
Development of Teaching Materials for Computer Programming using a Robot
Remotely Controlled by a PC through Wireless Communication

Toshihiro Shikama†

†Fukui University of Technology
shikama@fukui-ut.ac.jp

Abstract - We developed teaching materials for students

to increase their interest in computer programming. We
employed a robot specified by ET Robocon (Embedded
Technology Software Design Robot Contest). Although the
robot in ET Robocon is controlled by a program running in
the robot itself, a program written by a student runs on a
separate PC and also controls the robot through wireless
communication via Bluetooth. As for the programming
language that students learn, we selected Python because of
its simplicity and similarity with object-oriented
programming. A student can start programming simple
sequential control of the robot and extend it to programming
that realizes line tracing.

Keywords: Embedded Systems, ET Robocon, Python,
Teaching Materials, Line Tracing

1 INTRODUCTION

This paper reports the development of teaching materials
(sometimes shortened to “materials” in this paper) for
computer programming. When a student is learning
computer programming, the initial stage is important. The
student generally takes a long time to become familiar with
abstract programming concepts such as data types,
structures, and classes of object-oriented programming.
These concepts are separate from physical instances and
difficult to learn. If we educate students under the false
assumption that they will easily understand these abstract
concepts, the students may abandon learning because of a
loss of interest.

We participated in the ET Robocon (Embedded
Technology Software Design Robot Contest) so that
students could learn embedded systems [1]. In this contest,
students analyze and design a computer program using
UML (Unified Modeling Language) to control the robot,
which contains strictly defined hardware with no
modifications allowed. We observed that students who
participated in this contest tended to become enthusiastic
about computer programming. From this experience, we
expect that more students will show an interest in computer
programming if we incorporate the robot into the
programming education. Based on this motivation, we
developed teaching materials for computer programming
using the robot defined by ET Robocon.1

1 The work reported in the paper was supported by the Special
Research Grant-in-Aid of Fukui University of Technology.

2 OUTLINE OF ET ROBOCON AND
OBJECTIVES OF THIS WORK

2.1 ET Robocon

The objective of ET Robocon is to improve the capability
of software technology for embedded systems. This contest
uses control software targeting a two-wheel self-balancing
robot using LEGO® MINDSTORMS NXT [2]. Figure 1
shows the appearance of the robot and its components. The
robot consists of an ultrasonic sensor, a gyro sensor, a light
sensor, and three motors for the right wheel, left wheel, and
tail. It is equipped with a 32-bit ARM7 microprocessor.
Students develop control programs that enable the robot to
autonomously trace a line around a specified course. Figure
2 shows a photo of the ET Robocon 2011 course.

Figure 1: The robot and its components

Figure 2: ET Robocon 2011 course

International Journal of Informatics Society, VOL.6, NO.1 (2014) 29-36 29

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

The robot runs along the black lines drawn over white
areas, which are surrounded by green “ground”. Students are
required to develop a control program that makes the robot
run along the black line at high speed. All teams in the
contest use the same robot, which has a limited number of
sensors (an ultrasonic sensor, a gyro sensor, and a light
sensor). The ET Robocon consists of two parts: modeling
and a time trial. The modeling part is a competition of the
UML modeling skill used in developing the program, and
the time trial part is a run-time competition of the robot. The
total score is determined from the results of the two parts.

2.2 Objectives of this work

The intention of this work is to develop teaching materials
for computer programming and to promote the enjoyment of
computer programming for beginner students. We are
aiming at the following goals:

1) The control of the robot is realized by a simple
program (i.e., a small number of program steps).

2) A student can start programming without
understanding abstract programming concepts.

3) The basics of programming skills, such as
conditional branches, loops, functions, etc., can be
studied through the developed materials.

4) The materials can be applied to the education of
object-oriented programming and multi-thread
programming.

3 THE BASIC ARCHITECTURE

3.1 Outline of the materials

In ET Robocon, a control program is written in the C or
C++ language and the program is compiled to produce a
binary file which is loaded into the robot through a USB
interface. After the program is invoked, the robot is
autonomously controlled by the program. Although this
scheme can enable accurate and efficient control of the robot,
debugging is limited since the robot has only a small display
to show internal information and status. Another problem is
the time and work required for students; each time a
program is modified, the students must compile, link, and
download the binary file through the USB interface. After
considering these drawbacks, we apply the following
scheme for a program running on a PC to control the robot.

1) A fixed control program is pre-loaded into the robot.
This program executes basic commands from the PC.
Students do not modify the program in the robot.

2) The basic commands are sent from the PC through
wireless communication via Bluetooth.

3) Control of the robot is achieved by the program
running in the PC. This program describes
combinations of basic commands.

4) As the programming language, Python [3] is selected
for the program in the PC.

3.2 Adoption of Python

As mentioned above, we adopted Python as the
programming language for students to learn. Python is an
object-oriented scripting language and has the following
features:
 Since a program can be executed without compiling,

a student can modify his program easily and test it
quickly.

 Python is well defined and easy for beginners to
learn.

 Python is used globally.
 A student can learn object-oriented programming

easily by Python.
 Python is available at no cost and is supported by

multiple platforms, including Windows and Linux.
 Because indents are mandatory in Python, a program

can generally be read easily. In addition, differences
in the programming style between students are small.

Adoption of Python has the following drawbacks:
 Python has a compatibility problem between

versions 2 and 3.
 Performance of the program is slow because it is a

scripting language.
 Indentation is employed for identifying program

blocks; this programming style is different from
other languages, such as C and C++.

For compatibility between Python versions, we use

version 2. Our focus is on the educational aspect, and so we
do not seek to realize high running speed of the robot.
Concerning the indentation used in Python, we think that
this is not a serious problem for students, who will study the
C or C++ programming language after learning Python.

3.3 Configuration of the materials

Figure 3 shows the total configuration of the developed
materials. The robot and the PC are connected through
wireless communication via Bluetooth. The program
running in the PC controls the robot remotely.

The Python program running in the PC sends a command
through wireless communication; the robot moves forward
or makes a left or a right turn by following the program
commands. The running speed of the robot is also controlled
by the program.

A fixed program running on the ARM 7 microprocessor
inside the robot controls the movement of the robot; students
do not modify this program, which is developed in the C++
language and runs on the Real-Time Operating System
nxtOSEK [4]. This program performs the following
functions:
 Controls the posture of the robot
 Receives commands through Bluetooth and

interprets them
 Executes commands from the PC
 Sends log data to the PC every 40 ms

The Python module, which was developed for this setup,

calculates data to get information about the robot, including

30
T. Shikama et al. / Development of Teaching Materials for Computer Programming using a Robot

Remotely Controlled by a PC through Wireless Communication

the X- and Y-coordinates of the robot, the angle of the robot,
and the total running distance from the start point.

Robot

Command

Log data

CSV file EXCEL

Python
Program

Wireless communication
by Bluetooth

PC (Windows)

X coordinate

Y coordinate

Robot angle

Distance

Robot
data

Student

Light sensor

Right wheel angle

Lift wheel angle

Ultrasonic sensor

Conversion by
PHP Program

Scratch
Program

Figure 3: Configuration of the developed materials

When students write programs, they can use variables
concerning these data by importing the Python module. The
module also provides a log file, including all log data, in the
CSV format. Using EXCEL, students can analyze the log
file to obtain, for example, a trace of the robot.

Table 1 summarizes the basic functions and commands
that students can use in their Python programs. For
simplification, the specification commands are limited to
one character, whereas extended commands consisting of
multiple characters are also provided for future use.

The variable “bt” is the object to control the robot. At the
head of a program, the object is generated from the defined
class “nxt_bluetooth” as follows:

from nxt_bluetooth import nxt_bt
bt = nxt_bt("00:16:53:0c:82:39", 0).

The first line imports the class “nxt_bt” from the module

“nxt_bluetooth”. This mandatory class was developed for
the materials used. The second line generates the object “bt”,
where the parameter "00:16:53:0c:82:39" is an example of
the MAC address of the robot. Bluetooth employs a 48-bit
MAC address, which is the same as that of LANs. As the
“nxt_bt” class hides the Bluetooth communications and
updates of the robot variables from students, the students
can develop their programs without knowing the internal
details.

Table 1: Basic functions and commands
Function Command Meaning

bt.send (character)

“f” Move forward
“r” Make a right turn
“l” Make a left turn
“b” Move backward

“0”–“9” Set speed
bt.swait (seconds) - Wait specified

seconds

Table 2 summarizes the variables of the robot status and
sensors. The values of these variables are updated every 40
ms, and so students can use these variables to control the
robot. For example, students can quantitatively control the
robot, such as moving it forward 500 mm or making a 90-
degree left turn.

Table 2: Variables of robot status and sensors

Variable Meaning
bt.x X-coordinate of the robot
bt.y Y-coordinate of the robot
bt.angle Angle of the robot
bt.distance Total running distance from the start point
bt.diff_light Value of the light sensor

4 INTERNAL REALIZATION SCHEME
OF THE MODULE

Students import the module “nxt_bluetooth” at the head of
their program. The class “nxt_bt”, which has been
developed in the materials, is included in this module. This
class has the functions of communication via Bluetooth,
processing log data, and synchronization between the robot
and the program running in the PC. As the details are hidden,
students have to be aware of only the MAC address of the
robot.

When we consider the implementation of the Python class,
it is natural to use two separate threads for sending and
receiving functions. However, to simplify the
implementation, we realize the functions by a single thread,
since the robot sends log data every 40 ms. We can
eliminate the complexity of the multi-threading and extend
the materials to realize the control of multiple robots simply
by multi-threading.

Inside the nxt_bt class, sending and receiving functions via
Bluetooth are realized by importing the Bluetooth module.
This module is provided by python-bluez [5], which is a
wrapper function that enables Python to use BlueZ [6]. The
robot employs the virtual serial port communication by the
serial port profile (SPP) of Bluetooth. BlueZ supports this
profile. Although python-bluez is for Linux, PyBluez is also
available for the Windows environment. This means that the
materials can be used on both platforms, if Python is
installed.

Each communication via Bluetooth is initiated by
generating a socket with the required parameters and
connecting it as follows, where “bt_addr” holds the
character string of the MAC address.

self.etrobo_address = bt_addr

 self.port = 1
 self.sock = BluetoothSocket(RFCOMM)
 try:
 self.sock.connect((self.etrobo_address, self.port))
 except IOError:
 print "Robot is not invoked."
 sys.exit()
 print "connected address = ", self.etrobo_address

After the socket has been connected, the program enters a
wait state, if it calls the receive() function. As we mentioned
before, since a single thread performs both sending and
receiving, the program has to call the receive() function to
enter the receive wait state after its process has completed.
This is actually done by calling the wait() or swait()
functions. The wait() function specifies a number of 40 ms

International Journal of Informatics Society, VOL.6, NO.1 (2014) 29-36 31

units as the wait duration, while the swait() function
specifies the wait time in seconds.

 def wait(self, n):
 self.i = 0
 while self.i < n:
 self.receive()
 self.i = self.i + 1

 def swait(self, time):
 self.n = time // 0.04
 self.wait(self.n)

In the wait() function, the program waits for the receiving

data by the self.receive() function. Since the robot sends log
data periodically, completion of the receive occurs within 40
ms. The initial part of the receive() function executes the
following code.

 def receive(self):
 self.starttime = time.time()
 self.data = self.sock.recv(34)
 if len(self.data) != 34:
 print "receive byte length =", len(self.data)
 sys.exit()
 self.udata = unpack('<2BI2bH3i4hi', self.data)

The second line records the receive time of the log data,

and then the third line extracts the received data. As the
length of the log data is fixed in units of 34 bytes, the log
data is divided into pre-defined formats and stored, if the
data length is normal (unpack process). The unpacked data
is used to calculate X- and Y-coordinates and the angle of
the robot. These calculated values are stored in the Python
variables, which students can use in their programs.

As mentioned above, one of the features of the materials
described in this paper is that the module and programs,
including the one used inside the robot, are completely open
(i.e., white box). We are able to customize the robot itself
and the Python module for future requests from students as
well as teachers.

5 EXAMPLES OF PROGRAMS USING
THE DEVELOPED MATERIALS

To explain the use of the developed materials, it is
appropriate to show some program samples. We will show
examples of a simple sequence control, usage of loops,
usage of functions, and a simple line trace in the following.

5.1 Example 1

The program shown in Fig.4 is a basic program that
controls the robot sequentially. After the program is invoked,
the robot moves forward for 2 seconds, turns right for 2
seconds, moves forward for 2 seconds, turns left for 2
seconds, and then stops. Each time a command is sent, the
next command is issued after the time specified by the
“swait()” function. Since the program is written in Python,
the program file has the extension “py”. If the name of the

program is “sample1.py”, the program is invoked by typing
the following command in a terminal window.

python sample1.py

5.2 Example 2

The program shown in Fig.5 uses a “while” loop to check
the value of a variable repeatedly. The execution leaves the
loop if the variable takes a specific value. Here, the robot
moves forward 500 mm (50 cm), then it makes a 180-degree
left turn. After this it moves 50 cm forward again and then
stops. By using the variable “bt.distance” that indicates the
total distance from the start point and the “while” loop, the
program can control the moving distance quantitatively.
When the robot makes a turn, the angle of the robot can also
be controlled in the same manner.

5.3 Example 3

The program shown in Fig.6 defines functions concerning
an advance and a left turn. Each function takes a parameter:

from nxt_bluetooth import nxt_bt
bt = nxt_bt("00:16:53:0c:48:1e", 0)

print "START"
bt.send("f")
bt.send("3")
while bt.distance < 500:
 bt.swait(0.04)
bt.send("l")
while bt.angle < 180:
 bt.swait(0.04)
bt.send("f")
target_dist = bt.distance + 500
while bt.distance < target_dist:
 bt.swait(0.04)
bt.send("0")
print "END"
 Figure 5: Example 2—while loops

from nxt_bluetooth import nxt_bt
bt = nxt_bt("00:16:53:0c:48:1e", 0)

print "START"
bt.send("3")
bt.send("f")
bt.swait(2)
bt.send("r")
bt.swait(2)
bt.send("f")
bt.swait(2)
bt.send("l")
bt.swait(2)
bt.send("0")
print "END"

Figure 4: Example 1—sequential control

32
T. Shikama et al. / Development of Teaching Materials for Computer Programming using a Robot

Remotely Controlled by a PC through Wireless Communication

a distance or an angle. This program makes the robot move
forward 300 mm, make a 180-degree left turn, and then
move forward 300 mm. The program repeats these actions
four times by using the “for” loop.

5.4 Value of the light sensor

Figure 7 shows changes in the light sensor value as the
robot moves over the course illustrated in Fig.8. In this case,
the robot crosses the black line on the course several times
to measure the characteristics of its light sensor. The sharp
dips observed in Fig.7 occur when the robot crosses the
black line. While the robot moves over the white part of the
course, the sensor value is approximately 900. When it
crosses the black line, the sensor value decreases below 400.
Students confirm the characteristics of the light sensor by
themselves. Based on these results, black and while colors
can be identified by using some threshold value, for
example, 700.

Figure 7: Change of the light sensor value, where

horizontal axis is time

If the value of the light sensor is larger than 700, it seems
that the robot is running over the white part; otherwise, the
robot is running on the black line. Students can know that
the robot movement is tracing the black line by using this
threshold value.

Figure 8: Course for line tracing

5.5 Example 4

Making use of the characteristic of the light sensor and the
threshold value, the student can realize line tracing by the
robot.
Figure 9 shows the simple program that realizes the line

tracing. The variable “target” holds the threshold value. In
the infinite “while”, the variable “diff_light” holds the value
of the light sensor. If the value of the light sensor is less than
the threshold value, the robot makes a right turn; otherwise
it makes a left turn. The program repeats this process
endlessly every 40 ms. This simple program is able to make
the robot move along the black line. Students can learn
conditional branching through this example.

Figure 9: Example 4—Line tracing by simple control

5.6 The log file

Each time a program is executed, a log file is produced.
This file includes a record concerning the details of the
robot every 40 ms. Table 3 summarizes the items included
in each record of the file. The log data is recorded in CVS
format. Figure 10 shows an example of the log file opened
in EXCEL. Students can analyze the log file and obtain a

from nxt_bluetooth import nxt_bt
bt = nxt_bt("00:16:53:0c:48:1e", 0)

def forward(distance):
 t_distance = bt.distance + distance
 bt.send("f")
 while bt.distance < t_distance:
 bt.swait(0.04)

def left_turn(angle):
 t_angle = bt.angle + angle
 bt.send("l")
 while bt.angle < t_angle:
 bt.swait(0.04)

print "START"
bt.send("3")
bt.swait(0.04)
for var in range(0, 4):
 forward(300)
 left_turn(180)

bt.send("0")
print "END"

Figure 6: Example 3—“for” loop

from nxt_bluetooth import nxt_bt
bt = nxt_bt("00:16:53:0c:48:1e", 0)

print "START"
target = 700
bt.send("2")
bt.send("f")
while True:
 print bt.diff_light
 if bt.diff_light < target:
 bt.send("r")
 else:
 bt.send("l")
 bt.wait(0.04)

bt.send("0")

International Journal of Informatics Society, VOL.6, NO.1 (2014) 29-36 33

trace of the robot by using some mathematical calculations.
Figure 11 shows an example of a trace of the robot obtained
from calculations. The trace is almost the same as the course
depicted in Fig.8. We can observe zigzag lines in the trace,
which is the effect of the simple “ON and OFF” control by
the program listed in Fig.9.

Table 3: Items recorded in the log file

Item Meaning
Time Elapsed time (ms)
Dt1 PWM value for right motor
Dt2 PWM value for left motor
Batt Voltage of battery
Mtr1 Rotate angle of tail motor
Mtr2 Rotate angle of right wheel motor
Mtr3 Rotate angle of left wheel motor
ADC s1 Gyro sensor value
ADC s2 Ultrasonic sensor value
ADC s3 Light sensor value
ADC s4 Touch sensor value
I2c Distance measured by the ultrasonic sensor

6 EXTENSION OF THE PROGRAM FOR
CONTROLLING MULTIPLE ROBOTS

The examples explained above concern basic programs
that control a single robot. The materials can be applied to
the advanced case where multiple robots are controlled by
threads. Figure 12 shows the configuration of this case,

where two robots are controlled by a single program. A
program developed by a student generates two threads for
two robots. Each thread executes the same program and
controls one of the two robots. Figure 13 shows the sample
program for this.

Robot 1

Thread 2

X coodinate
Y coodinate

Angle
Disatnce

Light sensor

Right wheel
Left wheel

Ultrasonic sensor

Thread 1

Robot 2
Main program

Command

Log data

Bluetooth

Command

Log data
Bluetooth

Python
Program

Student

PC (Windows)

CSV file 1 CSV file 2

The part of the program surrounded by the dashed line is

the definition of the class that defines the movement of the
robots. Two threads are generated from the same class in the
main part; the movement of the two robots is the same in
this case. Advanced students can learn thread mechanisms
through this example.

import threading # thread model
import time
from nxt_bluetooth import nxt_bt

class test(threading.Thread):
 def __init__(self, s):
 threading.Thread.__init__(self)
 self.setDaemon(True)
 self.bt = nxt_bt(s, 0)

 def run(self):
 self.bt.start()
 self.bt.send("3")
 self.bt.send("f")
 self.bt.swait(5)
 self.bt.send("r")
 self.bt.swait(5)
 self.bt.send("0")

if __name__ == "__main__":
 t1 = test(""00:16:53:0c:48:1e")
 t2 = test("00:16:53:0c:82:39")

print "Hit enter key, if you are ready."
 raw_input()
 t1.start()
 t2.start()
 time.sleep(20)

Figure 12: Configuration of the developed materials
for controlling two robots

Figure 13: Program controlling two robots

Figure 10: Example of a log file opened in EXCEL

Figure 11: Example of a trace of the robot

34
T. Shikama et al. / Development of Teaching Materials for Computer Programming using a Robot

Remotely Controlled by a PC through Wireless Communication

7 APPLICATION OF THE MATERIALS
TO AN ACTUAL CLASS

We applied part of the materials to sessions of an actual
experimental class in the first semester of this year. We
conducted 9 sessions. The total number of students who
participated in the sessions was 45. Approximately half of
the students had no experience in programming. The
duration of each session was 3 hours and the number of
students for one session was at most 7. We explained the
material for the first 40 minutes. Two robots were employed
to execute the programs. Then students were asked to write
four simple programs, including one for line tracing.
Although some students had difficulty in understanding
Python, 87% of the students indicated a positive impression
of the session and expressed their satisfaction when the
robot moved correctly. Although students with no
programming experience had strong concerns about Python
programming, after the session, most of them stated that it
was easier than they had thought it would be.

Table 4 shows the summary of their impressions of the

materials. Students of Group A had not taken a class in the
C programming language as university students, whereas
Group B students had, although some students in Group A
had learned the C programming language in high school.
Students also pointed out aspects of the materials that could
be improved.

Table 4: Summary of impressions by students

Impression Excellent Good No comment
Group A 28 1 4
Group B 17 0 1

We also demonstrated the materials and explained a

simple program to high school students. A large number of
these students found the materials highly interesting.

Through the experience of the actual class, we could
identify advantages of the developed materials, summarized
as follows:
 The materials could attract more attention from students

who had no programming experience.
 As students could edit and execute a Python script

directly, program errors were modified quickly. Most of
the students could complete the given exercises within
the prescribed class hour.

 Students were strongly impressed when the robot
performed as they intended.

 Students were also surprised when they got a trace of
the robot from the log file.

However, we found drawbacks of the materials from the
experience:
 Much effort was needed for preparing and guiding a

session.
 Support by teaching assistants was needed for every

three or four students to help when they encounter
programming problems.

 The difficulty level of programs that students have to
develop should be reconsidered. Natural steps from
simple to advanced are required.

 We have to improve the assignments before the session
to shorten the time needed to explain the materials.

 The number of robots is too small in the case of 7
students.

 Because the quality of components in the robot varied,
the robot could not go straight accurately after it
received the forward command. Compensation for the
error caused this variation in the components is needed.

8 RELATED WORK

Application of robots to education has been prevailing.
Target of students are widely spread from elementary and
high school students to university students [8][9]. There is
also a report on a class using a robot for teacher training
[10]. In many cases robots are used for the education of
embedded systems including programming [11]-[13].
Robots are also used for object-oriented programming
education [14]. Robot contests targeting education have also
been widely held [15][16].

In all of the above related work, programming is done for
a micro-controller located in a robot itself, while, in our
materials of this paper, programming is done for a PC that
remotely controls a robot through wireless communication.
This remote control architecture realizes easy debugging of
a program and quick modification of program errors.

There is NXT Python which provides a Python driver and
interface for LEGO Mindstorms NXT, where a NXT robot
is remotely controlled by Python programming [17].
Although the control architecture is similar to our materials,
there is no report concerning application of NXT Python to
programming education. In this NXT Python, the default
control program pre-installed in NXT is used and cannot be
customized, while, in our materials, both the control
program in NXT itself and the Python module in the PC are
all developed by ourselves. This means the all functions in
our materials are in a while box state easy to modify to cope
with the future demand.

Another feature of our materials as compared with the
related work is that we intended to cover introductory
programming as well as object-oriented programming
seamlessly. There is no existing work aiming at this aspect.

Most of the related work employs LEGO Mindstorm® for
the target robot. Several products target the education of
programming by using the robot of LEGO Mindstorms NXT
[1]. The typical product is NI LabVIEW for LEGO
MINDSTORMS software [18], which makes it possible for
students to develop programs by combining predefined
blocks graphically. The difference between our materials
and this product is that our materials control the robot
remotely by the scripting language Python. Students can
learn programming through widely used high-level
programming language. As a result, they become
accustomed to the conventional programming paradigm.

9 CONCLUDING REMARKS

In this paper we reported the development of teaching
materials for computer programming. Our objective is to
give beginner students the satisfaction of creating programs
that control a robot. Students can implement line tracing by

International Journal of Informatics Society, VOL.6, NO.1 (2014) 29-36 35

a simple program consisting of a small number of program
steps.

One of the features of the teaching materials is that the
module and programs are in a white box state. We are able
to flexibly customize the robot itself and the Python module
for future requests. Since the characteristics of the students
vary depending on the number of students, their interests,
their scholastic ability, and characteristics of the university
or college, the capability of customizing the materials is
considered to be important. We will improve the teaching
materials based on the experiences of this semester and
extend them for teaching the basics of object-oriented
programming.

We are planning to extend the materials by integrating
them with the programming language SCRATCH [7], which
is intended for students in elementary or junior high school.
The boxes surrounded by the dashed lines in Fig.3 show
this extension. We will report on this development in the
future.

REFERENCES

[1] ET Robot Contest, available from
http://www.etrobo.jp/2013/, accessed 2014-04-09.

[2] LEGO Mindstorms education, available from
http://www.afrel.co.jp/mindstorms/nxt/, accessed
2014-04-09.

[3] Python, available from http://www.python.org/,
accessed 201404-09.

[4] nxtOSEK/JSP, available from http://lejos-
osek.sourceforge.net/index.htm, accessed 2014-04-09.

[5] pybluez, available from
http://code.google.com/p/pybluez/, accessed 2014-
04-09.

[6] BlueZ, available from http://www.bluez.org/,
accessed 2014-04-09.

[7] SCRATCH, available from http://scratch.mit.edu/,
accessed 2014-04-09.

[8] S. Kato, and H. Tominaga, ``Applied Programming
Exercises for Problem Solving Learning with LEGO
Robot Control - Teaching Materials and Exercise
Problems for Basic Control Practice by ROBOTC -,’’
IPSJ SIG Technical Report, 2011-CE-108, No.3,
pp.1-10 (2011).

[9] T. Takahashi, and H. Tominaga, ``Game Projects and
Simulation Materials of LEGO Robot Control in
Introductory Programming Exercises for High School
Students,’’ Proc. of EC2013, pp.301-304 (2013).

[10] T. Kamada, ``A Report on Measurement and Control
Class Using a Robot for Teacher Training Course
Students,’’ IPSJ SIG Technical Report, 2009-CE-99,
No.11, pp.1-6 (2009).

[11] E. Hayakawa, T. Takahashi, and K. Aoshima,
``Experiment on Embedded System Education using
Robot in Computer Science Course,’’ IPSJ SIG
Technical Report, 2009-CE-98, No.15, pp.127-134
(2009).

[12] H. Nishigaya, H. Aoki, S. Inoue, K. Eguchi, and S.
Kurebayashi, ``Lessons of Learning Measurement
and Control with an Autonomous 3 Motor Control

Robot,’’ IPSJ SIG Technical Report, 2009-CE-98,
No.15, pp.113-120 (2009).

[13] Y. Nishino, and E. Hayakawa, ``A Note on Robot
Based Embedded System Study Environment in
Technical High School,’’ IPSJ Journal, Vol.51,
No.12, pp.2261-2272 (2010).

[14] N. Chubachi, and K. Ito, ``A Trial of Experimental
Task using LEGO® in Object Oriented Programming
Education,’’ IPSJ SIG Technical Report, 2014-CE-
124, No.8, pp.1-6 (2014).

[15] H. Yamashita, ``A Robot Contest for Children and
Comprehensive Science Education,’’ IPSJ Magazine,
Vol.48, No.5, pp.502-511 (2007).

[16] K. Hisazumi et al., ``A Distributed Project Based
Learning Curriculum to Design Embedded Systems
using Contest Challenge,’’ IPSJ SIG Technical
Report, 2014-EMB-32, No.34, pp.1-6 (2014).

[17] NXT_Python, available from
http://home.comcast.net/~dplau/nxt_python/,
accessed 2014-04-09.

[18] NI LabVIEW for LEGO® MINDSTORMS®,
available from
http://www.ni.com/academic/mindstorms/, accessed
2014-04-09.

(Received December 9, 2013)
(Revised April 10, 2014)

Toshihiro Shikama received his
B.E and M.E. degrees from Tokyo
Institute of Technology in 1974
and 1976, respectively. From 1984
to 1985, he stayed at University of
Waterloo. He received his Ph.D.
degree from Shizuoka University
in 2006. He joined Mitsubishi
Electric Corp. in 1976 and had

engaged in developing a computer network using a
satellite channel, high speed ring type LANs, time
division multiplexers, ATM equipment, a high speed IP
switch, and network security systems. Since April of
2007, he has been a professor of Department of
Electrical, Electronic and Computer Engineering, Fukui
University of Technology. He is a member of IPSJ,
IEICE, and IEEE Communications Society.

36
T. Shikama et al. / Development of Teaching Materials for Computer Programming using a Robot

Remotely Controlled by a PC through Wireless Communication

