
Application of a Lump-sum Update Method to Distributed Database

Tsukasa Kudo†, Yui Takeda‡, Masahiko Ishino*, Kenji Saotome**, and Nobuhiro Kataoka***

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
‡Mitsubishi Electric Information Systems Corporation, Japan

* Department of Management Information Science, Fukui University of Technology, Japan
** Hosei Business School of Innovation Management, Japan

*** Interprise Laboratory, Japan
kudo@cs.sist.ac.jp

Abstract - At the present time, with spread of the internet
business, many business systems have become to be built as
distributed systems. Accordingly, the database is also dis-
persed to plural business systems as the distributed database.
By the way, in the actual business systems, a lump-sum up-
date of a great deal of data has often to be performed con-
currently with the online transactions. However, in this case,
there is a problem of efficiency in the conventional update
methods, which update databases by the chain of many di-
vided transactions. For this problem, we have shown the ef-
ficient lump-sum update method for centralized business sys-
tems, which use the transaction time. However, as shown by
the distributed transactions, some transaction features for the
distributed database are different from the centralized database.
Therefore, in this paper, first we show the problems on apply-
ing this method to the distributed databases. Secondly, we
propose their measures. Moreover, through the evaluations
using a prototype, we confirmed that our measures are valid
and this method can be applied to the distributed databases.

Keywords: database, distributed database, distributed trans-
action, business system, nonstop service.

1 INTRODUCTION

With spread of the internet business and decentralized tech-
nology, many business systems have become to be built as
distributed systems at the present time. That is, each system
performs its business by mutual cooperation with other sys-
tems [7], [11]. For example, in corporations, business systems
are built at each branch office, and the business of this office is
performed using its system. On the other hand, each business
system is operated as a part of the distributed system, since
each system accesses the data of the other systems when it
is necessary. In this way, the distributed business system as
the whole corporation is composed. And, it is possible to re-
duce the communication cost and perform the suitable system
operation for the each office. On the one hand, as for the on-
line services on a wide range of Internet such as net shops,
non-stop services have become common because of the con-
venience of customers, the globalization and so on. So, it is
difficult to stop the online service for the particular business.

However, in such a business system, a great deal of data
often has to be updated in a lump-sum. So, formerly, it was
executed as a night batch to avoid the time zone of the online
service. However, because of the spread of nonstop service,

it has to be executed concurrently with the online service at
present. Therefore, some methods were put to practical use
to execute it concurrently with the user entry of online ser-
vice (hereinafter “online entry”). Here, these conventional
methods divide the updating of a great deal of data into short
time transactions, and then execute and commit them one af-
ter another. Therefore, though its impact on the online entry
is small, there are problems: the intermediate results of the
updating can be queried by the other transactions, that is, the
isolation cannot be maintained; its processing efficiency de-
clines because of the increase of its commit number.

For these problems, we had proposed an updating method
that utilizes the records about the transaction time[2]. More-
over, we had shown the following evaluation result as for the
updating of a great deal of data in the centralized systems:
it executes the update more efficiently than the conventional
method with maintaining the ACID property[3]. Since the
transaction time is a kind of time of the temporal database,
hereinafter we call it “temporal update” method. However, in
order to apply this method to a distributed database, it is nec-
essary to measure against not only the distributed transaction
but also the various problems of the distributed environment.

Here, the temporal update has the characteristic of its pro-
cess as follows: the completion time of updating is set before-
hand; as for the commit of this method, its execution control
has to be performed for the serialization between the online
entries. However, there are problems: the dispersion in the
update time is often increased by the efficiency of the net-
work and cooperative business system environments; the syn-
chronization between plural servers often causes the decline
of efficiency. Therefore, in this paper, we propose a method
for applying the temporal update method to the distributed
databases. Moreover, we show the following experimental
results of the prototype: the problems can be solved by the
proposal method; since the implementation of the destination
server of data transfer is easy, this method is valid for a data
distribution system having many destination servers.

The remainder of this paper is organized as follows. Sec-
tion 2 shows the related works about the update transaction;
an overview of the temporal update method; the problem about
applying it to the distributed databases. In Section 3, we pro-
pose the method for this problem, and show its implemen-
tation in Section 4. In Section 5, we show the experimental
results of the prototype, and show our considerations in Sec-
tion 6.

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 11

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

2 PROBLEM OF DATABASE UPDATE IN A
LUMP-SUM

2.1 Related works

As for the update of the database, it is necessary that the
transaction maintains the ACID properties: atomicity, consis-
tency, isolation, and durability[1]. Here, since a lot of users
use the online entry concurrently, a lot of corresponding trans-
actions access the database concurrently. Therefore, database
updates are serialized by locking the data to be updated by
each transaction, and we can obtain a result as if transac-
tions were executed sequentially. On the other hand, in the
actual business systems, it is necessary to update a great deal
of data in a lump-sum. For example, in the banking systems,
the ATM is provided as the online service, and a lot of users
perform online entry at the same time. On the other hand, a
great deal of account transfer that is entrusted from the credit
card company and so on is executed as the lump-sum update.

Since the update time of such a lump-sum is often so long,
there is the problem that it can’t lock the whole target data
to serialize between the online entries. It makes the online
entries wait for a long while. So, some methods were put
to practical use to execute it concurrently with the online en-
tries. In the mini-batch, a great deal of data is divided into
small units, and they are updated and committed individually
to shorten each update time. That is, the lump-sum update is
performed by a set of short transactions. Also, in sagas, they
compose a sequence of transactions and are performed one
after another. It has a configuration to recover by executing
the compensating transaction corresponding to each transac-
tion in the case of fault [1], [10]. But, in these methods, the
update and commit are repeated alternately many times. And,
it makes the problems: the intermediate results of the updat-
ing can be queried by the other transactions; the efficiency
declines because of the increase of commit number.

Here, in the distributed databases, the transaction needs
not only the update and commit feature as for the individual
database but also the feature for simultaneous update of mul-
tiple databases. So, the distributed transaction feature was put
to practical use, in which the concurrency control across mul-
tiple databases is performed by two-phase commit and so on
[6]. In this way, as for the distributed database, the differ-
ent transaction feature from the centralized database has to be
introduced.

By the way, the temporal database was proposed from the
viewpoint of the record management about the time [8]. The
transaction time is one of the times of this database: the time
that a fact is valid in the database, which is expressed by the
half-open interval[Ta, Td). Here,Ta shows the addition time
that the data of the fact was added to the database;Td shows
the deletion time that it was deleted from the database. Even
in the case of data deletion, data is deleted only logically by
setting the deletion time, so the data record is left. Inciden-
tally, if the data wasn’t deleted, the value of attributeTd is
expressed bynow [9]. It shows the current time and changes
with passage of time. The relationRt of the table having the
transaction time is expressed below.

Before online entry

Online entry

Figure1: Change of data by temporal update method.

Rt(K,Ta, Td, A) (1)

Here,Ta andTd are the above-mentioned transaction time.
Let q[Ta] be the value of attributeTa of tupleq. Then the data
set of the snapshot ofRt at the designated timet is expressed
by the followingQ(t).

Q(t) = {q|q ∈ Rt; q[Ta] ≤ t ∧ t < q[Td]} (2)

Here,K is the primary key attribute of the snapshot;A is
the other attribute. The transaction time is not exposed to the
users. Since the update of the online entry is performed at the
current timet = now, the data of Equation (2) at any past
time can be queried without the conflict with the online entry.

For a data update method, we can use the optimistic con-
currency control [4] by utilizing the transaction time. The
lump-sum updates are often performed by the following pro-
cedure: reading the target data; generating the update data
from it; updating the database. In this method, the transaction
confirms the transaction time of the target data again at the
update timing. And, if it was not changed from the read tim-
ing, it shows the data was not updated by another transaction.
However, the transaction needs to lock the data between this
confirmation and the commit.

For another update method which utilizing a time, there is
the timestamp-ordering concurrency control. It uses the time
stamps (start time) of transactions{T1, T2, ..., Tn}, which com-
pose the ordered set. The time stamp is stored in data when
a transaction accesses the data, and the order of transactions
that access to each data is maintained by it [4]. However,
when one transaction is updating a data, the other transactions
that update the same data have to wait until the commit.

Thus, these methods intend for short time transactions. For
example, since the lump-sum update takes a long while, the
other transactions are also waited for a long while. That is,
it disturbs the non-stop services. Moreover, we can’t find the
lump-sum update method for a great deal of data with main-
taining the ACID property.

2.2 Temporal Update Method

As for the centralized database, we proposed the tempo-
ral update method that utilizes the transaction time to up-
date a great deal of data in a lump-sum with maintaining the
ACID property of the transaction [2]. Figure 1 shows the data
change with the transaction time in the case of the database

12 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

Figure 2:Serialization of batch update and online entry.

update by this method. In this method, the lump-sum update
is executed by both the batch update (1) and OB update (the
online batch update) (3). Here, the batch update (1) corre-
sponds to the usual lump-sum update. It updates the data at
the past timetq, and stores the update results at the future time
tu that was “beforehand” established. Incidentally, though the
online entry (2) is executed even during the batch update (1),
it updates the data at the current timenow. So, the competi-
tion between (1) and (2) can be avoided. On the other hand,
since the batch update also has to update the data changed by
the online entry, the OB update performs the process corre-
sponding to it individually.

As a result, at time tu, three kinds of results are stored: the
batch update, the online entry and the OB update. Therefore,
we query only the high-priority data by the following order of
priority, and we can get the query result as if the batch update
and online entry were performed in a series.

(A) First, for each value of the primary key K of Equation
(1), we select the data that was updated at the latest time.
Here, we usetq to the updated time as for only the batch
update.

(B) Second, if there are plural data having the same key value,
we select the data by the following priority of update pro-
cess: the OB update, the online entry, the batch update.

In the case of Fig. 1, since both results of the OB update
and online entry were updated at the latest time, the OB up-
date result is queried based on above-mentioned (B). Also, if
there is no online entry as for the case of Fig. 1, there are the
online entry data entered beforetq (“Before online entry” in
the Figure) , and the result of the batch update. So, the batch
update result is queried based on above-mentioned (A). That
is, in this method, all the updated data are stored, and only the
valid data is queried. As a result, we can perform the lump-
sum update and the online entry concurrently, without their
competition.

However, at the end of a batch update, the control for the
serialization between it and the online entry is necessary. That
is, the online entry, which is begun before timetu, is accom-
panied by the OB update to reflect the batch update. On the
other hand, another one begun aftertu has to be performed
using the result of the batch update. We show this in Fig. 2.
Therefore, in this method, the commit of the batch update is
executed after the online entries (Sb) that are begun before
time tu; the other online entries (Sa), which are begun after
tu, are waited until this commit.

2.3 Problem about Application to Distributed
Database

As for the temporal update method, we had been assuming
the centralized database and the controlled operation. That is,
as mentioned in Section 2.2, we assumed that the batch update
time tu can be established beforehand; the individual online
entry completes in a short time. In the actual systems, the for-
mer feature is often used in the lump-sum update executing at
the designated time: the bank transfer at the designated time;
the change of organization data at the designated date; and so
on. However, as for the case where we apply this method to
the distributed database, it has to be executed in the various
environments. So, the following problems occur.

First, the dispersion of the batch update time is very larger
than the centralized database. Though the batch update up-
dates plural databases at the same time, the individual envi-
ronment in this distributed system is varied: the traffic on the
network; the load and performance of each server. So, the
prediction of the timetu is extremely difficult. Therefore,
in the case that the prediction time is earlier than the actual
elapsed time, the batch update doesn’t complete bytu. So,
it is aborted, and it has to be re-run. On the contrary, if it is
later, the unnecessary OB update must be continued after the
batch update completion. As a result, there is a problem that
the efficiency as the whole system declines.

Second, the problem that the online entry wait of one server
spreads to the other servers occurs. As for the distributed
database, the related online entries executing in all the servers
have to wait the completion of the commit of the batch update
until tc as shown in Fig. 2. However, since the systems were
built individually at each branch office, there may be the on-
line entries having a long time transaction. Therefore, there
is a problem about the delay of the commit of the batch up-
date, which is caused by some online entry. And, it delays the
online entries in the all related servers.

3 PROPOSAL METHOD FOR
DISTRIBUTED DATABASE

To solve the problem for applying the temporal update to
the distributed database, we propose the following two meth-
ods.

3.1 Setting Method of Dynamic Batch Update
Completion Time

For the problem about the elapsed time of the batch update,
we propose the method to perform its commit immediately af-
ter the batch update. Here, as shown in “Table” of Fig. 3, since
the predicted completion time is set to every updated data by
the batch update and OB update, it takes time to update these
time again. Therefore, in this method, we use a view table to
change these times when these data are queried.

Figure 3 shows the overview of this method. Here, time is
shown as date: year, month and day. The predicted comple-
tion time of the batch update is set as the temporary time, and
its first digit is replaced by “@” as an example. In the case

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 13

Correspondence table

Figure3: Change of addition time of business data.

of Fig. 3, the addition timeTa, which is equal to the comple-
tion time, is set to “@0130530” and “@0130601”. Also, its
“Process” column shows the classification of the update pro-
cess of the data: O (the online entry), B (the batch update)
and OB (the OB update). In this case, the data entered by
the online entry on 5/1 of 2013 was updated by the batch up-
date on 5/29, which above-mentioned completion time (Ta) is
“@0130530”. And, the OB update was performed along with
this. In addition, the batch update with the completion time
“@0130601” was performed after this.

When the batch update completed, its completion time is
set (“Time” of “Correspondence table”), which corresponds
to the temporary timeTa. Incidentally, it is set tonull un-
til this completion. Only if the the completion time is set
to “Time”, Ta of data of “View table” is replaced with it.
In the case of Fig. 3, “@0130530” of this is replaced with
“20130531”; “@0130601” isn’t replaced.That is, even if there
are many target data, allTa of them can be replaced by up-
dating only one data. Therefore, this update process can be
executed by a short time transaction. Incidentally, since the
value of “@” is larger than any numerical value, the data hav-
ing the temporary time (with “@”) isn’t queried by Equation
(2) with designating time.

3.2 Serialization Method without Lock
Feature

To solve the problem shown in Fig. 2, we propose the seri-
alization method between the online entry and batch update.
In (A) and(B) of the Fig. 4, we show the case that the online
entry is executed across the batch update completion timetu.
Incidentally,(C) shows the case that there is no online entry,
as the reference. Here, the black hatching shows a transaction
of the online entry; the broken line shows the data that should
not be queried though it is exists.

First,(A) of Fig. 4 shows the success case of the online en-
try. Transaction(A) continues across the batch update com-
pletion timetu. If the batch update result(a − 1) is queried
between timetu and the completion time of this transaction, it
becomes a phantom read. Therefore, the mechanism, which
makes this data not to be queried, is necessary to maintain
the consistency. Incidentally, after the transaction completed,
data(a) is deleted logically by setting the deletion time; the

Figure4: Query result as for online entry spanningtu.

online enrty data(a−2) is inserted; the OB update data(a−3)
is inserted if data(a) was the target of the batch update. So,
(a − 1) is not queried, though either(a − 2) or (a − 3) is
queried.

Next,(B) of Fig. 4 shows the abort case of the online entry.
Transaction(B) continues across the batch update comple-
tion time tu similar to (A), and its result is undecided attu:
success or abort. Therefore, as for data(b − 1), the mecha-
nism similar to(A) is necessary. In the case of the abort, data
(b) remains without change, since the rollback of the transac-
tion is performed. And, since the batch update was executed,
its result(b− 1) has to be queried after the completion of the
transaction. That is, for the serialization, the temporal update
has to be composed to obtain the following query result.

• During the online entry: the batch update result is not
queried, but the data just before the start of the online
entry transaction is queried.

• After the online entry completion (success):either
the online entry result or the OB update result is queried.
Incidentally, in only the case of this data being target of
the batch update, the latter occurs.

• After the online entry completion (abort): the batch
update result is queried.

Therefore, in the case that the online entry transaction con-
tinues across the batch update completion timetu, the con-
sistency of the query result is maintained by the mechanism:
the batch update result is not queried until the completion of
the transaction. Therefore, we propose a method using a table
that manages the key of the data being updated by online en-
try transactions. And the data, which key is registered in this
table, is excluded from the query result of the batch update.
This table has the following relation.

Re(t name, t key) (3)

Here, t name shows the name of the target table;t key
shows the value of the primary key of the online entry data.

14 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

Figure 5:ER diagram of control tables.

And, (t name, t key) composesthe primary key of this table.
In this way, it is possible to perform the serialization by the
tableRe without the lock feature between the onlien entry and
batch update.

4 IMPLEMENTATION

First, Fig. 5 shows the ER diagram of the Control tables,
which are used for the implementation of the proposal method.
These tables save the data to control the temporal update and
are placed in each target database of the temporal update.
Batch management tabled0t batch manages thetime of the
temporal update, and it saves the following data: Table name
t name; Addition time s time, Start time q time; Update
time b time. Here,b time is usedto set the completion time
of the batch update at the timing of its completion dynam-
ically as shown in Fig. 3. That is, if the estimation of the
completion time of the batch update is difficult beforehand,
a temporary time and null are set to eachs time andb time
at thetiming of its beginning. Then, the completion timetu
is set tob time at thetiming of its completion to query the
updated data having the addition timetu. Also, Mask table
d0t mask is an implementation of the relation of Equation
(3). Commit time tabled0t commit stores thelatest comple-
tion timetu in b time for eachtarget table which name is set
to t name. And the result of the batch update and OB update
whichs time is beforeb time is queried.

StockManagement tablestock is an example of the busi-
ness data table, and we use it for the experiment in Section
5. Here, as for the stock management, various kinds of dis-
tributed databases are used. For example, in the retail com-
panies, each branch has its database system and manages its
stock. On the other hand, the database serves as a part of
the distributed database in the case of the stock movement
among branches or the delivery from the distribution sector.
Similarly, in the manufacturing industry, the supply chains of
the parts are built among the related companies.

As for the attributes ofstock, the following are correspond
to the attributes(K,Ta, Td, A) of the relationRt shown in
Equation (1): Product IDp ID; Addition Times time; Dele-
tionTimee time; Departmentdep id and Propertyproperty.
In addition, we add the following properties for the temporal
update. Data Timed time showsthe update order of the data
as shown in Section 2.2; Process Classp flg show the classi-

Figure 6:Composition of temporal update.

fication of the update process of the data shown as “Process”
column in Fig. 3; Deletion Flagdel flg shows the data was
deleted if it is set. Here,del flg is used to exclude all data
having the same primary keyK from the query result. For ex-
ample, in the case that the OB update (3) is deletion in Fig. 1,
the other data (1) and (2) also not have to be queried. For this
purpose, we exclude the unnecessary queried data (3) after
the query, and as a result, the other data is also not queried.

Second, the concurrency control between the online entries
and batch update is necessary as shown in Fig. 4. For this
purpose, we implemented the Control class by the Java to
perform this control as shown in Fig. 6. It exposes a method
getStatus that is the interface of business programs, and the
programs call this method at the timing of the start and com-
pletion each of the online entry transaction and batch update.
Then, the updating of the control tables and the control about
the serialization are performed by this method.

In the case of the batch update,getStatus(begin) is called
at the timing of start to set the control data of the batch up-
date tod0t batch of all related databases.getStatus(end) is
called at the timing of its completion similarly, and it sets the
completion time tob time of d0t batch and updates
d0t commit. Thus,the batch update result can be queried.
In the case of the online entry,getStatus(begin) is called
at the timing of its transaction start similarly, and confirms
whether or not the batch update updates the target table. If
it is not being updated, only the usual online entry transac-
tion is performed. On the contrary, if it is being updated, the
transaction’s data is set tod0t mask by this method. And,
the transaction performs the OB update after the online entry,
and callsgetStatus(end) to delete the data ofd0t mask at
the timingof its completion.

Third, The business programs query the table through its
view table, if it is the target of the temporal update. The
view table is created by the DDL (Data Definition Language)
shown in Fig. 7 and has the following feature.

(a) It changes the addition timeTa of the view table as shown
in Fig. 3.

(b) It controls query results of the batch update and OB up-
date by using the time changed in (a): only the data,
which Addition Times time is olderthan Update Time
b time of d0t commit (including b time), is queried.
Incidentally, every online entry result is queried.

(c) It excludes the data from the query result of (b) by using

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 15

Figure7: Example of DDL to create view table.

Figure8: Experimental system composition.

d0t mask, which is being updated by the online entry
transaction.

Using these view table, there are the following effects: since
it doesn’t allow to query the intermediate state of the temporal
update shown in Fig. 4, the ACID properties of the database
can be maintained; the developer can build the program ef-
ficiently by it, since it conceals the above-mentioned proce-
dure.

On the other hand, these view tables aren’t always updat-
able. So, though it is necessary that the table is updated di-
rectly by the business programs, transaction time attributes
of the table are not exposed to users:e time, d time and
s time of STOCK. Therefore the methodupdateMethod
is provided, and the business programs update tables using
this method. In addition, the above-mentioned features about
databases were implemented by MySQL: InnoDB for the trans-
action feature; XA transaction for the distributed transaction
[5].

5 EXPERIMENTS AND EVALUATIONS

5.1 Overview of Experiments

To evaluate the proposal method, we built the prototype of
a stock management system, and performed experiments by
it. We show the composition of the experimental system in
Fig. 8. This system is a distributed system consisting of two
servers, and each server has its own database. Its business
table is the stock management table shown in Fig. 5. And,
we assume this system is a non-stop service system. That is,
its data can be deleted by the online entry transactions at any
time when the corresponding goods are sold.

Figure9: Query result of proposed temporal update.

The stock movements fromDatabase1 to Database2 are
performed in a lump-sum when necessary. This is built by
using the temporal update method, and its batch update re-
sults, which is shown by (1) in Fig. 1, are inserted tostock of
each database. Among them, as for the data ofDatabase1,
Deletion Flagdel flg is set not to be queried after the com-
pletion of the temporal update. On the one hand, the data is
inserted into the table ofDatabase2, and they can be queried
after the completion time. In addition, in the case that the data
of Database1 is deleted by the online entry, its movement to
Database2 has to be also canceled by the OB update. Con-
cretely, as forDatabase2, the data with settingdel flg is in-
serted by the OB update, so the batch update results are also
excluded from the query result.

In the experiment, we performed the online entry in both
of the server, and performed the above-mentioned temporal
update on its way. In Fig. 9, we show the query result of the
typical data along the passage of time. Among the data,R010
was sold during the data movement by the temporal update;
the sale ofR011 was canceled, that is, the transaction was
canceled by the rollback. As forR020 andR021, the sale of
them continued across the completion time of the data move-
ment, andR020 was sold; the sale ofR021 was canceled.
R100 was only moved. Also, the black circle shows that the
data was queried at the time through the view table in Fig. 7;
the blank shows not to be queried;

5.2 Evaluations of Validity of Proposal
Method

First, in order to complete the temporal update immedi-
ately after the batch update, we set the temporary time “@0”
(we show only its second, the same in the following) at the
timing of the batch update start. Then, we set its completion
time “11” to Update Timeb time of both of d0t batch and
d0t commit at the timing of the batch update completion.
As shown byR011 andR100, we could complete the tempo-
ral update immediately after the batch update and query their
update result.

Next, for the serialization between the online entry and
batch update without the lock feature, we insertedd0t mask
thecorresponding data to the online entry at the timing of its

16 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

start; wedeleted the data at its completion. As a result, during
online entry, the batch update results are not queried, but the
data before the online entry is queried as shown byR020 and
R021. That is, as for the sold dataR020, the data before its
selling is queried until the completion of the online entry; it
can’t be queried after the completion. Also, it didn’t be moved
to Database2. As for R021 in the case of sale being can-
celed, since it was moved at the timing of the completion of
the online entry transaction, it can’t be queried inDatabase1
after the completion; it can be queried inDatabase2. As de-
scribed above, the temporal update results are queried after
the online entry transaction, that is, the serialization between
them could be controlled.

5.3 Evaluations of Implementation in
Distributed Environment

As for the data movement by the temporal update, its busi-
ness programs in the destination server could be composed
by only local transactions. That is, as shown in Fig. 8, as for
Stock Management Tablestock in Database2, since the ex-
isting data in another database is only inserted by both of the
batch update and OB update, there is no competition with the
online entry. Also, since Control tables are used only inside
of the view table and hidden from the above-mentioned pro-
grams, these tables could be implemented without influences
on the existing programs ofServer2 except the implementa-
tion about the view tables.

On the other hand, as for the business program in the server
where the temporal update is performed, the implementations
about it were necessary. As for the updating of Control ta-
bles, by developing the control class for the temporal update,
the business programs could be configured to call its meth-
ods at the timing of start and end of the online entry trans-
actions as shown in Fig. 6. So, these tables are hidden from
the business programs. However, since the OB update has to
be executed as a part of the online entry transaction, it had
to be integrated into the corresponding online entry program.
By the way, as for the implementation of this method, since
the data ofd0t mask has tobe inserted before the online en-
try transaction start, the transaction of this method had to be
executed separating from it. Similarly, in the case of abort,
since the rollback of the online entry transaction is executed,
the data ofd0t mask had tobe deleted by another transac-
tion. In addition, in the case of success, the deletion could be
executed in the same transaction.

As for the batch update, the serialization control between
the temporal update and the online entry transactions had to
be executed at the start and end of the transaction. On the
other hand, since this control wasn’t necessary except these
timing, the business tables of each database could be updated
by the local transactions one after another. In particular, in the
case of the number of the updating data was small, its com-
mit was not necessary in the middle of the updating. So, the
updating features could be implemented by only using SQL
statement without the cursor operations, and we could imple-
ment it more efficiently than the mini-batch.

6 CONSIDERATIONS

We found that the temporal update can be completed im-
mediately after the completion of the batch update by this
method. As for the temporal update, since the OB update
has to be executed as a part of the online entry transaction, its
execution time is considered to become long particularly in
the distributed environment. Therefore, from the viewpoint
of the efficiency, to reduce the execution time of the temporal
update is effective.

Incidentally, we consider that the method to reserve the
completion time of the temporal update is also useful in both
of the centralized and distributed systems. It can be used in
the case to change great deal of data in a lump-sum at the des-
ignated time and so on. For example, we discuss the case that
the share of product of each branch is changed at the prear-
ranged date in Fig. 8. In this case, we execute the temporal
update with reserving its completion time at 0 a.m. of the
designated date and the stock of each branch office can be
updated at once with reflecting the sale earlier.

Also, we found that the serialization between the temporal
update and online entry can be composed without the lock
feature. It has been pointed out that the long time transactions
and the lock feature cause the fault in the distributed systems.
So, we consider that the lump-sum update can be composed
more secure by this method.

Moreover, in the case of the data movement from one server
to another server, we found that we need to implement only
the control tables and the view tables as for the latter; the
existing business programs are not affected except the imple-
mentation about the view table. In particular, even the lock
feature for update isn’t necessary, because the lump-sum up-
date can be executed by only the insertion of data. That is, this
method is valid in the case of data transfer from the specified
administration server to the other servers widely.

7 CONCLUSIONS

In IWIN2012, We showed the temporal update method in
a centralized database is effective in the viewpoint of main-
taining the consistency and updating data efficiently. How-
ever, to apply this method to the distributed database, there
are problems: it is difficult to estimate its completion time; an
online entry wait is spread to the other servers at the comple-
tion timing of this method, because the serialization between
the batch update and the online entry transactions has to be
performed. For these problems, we propose the method in
this paper for the following purpose: the beforehand estima-
tion of its completion time becomes unnecessary; the serial-
ization can be executed without the online entry waits. And,
we confirmed by experiments that these feature was valid and
could be implemented in the distributed database. Moreover,
we find through these experiments this method is also valid
in the case of data transfer from the specified administration
server to the other servers in a wide area.

The future challenge is the evaluation of the operational
efficiency and performance in the viewpoint of the business
system in order to adopt it to the actual distributed systems.

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 17

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 24500132.

REFERENCES

[1] J. Gray, and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” San Francisco: Morgan Kauf-
mann (1992).

[2] T. Kudo,, et al., “A batch Update Method of Database
for Mass Data during Online Entry,” Proc. of 16th In-
ternational Conference on Knowledge-Based and Intel-
ligent Information & Engineering Systems (KES2012),
pp. 1807–1816 (2012).

[3] T. Kudo, et al., “Evaluation of Lump-sum Update Meth-
ods for Nonstop Service System,” Proc. of Intenational
Workshop on Informatics (IWIN2012), pp. 3–10 (2012).

[4] P.M. Lewis, A. Bernstein, and M. Kifer, “Databases and
Transaction Processing: An Application-Oriented Ap-
proach,” Addison-Wesley (2001).

[5] ORACLE, XA Transactions,
http://dev.mysql.com/doc/refman/5.1/en/xa.html.

[6] M.T. Özsu, and P. Valduriez, “Principles of Distributed
Database Systems,” Springer (2011).

[7] U. Shanker, ,M. Misra, A.K. Sarje, “Distributed real
time database systems: background and literature re-
view,” Distributed and Parallel Databases, Vol. 23, Is-
sue 2, pp. 127–149 (2008).

[8] R. Snodgrass, and I. Ahn, “Temporal Databases,” IEEE
Computer, Vol. 19, No. 9, pp. 35–42 (1986).

[9] B. Stantic, J. Thornton, and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Proc. of
10th International Symposium on Temporal Representa-
tion and Reasoning and Fourth International Conference
on Temporal Logic, pp. 174–180 (2003).

[10] T. Wang, J. Vonk, B. Kratz, and P. Grefen, “A survey
on the history of transaction management: from flat to
grid transactions,” Distributed and Parallel Databases,
Vol. 23, Issue 3, pp. 235–270 (2008).

[11] J. Yang, I. Lee, O. Jeong, S. Song, C. Lee, and S.
Lee, “An architecture for supporting batch query and on-
line service in Very Large Database systems,” Proc. of
IEEE International Conference on e-Business Engineer-
ing (ICEBE ’06), pp. 549 – 553 (2006).

(Received December 2, 2013)
(Revised March 4, 2014)

TsukasaKudo received the M. Eng. from Hokkaido
University in 1980 and the Dr. Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka

Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC,

Information Processing Society of Japan and The Society of Project Manage-
ment.

Yui Takeda received the B.E. from Keio Univer-
sity, Japan in 1987. In 1987, she joined Mitsubishi
Electric Corp. She was an engineer of artificial in-
telligence and application software. Since 2001,
she joined Mitsubishi Electric Information Sys-
tems Corp. Now, she manages intellectual prop-
erty rights.

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan in 2007. In 1979, he joined Mitsubishi Elec-
tric Corp. Since 2009, he is a professor of Fukui
University of Technology. Now, His research in-
terests include Management Information Systems,
Ubiquitous Systems, Application Systems of Data-
mining, and Information Security Systems. He is

a member of Information Processing Society of Japan, Japan Industrial Man-
agement Association and Japan Society for Management Information.

Kenji Saotomereceived the B.E. from Osaka Uni-
versity, Japan in 1979, and the Dr. Eng in Informa-
tion Engineering from Shizuoka University, Japan
in 2008. From 1979 to 2007, he was with Mit-
subishi Electric Corp., Japan. Since 2004, he has
been a professor of Hosei business school of in-
novation management. His current research areas
include LDAP directory applications and single
sign-on system. He is a member of the Informa-
tion Processing Society of Japan.

Nobuhiro Kataoka received the master’s degree
in electronics from Osaka University, Japan in 1968
and the Ph.D. in information science from Tohoku
University, Japan in 2000. From 1968 to 2000, he
was with Mitsubishi Electric Corp. From 2000 to
2008, he was a professor of Tokai University in
Japan. He is currently the president of Interprise
Laboratory. His research interests include busi-
ness model and modeling of information systems.
He is a fellow of IEIEC.

18 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

