Program Specifications Based on DbC68

3.1 Program Verification
ESC/Java [14], an Extended Static Checker for Java, was

the practical usable checker among the early verifiers. Cur-
rently, its successor version, ESC/Java2 [15] is widely used
and supports JML2.

Also supporting the newer Java, Mobius [16] has attracted
increased attention as a program verification environment (PVE)
that includes static checkers, runtime checkers, and verifiers.
It is provided as an Eclipse [17] plug-in. ESC/Java2 is also
integrated into Mobius.

3.2 Verification Coverage
Coverage metrics for formal verification are called verifi-

cation coverage primarily in the hardware field. Verification
coverage falls into two categories: syntactic coverage and se-
mantic coverage [11]. As syntactic coverage, code coverage
for model-based simulation is the metric derived from soft-
ware testing [18]. The ratio of executed code during a simu-
lation is code coverage. As simple coverage, line coverage is
the code of a block without control transition.

Coverages depending on a control flow graph (CFG) are
branch coverage, expression coverage, and path coverage.

Semantic coverage is categorized into assertion coverage
and functional coverage. Assertion coverage is the measuring
method by which users determine variables to observe. As-
sertion coverage measures what assertions are covered with a
given set of input sequences [11].

To generate a test suite to be analyzed, Moundanos et al.
[12] proposed functional coverage, which is the amount of
control behavior covered by a test suite using abstraction tech-
niques.

3.3 Assertion Density
Assertion density is the number of assertions per line of

code [19]. Without sufficient assertion density, the full bene-
fits of assertions are not realized. Assertions must be verified
for behaviors as design intents, i.e., statements of properties.

4 VARIABLE COVERAGE

This section defines Variable Coverage, our proposed method.

4.1 Motivation
Formal verification checks the consistency between source

code and its contracts based on the Class Correctness formula.
Chockler et al. [11] stated that “Measuring the exhaustive-
ness of a specification in formal verification has a similar fla-
vor as measuring the exhaustiveness of the input sequences
in simulation-based verification for hardware.” To apply this
idea to software, the input sequences of a method/constructor
correspond to variables. Consequently, we propose a cover-
age metric that observes variables.

4.2 Policies
We propose a set of metrics that supports these policies:

1. Our metric checks all variables as input and output.
It is oriented with verification coverage.

2. Our metric is simple.
The execution of measuring the coverage requires a rel-
atively short time. The metric targets developers who
describe assertions in JML. Our metric should be checked
for a short time on a frequent basis when the developers
want to conduct checks.

3. Our metric uses only static information.
Using only static information (source code and JML)
without an execution trace enables the measurement of
coverage for a part of incomplete code.

4.3 Constraints Development Process with
Variable Coverage

Quickly measuring Variable Coverage (hereafter, VC) en-
ables a high frequency of measurements. Implementators can
improve the constraint descriptions by the iterative process:

Step 1 Implementators describe assertions.

Step 2 VC is measured.

Step 3 Iterate Step 1 if the implementators do not find all of
their assertions.

We call such an iteration “Quick VC revise.”

4.4 Definition of Variable Coverage
VC consists of four kinds of metrics: coverage for the pre-

condition, post-condition, assignable and invariant. Tables 1
and 2 show the VC metrics for a single constraint and multiple
constraints, respectively.

4.4.1 The Coverage for Pre-conditions

Pre-conditions should check all input variables, i.e., parame-
ter of the method, attributes and global variables referred in
the method. Thus, the coverage for pre-conditions consists of
Parameters Coverage and Referred Attributes Coverage.

Definition 4.1 (PrPC)
Let P (m) and Pheld−by−pre(m) be a set of parameters de-
fined in method m and held by a pre-condition in method
m, respectively. Equation (1) defines PrPC(m), Parameters
Coverage for pre-conditions of method m.

PrPC(m) =
| Pheld−by−pre(m) |

| P (m) |
(1)

In Fig. 3, both | Pheld−by−pre(m) | = | {age} | = 1 and
| P (m) | = | {name, age} | = 2 hold. Hence, we have
PrPC(m) = 1/2.

Definition 4.2 (PrAC)
Let Areferred(m) and Aheld−by−pre(m) be a set of attributes
referred in method m and held by the pre-condition in method

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77 69

Table 1: Variable Coverage (single constraint)
Coverage Name Constraint Target Variables Measuring Unit
PrPC Pre-Condition Parameters Method
PrAC Refered attributes Method
PrGC Refered global variables Method
PoRC Post-Condition Return value Method
PoAC Assigned attributes Method
PoGC Assigned global variables Method
AAC Assignable Assigned attributes Method
IAC Invariant Attributes Class

Table 2: Variable Coverage (multiple constraints)
Coverage Name Constraint Target Variables Measuring Unit
PrIAC Pre-condition + invariant Refered attributes Method
PoIAC Post-condition + invariant Assigned attributes Method

1 //@ requires age >= 0;
2 // no requires holds ’name’
3 public Customer(String name, int age){
4 this.name = name;
5 this.age = age;
6 }

Figure 3: An Example to Explain Parameters Coverage for
Pre-condition

m, respectively. Equation (2) defines PrAC(m) as the Re-
ferred Attributes Coverage for pre-conditions of method m.

PrAC(m) =
| Aheld−by−pre(m) |
| Areferred(m) |

(2)

Definition 4.3 (PrGC)
Let Greferred(m) and Gheld−by−pre(m) be a set of global
variables referred in method m and held by the pre-condition
in method m, respectively. Equation (3) defines PrGC(m)
as the Referred Global Variables Coverage for pre-conditions
of method m.

PrGC(m) =
| Gheld−by−pre(m) |
| Greferred(m) |

(3)

4.4.2 The Coverage for Post-conditions

Post-conditions observe output variables that have an effect
outside of the method, such as the return value, attributes and
global variables assigned in the method. Hence, the coverage
for a post-condition is composed of Return Value Coverage,
Assigned Attributes Coverage and Assigned Global Variables
Coverage.

Definition 4.4 (PoRc)
Equation (4) defines PoPC(m) as the Parameters Coverage
for post-conditions of method m.

PoRC(m)=

 1 (return value is held by post-condition)
0 (otherwise)

(4)

Definition 4.5 (PoAC)
Let Aassigned(m) and Aheld−by−post(m) be a set of attributes
assigned in method m and held by the post-condition in method
m, respectively. Equation (5) defines PoAC(m) as the As-
signed Attributes Coverage for post-conditions of method m.

PoAC(m) =
| Aheld−by−post(m) |
| Aassigned(m) |

(5)

Definition 4.6 (PoGC)
Let Gassigned(m) and Gheld−by−post(m) be a set of global
variables assigned in method m and held by the post-condition
in method m, respectively. Equation (6) defines PoGC(m) as
the Assigned Global Variables Coverage for post-conditions
of method m.

PoGC(m) =
| Gheld−by−post(m) |
| Gassigned(m) |

(6)

4.4.3 The Coverage for Assignables

Assignable constraints are written on methods or construc-
tors. Some variables are assigned in the method or construc-
tor, including attributes that have their scope outside of the
method. Thus, the coverage for assignables includes Assigned
Attributes Coverage.

Definition 4.7 (AAC)
Let Aassigned(m) and Aheld−by−asgn(m) be a set of attributes
assigned in method m and held by the assignable in method
m, respectively. Equation (7) defines AAC(m) as the As-
signed Attributes Coverage for the assignable of method m.

AAC(m) =
| Aheld−by−asgn(m) |

| Aassigned(m) |
(7)

4.4.4 The Coverage for Invariants

Class invariants are described in a class. The variables owned
by the classes are attributes. Hence, coverage for invariants
has Attributes Coverage for invariants.

K. Okano et al. / New Metrics for Program Specifications Based on DbC70

Definition 4.8 (IAC)
Let A(c) and Aheld−by−inv(c) be a set of attributes owned
by class c and held by the invariants in class c, respectively.
Equation (8) defines IAC(c) as the Attributes Coverage for
invariants of class c.

IAC(c) =
| Aheld−by−inv(c) |

| A(c) |
(8)

4.4.5 The Coverage for Pre-conditions and Invariants

Definition 4.9 (PrIAC)
Let us assume that Class c owns method m. Also, let Areferred(m),
Ahold−by−pre(m), and Ahold−by−inv(c) be a set of attributes
referred in method m, held by the pre-condition in method
m, and held by invariants in class c, respectively. Equation
(9) defines PrIAC(m) as the Referred Attributes Coverage
for pre-conditions and invariants of method m.

PrIAC(m) =
PrIACNR(m)

| Areferred(m) |
(9)

where PrIACNR(m) =
| Areferred(m) ∩ (Aheld−by−pre(m) ∪Aheld−by−inv(c)) |

4.4.6 The Coverage for Post-conditions and Invariants

Definition 4.10 (PoIAC)
Let us assume that Class c owns method m. Let Aassigned(m),
Ahold−by−post(m), and Ahold−by−inv(c) be a set of attributes
referred in method m, held by the post-condition in method
m, and held by the invariants in class c, respectively. Equation
(10) defines PoIAC(m) as the Assigned Attributes Coverage
for post-conditions and invariants of method m.

PoIAC(m) =
PoIACNR(m)

| Aassigned(m) |
(10)

where PoIACNR(m) =
| Aassigned(m) ∩ (Aheld−by−post(m) ∪Aheld−by−inv(c)) |

4.4.7 Ignored Variables

Constants are ignored when measuring the coverage because
such variables do not affect the communication among meth-
ods. For example, in Java, the variables described by final
modifier are ignored.

5 EVALUATION

This section gives our experimental evaluations and the re-
sults.

5.1 Overview
We performed experiments using our prototype tool to eval-

uate our proposed coverage metrics. We measured (1) execu-
tion times, and (2) numeric results of our proposed coverage.
Here is the experimental environment; HP Z800 Workstation
(Xeon E5607 dual core 2.27 GHz, 2.26 GHz and main mem-
ory 32 GB), Windows 7 Professional for 64 bits with Service
Pack 1 and Java Version 1.7.

5.2 Target Programs
We applied our approach to three programs: The Ware-

house Management Program (WMP) [20], HealthCard (HC)
[21], [22], and the Syllabus Management System for a univer-
sity (SMS). Table 3 summarizes the target programs including
the size of the programs and available assertion types of each
program.

Table 3: Target Programs
Target Program N Available JML Assertions
WMP 53 requires,ensures,

assignable,invariant
HC 197 requires,ensures,assignable
SMS 562 requires,ensures

N = The number of target methods and constructors

WMP was developed by an ex-member of our research
group. This program has requires, ensures, assignables and
invariants, and they all passed the static checker, ESC/Java2.

HC is a medical appointment application written as a mas-
ter’s thesis by Ricardo Rodrigues at the University of Madeira.
The application is based on JavaCard, the platform of IC card
devices. In general, the embedded systems need stricter qual-
ity because it is difficult to update their software. HC has two
versions: a running version and a JML version. We utilize
the JML version as the experimental target because the JML
version contains more JML descriptions than does the run-
ning version. The HC program has no @invariant in JML
because model is used instead of @invariant. Thus, in
this evaluation, Attributes Coverage for invariants is not mea-
sured.

SMS is implemented in Java by a software company as
an educational resource for the IT Specialist Program Initia-
tive for Reality-based Advanced Learning (IT Spiral), a na-
tional educational project lead by MEXT. Members of our re-
search group added only pre-conditions and post-conditions
in JML to the system, and the system produced no violations
by jml4c, a runtime checker.

We added the standard libraries (e.g., java.lang.Object)
with JML descriptions [15] to the target programs. Thus, the
contracts of the superclass or interface are added to the class
that inherits a class or implements an interface. For example,
the contracts of java.lang.Object#toString() are
added to all the toString() methods. Additionally, the re-
sults of coverage do not include the methods of the standard
libraries. Furthermore, we excluded abstract classes, inter-
faces, test classes and the main method because they should
not necessarily have contracts.

The JML annotations on each experimental target are de-
scribed based on judgements of each developer. Hence, there
is no common policy for describing annotations between the
experimental targets.

5.3 Results of Execution Times
Table 4 shows the results of the execution times. We mea-

sured three execution times for each program and show their
average in the table.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77 71

Table 4: Execution Times
Target Program Execution Time
WMP 9.3 sec
HC 16.0 sec
SMS 14.0 sec

5.4 Results of Variable Coverage

Tables 5, 6, and 7 show the results of the coverages for
pre-conditions, for post-conditions, and for assignables, re-
spectively.

Table 5: Results of Coverage for Pre-conditions
Target Program PrPC PrAC PrIAC
WMP 99.17% 9.09% 96.97%
HC 79.22% 46.24% NA
SMS 41.82% 2.77% NA

Table 6: Results of Coverage for Post-conditions
Target Program PoRC PoAC PoIAC
WMP 100.00% 94.12% 100.00%
HC 84.11% 48.39% NA
SMS 99.68% 99.38% NA

Table 8 shows the results of the coverage of invariants for
WMS.

6 DISCUSSION

This section discusses the experimental results and the threats
to validity.

6.1 Warehouse Management Program

The following method does not cover Parameter Coverage
for pre-conditions:
StockManagement.Request#

Request(java.lang.String, int,

StockManagement.Customer, java.util.Date,

byte).
We found that parameter rqst is not covered by requires

in the source code of the constructor Request. The byte-
type parameter rqstmeans the request state instead of Enum,
as SHORTAGE=0, SATISFYED=1, DELIVERED=2, WAIT=3.
Therefore, the constraints of class Request in JML are lack-
ing because the attribute rqst must be any of 0 to 3.

Table 6 shows that every return value is held by its post-
conditions. No problem was found when we read the source
code and JML.

The following method does not cover the Assigned At-
tributes Coverage for post-conditions:
StockManagement.ReceiptionDesk#

ReceiptionDesk().
Developers who described the source code and JML seemed

to recognize the shortage of post-conditions, because the com-

Table 7: Results of Coverage for Assignables
Target Program AAC
WMP 100.00%
HC 41.94%
SMS NA

Table 8: Results of Coverage for Invariants (WMP)
Class Name P IAC
ContainerItem 3 / 3 100.00%
Customer 3 / 3 100.00%
Item 2 / 2 100.00%
ReceiptionDesk 2 / 2 100.00%
Request 4 / 6 66.67%
StockState NA NA
Storage 3 / 3 100.00%

P=The number of attributes held by invariants / the Number
of attributes

ment “ensures are included in invariants” is in the source code
(Fig. 4).

1 //ensures are included in invariants.
2 //@ public behavior
3 //@ assignable requestList, storage;
4 public ReceiptionDesk() {
5 requestList = new LinkedList();
6 storage = new Storage();
7 }

Figure 4: Constructor ReceptionDesk That Is Not Covered by
Post-conditions

In the source code of class ReceptionDesk (Fig. 5),
attributes requestList and storage are held by invari-
ants.

Also, the result of Assigned Attributes Coverage for post-
conditions and invariants is 100%. Even if Assigned Attributes
Coverage for post-conditions is low, we can conclude that
the source code does not have a problem because the value
of Assigned Attributes Coverage for post-conditions is high.
Hence, VC helps us to clarify that the source code does not
have a problem.

As in the case of class ReceptionDesk, it is difficult to
know the reason why post-conditions are omitted in a general
case. One solution is the designer should describe a comment
or some keyword when the post-conditions are included in the
class invariants.

Table 7 shows that all assigned attributes are held by assignables.
Therefore, we can see that every assignable is described cor-
rectly in WMP.

Table 8 shows that Attributes Coverage for invariants of
most of classes is 100%, but the coverage of class Request
is 66%. Class Request has six attributes, but two of them
are not held by invariant constraints. We found that attributes
deliveringDate and requestState in class Request
are the cause. deliveringDate is defined as the
java.util.Date type field, which is the date of deliv-
ery. Any field of type java.util.Date except for
deliveringDate in class Request has a constraint “the

K. Okano et al. / New Metrics for Program Specifications Based on DbC72

public class ReceiptionDesk {
private /*@ spec_public non_null @*/ List

requestList;
private /*@ spec_public non_null @*/ Storage

storage;
//@ public invariant \typeof(requestList) ==

\type(Request);
...

}

Figure 5: Invariants in Class ReceptionDesk

Table 9: Extracted Results of Coverage for HC

T N PrPC PrAC PoRC PoAC AAC
(1) 197 79.22 % 46.24 % 84.11% 48.39% 41.94 %
(2) 38 82.61% 42.86 % 88.89% NA NA

T=The Type of Targets
N=The Number of Targets
(1):All methods and constructors
(2):Except for constructors, setters and getters

field is not null.” Thus, the implementor has no in-
sight into the constraints of deliveringDate because
deliveringDate can be null before delivery. The same is
true with respect to field requestState. Figure 6 shows
our recommended revised version of constraints based on the
results.

1 public class Request implements Comparable {
2 private /*@ spec_public non_null @*/ Date

receiptionDate;
3 private /*@ spec_public non_null @*/ String

itemName;
4 private /*@ spec_public @*/ int amount;
5 private /*@ spec_public non_null @*/

Customer customer;
6

7 private byte requestState;
8 private Date deliveringDate;
9 //@invariant

10 (requestState != delivered &&
deliveringDate == null) ||

11 (requestState == delivered &&
deliveringDate != null);

12 ...
13 }

Figure 6: Class Request with Recommended JML Revisions

6.2 HealthCard

From the manual inspection we conclude that the JML as-
sertion for HC is described in the following way. No construc-
tors have a JML description because the JML description is
on the interface. Setters and getters have no JML description.
We discuss constructors, setters and getters later. Table 9 lists
the results of HC except for constructors, setters and getters.

According to Table 9, the following methods have no pre-
conditions with their parameters even though they are neither
setters/getters nor constructors:

• commons.CardUtil#byte[] clone(byte[])

• commons.CardUtil#void cleanField(byte[])

• commons.CardUtil
#boolean validateObjectArrayPosition
(java.lang.Object[], short)

• commons.CardUtil
#short countNotNullObjects
(java.lang.Object[])

The parameters of the methods are array type, and any
caller or any callee does not guarantee that each of the pa-
rameters is not null. We found the shortage of JML descrip-
tions by applying Variable Coverage. In addition, the meth-
ods do not check whether the parameters inside are null.
NullPointerException is thrown when the parameter
array is null. The result shows that these methods have po-
tential bugs.

Also, this program has a method with comments in natu-
ral language instead of JML constraints. Figure 7 shows the
source code of method
validateObjectArrayPosition of class CardUtil.
Line 1 in the figure indicates that the developers know the
lack of JML descriptions. We consider, as future work, that
we could infer contracts from useful comments.

1 //Returns false if position points to a null
value or if position is out of bounds.

2 //@ assignable \nothing;
3 public /*@ pure @*/ static boolean

validateObjectArrayPosition (Object[]
array, short position) {

4 if(position < 0 || position >=
countNotNullObjects(array))

5 return false;
6 else
7 return true;
8 }

Figure 7: Comments Instead of Contracts

For Referred Attributes Coverage for pre-conditions, the
results of 23 methods are not full coverage. The results of 8
of 23 of the methods with toString are eliminated because
their source code has the comment, “Testing code.”

For the other 15 methods, we explain the method
validateAllergyPosition. It does nothing other than
call utility method
validateObjectArrayPosition of class CardUtil
(Fig. 8).

1 public boolean validateAllergyPosition(short
position){

2 return CardUtil.validateObjectArrayPosition(
this.allergies, position);

3 }

Figure 8: Source Code of Method validateAllergyPosition

It is preferable that contract violations are produced in a
previous step than over a later step because it is easier to iden-
tify bugs. Thus, methods validateAllergyPosition

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77 73

and validateVaccinePosition should be written with
more JML descriptions.

For Return Value Coverage for post-conditions, analogous
with pre-conditions, the following methods have no post-conditions
even though they have neither setters/getters nor constructors:

• commons.CardUtil#byte[] clone(byte[])

• commons.CardUtil
#short countNotNullObjects
(java.lang.Object[])

• commons.CardUtil
#boolean validateObjectArrayPosition
(java.lang.Object[],short)

The JML descriptions of the methods can be improved. For
method clone, we recommend the post-condition
@ensures \result != null. Also, we recommend
the post-condition for method
validateObjectArrayPosition idea in Figure 9, based
on its comment “//Returns false if position points to a null
value or if position is out of bounds.”

/*@ ensures
(\result == false) ==>
(array == null ||
position <= 0 || position >=

countNotNullObjects(array))
@*/

Figure 9: Recommended Post-condition of Method valida-
teObjectArrayPosition

For method countNotNullObjects,
we suggest @ensures \result >= 0;.

About the Assigned Attributes Coverage for post-conditions,
the result is not available because no methods assign attributes.

No methods assign attributes except constructors, setters
and getters.

In general, constructors and setters tend to change the at-
tributes. Although every getter does not change the attributes,
its return value is used by other methods. To guarantee the
behavior of the class, constructors, setters and getters should
have JML descriptions.

We recommend that developers describe the JML descrip-
tion of constructors, setters and getters, as in Figure 10. For
setters, developers should write pre-conditions that mean that
the parameters equal the attributes assigned. For getters, de-
velopers should write post-conditions that means that the re-
turn value equals the attributes returned.

6.3 Syllabus Management System
The parameters of 207 methods are not held by pre-conditions;

144 of them are setters, and 63 are others. As an instance of
setters, Figure 11 shows the source code of method
setJugyouKamoku of class
JikanwariJugyouKamokuDTO.
When parameter jugyouKamoku is null,
the attribute jugyouKamoku is set to null.

public class Person {
private String name;

//@requires name != null;
//@ensures this.name == name;
public Person(String name) {

this.name = name;
}

//@requires name != null;
//@ensures this.name == name;
public void setName(String name) {

this.name = name;
}

//@ensures \result == this.name;
//@assignable nothing;
public String getName() {

return this.name;
}

}

Figure 10: Recommended Source Code with JML of Setter
and Getter

If method setJugyouKamoku is called again, the null
reference occurs at line 2. Thus, the pre-condition should
have the jugyouKamoku != null constraint for param-
eter jugyouKamoku.

1 //@ ensures this.jugyouKamoku.equals(
jugyouKamoku);

2 public void setJugyouKamoku(final JugyouKamoku
jugyouKamoku) {

3 this.jugyouKamoku = jugyouKamoku;
4 }

Figure 11: An Example for Setter of SMS

Only the following method does not have full coverage for
Return Value Coverage for post-Conditions:
service.UserServiceImpl#

boolean authenticate(java.lang.String,

java.lang.String, entity.UserKubun)

The method authenticate of class UserServiceImpl
returns true or false depending on its parameters. We
found no post-condition in its source code, but whether con-
straints are needed or just forgotten is difficult to distinguish.
Therefore, for such a method, we recommend writing explicit
contracts to single out oversights:
ensures \result == true|false;.

For Assigned Attributes Coverage for post-conditions, the
result of the following method is not held by post-conditions:
entity.Soshiki # void add(entity.Soshiki)

Figure 12 shows the source code of the method
add of class Soshiki. The post-condition in line 3 calls the
getter method getKaiSoshiki. From the source code of
the getter (Figure 13), the getter just returns the attribute
kaiShoshiki without changing it. We recommend using
ensures this.kaiSoshiki.contains(soshiki);
instead of line 3.

Calling the setter of the attribute in the methods is the same
as assigning the attribute. For example, line 5 in Figure 14 is

K. Okano et al. / New Metrics for Program Specifications Based on DbC74

1 //@ requires soshiki != null;
2 //@ ensures this.getKaiSoshiki().contains(

soshiki);
3 public void add(final Soshiki soshiki) {
4 if (getKaiSoshiki() == null) {
5 this.kaiSoshiki = new LinkedHashSet<

Soshiki>();
6 }
7 soshiki.setJouiSoshiki(this);
8 getKaiSoshiki().add(soshiki);
9 }

Figure 12: Added Source Code of Method of Class Soshiki

1 //@ ensures (this.kaiSoshiki != null) ? (this.
kaiSoshiki.size() == \result.size()) && (
\forall Soshiki s; this.kaiSoshiki.
contains(s); \result.contains(s)) : \
result == null;

2 // anotation OneToMany(cascade = CascadeType.
ALL, targetEntity = Soshiki.class,
mappedBy = "jouiSoshiki")

3 public Set<Soshiki> getKaiSoshiki() {
4 return this.kaiSoshiki;
5 }

Figure 13: Source Code of Method getKaiSoshiki of Class
Soshiki

equivalent to assigning the attribute SESSION. Assigned At-
tributes Coverage should also be extended to a target calling
the setter of the attribute.

1 public static Session currentSession() {
2 Session s = SESSION.get();
3 if (s == null) {
4 s = SESSION_FACTORY.openSession();
5 SESSION.set(s);
6 }
7 return s;
8 }

Figure 14: Example of the Unmonitored Case of Assigning
an Attribute

6.4 The cost of writing additional annotations
The case studies revealed that the proposed metrics could

contribute to detect shortage of JML annotations. However,
it may require a certain amount of effort to fix the shortage
of the annotations. We believe that the amount of annotations
is important to evaluate the safety of software systems. We
also propose our method considering the scalability. It should
be easy to calculate for real software. However, redundant
annotations should not increase the safety even though they
require a certain amount of effort to be described. Hence,
it is necessary to judge whether the shortage of annotations
detected by the proposed metrics really required to be fixed.

7 CONCLUSION

This paper proposed Variable Coverage, a set of metrics for
the exhaustiveness of specification with source code based on

Design by Contract. Our proposed coverage observes vari-
ables depending on constraints. We applied our approach to
three programs to evaluate the ability of Variable Coverage to
find variables that should have been referred in specifications
as important variables. As a result, we found a shortage of
JML annotations in the target programs, and this shows the
usefulness of our proposed metrics.

Future work includes inferring the constraints. The first
approach is suggesting constraints from the comments in the
source code. The second approach is using the modifiers of
a method; static methods should not have assignable clauses
except for static variables. This means no attributes are per-
mitted to be assigned, because static methods do not change
the internal state, (i.e., attributes). Such a modifier helps to
generate helpful assertions.

8 FUTURE WORK

In order to reduce the verification time, we proposed the
metrics that only consider the amount of annotations. How-
ever, we plan to make the proposed metrics take the quality
of annotations into account. Currently, the proposed metrics
consider only the amount of annotations. They do not con-
sider the quality of the annotations. Hence, the high values of
the proposed metrics may not be directly linked to the safety
of software systems. Therefore, it will improve the usefulness
of the proposed metrics to consider the quality of annotations.
We add these explanations in Section 8 as our future work.

ACKNOWLEDGMENTS

This work is being conducted with the support of Grants-
in-Aid for Scientific Research C(21500036) and S(25220003).

REFERENCES

[1] E.M. Clarke, and J.M. Wing, “Formal Methods: State of
the Art and Future Directions,” ACM Computing Sur-
veys, Vol.28, No.4, pp.626–643 (1996).

[2] J.R. Abrial, “Formal Methods in Industry,” Proceeding
of the 28th international conference on Software engi-
neering - ICSE ’06, pp.761–768 (2006).

[3] B. Meyer, “Applying ‘Design by Contract’,” IEEE Com-
puter, Vol.25, No.10, pp.40–51 (1992).

[4] G.T. Leavens, A.L. Baker, and C. Ruby, “JML: A Nota-
tion for Detailed Design,” Behavioral Specifications of
Businesses and Systems, pp.175–188 (1999).

[5] P. Chalin, P.R. James, and G. Karabotsos, “JML4: To-
wards an Industrial Grade IVE for Java and Next Gener-
ation Research Platform for JML,” Proceeding VSTTE
’08 Proceedings of the 2nd international conference
on Verified Software: Theories, Tools, Experiments,
eds. N. Shankar, and J. Woodcock, Vol.5295, pp.70–83
(2008).

[6] D.R. Cok, “OpenJML: JML for Java 7 by extend-
ing OpenJDK,” Proceeding NFM’11 Proceedings of the
Third international conference on NASA Formal meth-
ods, pp.472–479 (2011).

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77 7575

[7] D.R. Cok, and J.R. Kiniry, “ESC/Java2: Uniting ESC/-
Java and JML,” International Workshop on Construction
and Analysis of Safe Secure and Interoperable Smart
Devices CASSIS 2004, Vol.3362, pp.108–128 (2004).

[8] A. Sarcar, “A New Eclipse-Based JML Compiler Built
Using AST Merging,” 2010 Second World Congress on
Software Engineering, pp.287–292 (2010).

[9] M. Barnett, K.R.M. Leino, and Schulte, “The Spec#
Programming System: An Overview,” Construction and
Analysis of Safe, Secure, and Interoperable Smart De-
vices, eds. G. Barthe, L. Burdy, M. Huisman, J.L. Lanet,
and T. Muntean, Vol.3362, pp.49–69 (2005).

[10] M. Barnett, B.Y.E. Chang, R. DeLine, B. Jacobs, and
K.R.M. Leino, “Boogie: A Modular Reusable Verifier
for Object-Oriented Programs,” 4th International Sym-
posium, FMCO 2005, Vol.4111, pp.364–387 (2006).

[11] H. Chockler, O. Kupferman, and M. Vardi, “Coverage
Metrics for Formal Verification,” International Journal
on Software Tools for Technology Transfer, Vol.8, No.4-
5, pp.373–386 (2006).

[12] Dinos Moundanos, J.A. Abraham, and Y.V. Hoskote,
“Abstraction Techniques for Validation Coverage Anal-
ysis and Test Generation,” IEEE Transactions on Com-
puters, Vol.47, No.1, pp.2–14 (1998).

[13] B. Meyer, Eiffel : The Language (Prentice Hall Object-
Oriented Series), Prentice Hall (1991).

[14] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson,
J.B. Saxe, and R. Stata, “Extended Static Checking for
Java,” ACM SIGPLAN Notices, Vol.37, No.5, pp.234
(2002).

[15] KindSoftware, “ESC/Java2” .
[16] J. Kiniry, P. Chalin, C. Hurlin, B. Meyer, and J. Wood-

cock, “Integrating Static Checking and Interactive Ver-
ification: Supporting Multiple Theories and Provers in
Verification,” in VERIFIED SOFTWARE: THEORIES,
TOOLS, EXPERIMENTS, eds. B. Meyer, and J. Wood-
cock, Vol.4171 of Lecture Notes in Computer Science,
pp.153–160 (2008).

[17] E. Foundation, “Eclipse” .
[18] S. Tasiran, and K. Keutzer, “Coverage Metrics for Func-

tional Validation of Hardware Designs,” IEEE Design &
Test of Computers, Vol.18, No.4, pp.36–45 (2001).

[19] H. Foster, D. Lacey, and A. Krolnik, Assertion-Based
Design, SpringerSecond edition (2004).

[20] M. Owashi, K. Okano, and S. Kusumoto, “Design of
Warehouse Management Program in JML and Its Verifi-
cation with ESC/Java2 (in Japanese),” The Transactions
of the Institute of Electronics, Information and Com-
munication Engineers D, Vol.91, No.11, pp.2719–2720
(2008).

[21] R.M.S. Rodrigues, “JML-Based formal development of
a Java card application for managing medical appoint-
ments,” University of Madeira (2009).

[22] R.M.S. Rodrigues, “HealthCard” .

(Received December 10, 2013)
(Revised July 8, 2014)

Kozo Okano received his BE, ME, and PhD de-
grees in information and computer sciences from
Osaka University in 1990, 1992, and 1995, re-
spectively. Since 2002, he has been an associate
professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002, he was a visiting researcher at the Depart-
ment of Computer Science of the University of
Kent in Canterbury, England. In 2003, he was a
visiting lecturer at the School of Computer Sci-
ence of the University of Birmingham, England.

His current research interests include formal methods for software and infor-
mation system design. He is a member of IEEE CS, IEICE of Japan, and IPS
of Japan.

Yuko Muto received her BI and ME degrees from
Osaka University in 2010 and 2012, respectively.
She now works at Microsoft Ltd.

Yukihiro Sasaki received his BI degree from Os-
aka University in 2012. He is now a master’s course
student at Osaka University. His research interests
include automatic test case generation, especially
for the dynamic generation of assertion.

Takafumi Ohta received his BI degree from To-
hoku University in 2013. He is now a master’s
course student at Osaka University. His research
interests include bug identification using concolic
execution.

Shinji Kusumoto received his BE, ME, and DE
degrees in information and computer sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a professor at the Graduate
School of Information Science and Technology of
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

76 K. Okano et al. / New Metrics for Program Specifications Based on DbC

Kazuki Yoshioka received his BI and ME degrees
from Osaka University in 2011 and 2013, respec-
tively. He now works at Hitachi Ltd.

International Journal of Informatics Society, VOL.6, NO.2 (2014) 67-77 77

