International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 11

Application of a Lump-sum Update Method to Distributed Database

Tsukasa Kudg Yui Takeda, Masahiko Ishino*, Kenji Saotome**, and Nobuhiro Kataoka***

fFaculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
tMitsubishi Electric Information Systems Corporation, Japan
* Department of Management Information Science, Fukui University of Technology, Japan
** Hosei Business School of Innovation Management, Japan
*** Interprise Laboratory, Japan
kudo@cs.sist.ac.jp

Abstract - At the present time, with spread of the internet it has to be executed concurrently with the online service at
business, many business systems have become to be built ggesent. Therefore, some methods were put to practical use
distributed systems. Accordingly, the database is also dis-to execute it concurrently with the user entry of online ser-
persed to plural business systems as the distributed databaseice (hereinafter “online entry”). Here, these conventional
By the way, in the actual business systems, a lump-sum up-methods divide the updating of a great deal of data into short
date of a great deal of data has often to be performed con-time transactions, and then execute and commit them one af-
currently with the online transactions. However, in this case, ter another. Therefore, though its impact on the online entry
there is a problem of efficiency in the conventional update is small, there are problems: the intermediate results of the
methods, which update databases by the chain of many di-updating can be queried by the other transactions, that is, the
vided transactions. For this problem, we have shown the ef-isolation cannot be maintained; its processing efficiency de-
ficient lump-sum update method for centralized business sys-clines because of the increase of its commit number.

tems, which use the transaction time. However, as shown by Eqr these problems, we had proposed an updating method

the distributed transactions, some transaction features for thqhat utilizes the records about the transaction time[2]. More-
distributed database are different from the centralized databasgyer we had shown the following evaluation result as for the

Therefore, in this paper, first we show the problems on apply- 5 qating of a great deal of data in the centralized systems:
ing this method to the distributed databases. Secondly, W&t gyecytes the update more efficiently than the conventional
propose their measures. Moreover, through the evaluationsyathod with maintaining the ACID property[3]. Since the

using a prototype, we confirmed that our measures are validyansaction time is a kind of time of the temporal database,
and this method can be applied to the distributed databases. pareinafter we call it “temporal update” method. However, in

_ o o order to apply this method to a distributed database, it is nec-
Keywords: database, distributed database, distributed transsgq a1y to measure against not only the distributed transaction
action, business system, nonstop service. but also the various problems of the distributed environment.

Here, the temporal update has the characteristic of its pro-
1 INTRODUCTION cess as follows: the completion time of updating is set before-

With spread of the internet business and decentralized techhand; as for the commit of this method, its execution control
nology, many business systems have become to be built adas .to be performed for the serialization betvyeen the qnlme
distributed systems at the present time. That is, each syster@ntriés. However, there are problems: the dispersion in the
performs its business by mutual cooperation with other sys-UPdate time is often increased by the efficiency of the net-
tems [7], [11]. For example, in corporations, business systemswork gnd.cooperatlve business system environments; the syn-
are built at each branch office, and the business of this office isChronization between plural servers often causes the decline
performed using its system. On the other hand, each busines8f efficiency. Therefore, in this paper, we propose a method
system is operated as a part of the distributed system, sinc€r @pplying the temporal update method to the distributed
each system accesses the data of the other systems when §@tabases. Moreover, we show the following experimental
is necessary. In this way, the distributed business system a&eSults of the prototype: the problems can be solved by the
the whole corporation is composed. And, it is possible to re- Proposal method; since the implementation of the destination
duce the communication cost and perform the suitable systenP€rver of data transfer is easy, this method is valid for a data
operation for the each office. On the one hand, as for the on-distribution system having many destination servers.
line services on a wide range of Internet such as net shops, The remainder of this paper is organized as follows. Sec-
non-stop services have become common because of the cortion 2 shows the related works about the update transaction;
venience of customers, the globalization and so on. So, it isan overview of the temporal update method; the problem about
difficult to stop the online service for the particular business. applying it to the distributed databases. In Section 3, we pro-

However, in such a business system, a great deal of datgose the method for this problem, and show its implemen-
often has to be updated in a lump-sum. So, formerly, it wastation in Section 4. In Section 5, we show the experimental
executed as a night batch to avoid the time zone of the onlineresults of the prototype, and show our considerations in Sec-
service. However, because of the spread of nonstop servicetion 6.

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

12 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

2 PROBLEM OF DATABASE UPDATE IN A ontineenvry [l

LUMP-SUM ¥ @ Query

Before online entry

2.1 Related works

v

(3) OB update >i

As for the update of the database, it is necessary that the (2) Online entry >
transaction maintains the ACID properties: atomicity, consis- i
tency, isolation, and durability[1]. Here, since a lot of users (1) Batch update >':;
use the online entry concurrently, a lot of corresponding trans- tq now—» tu Transaction time
actions access the database concurrently. Therefore, database

updates are serialized by locking the data to be updated by Figure1: Change of data by temporal update method.
each transaction, and we can obtain a result as if transac-

tions were executed sequentially. On the other hand, in the

actual business systems, it is necessary to update a great deal

of data in a lump-sum. For example, in the banking systems, Ri(K,To,Tq, A) 1)

the ATM is provided as the online service, and a lot of users .0 1 andT} are the above-mentioned transaction time
1t a .

perform online entry at the same time. On the other hand, aLetq[Ta] be the value of attributé, of tupleq. Then the data

great deal of account transfer that is entrusted from the creditSet of the snapshot @, at the designated timeis expressed
card company and so on is executed as the lump-sum updateOy the followingQ (t)

Since the update time of such a lump-sum is often so long,
there is the problem that it can’t lock the whole target data Q(t) ={qlg € Ry; q[Tu] <t ANt < q[T4]} 2
to serialize between the online entries. It makes the online
entries wait for a long while. So, some methods were put Here, K is the primary key attribute of the snapshet;is
to practicaj use to execute it Concurrent|y with the online en- the other attribute. The transaction time is not exposed to the
tries. In the mini-batch, a great deal of data is divided into users. Since the update of the online entry is performed at the
small units, and they are updated and committed individually current time¢ = now, the data of Equation (2) at any past
to shorten each update time. That is, the |ump_sum update |§|me can be queried without the conflict with the online entry.
performed by a set of short transactions. Also, in sagas, they For a data update method, we can use the optimistic con-
compose a sequence of transactions and are performed orfurrency control [4] by utilizing the transaction time. The
after another. It has a configuration to recover by executing/Ump-sum updates are often performed by the following pro-
the compensating transaction corresponding to each transaccedure: reading the target data; generating the update data
tion in the case of fault [1]’ [10] But, in these methods, the from it; updating the database. In this method, the transaction
update and commit are repeated alternately many times. And'COI']firmS the transaction time of the target data again at the
it makes the problems: the intermediate results of the updat-update timing. And, if it was not changed from the read tim-
ing can be queried by the other transactions; the eﬁiciencying, it shows the data was not updated by another transaction.
declines because of the increase of commit number. However, the transaction needs to lock the data between this
gonfirmation and the commit.

A 4

Here, in the distributed databases, the transaction need _ o _)
not only the update and commit feature as for the individual _OF another update method which utilizing a time, there is
database but also the feature for simultaneous update of multhe timestamp-ordering concurrency control. It uses the time
tiple databases. So, the distributed transaction feature was puttamps (start time) of transactiofis, , 5, ..., T, }, which com-
to practical use, in which the concurrency control across mul- pose the qrdered set. The time stamp is stored in data When
tiple databases is performed by two-phase commit and so orft transaction accesses the_ data3 an_d the order of transactions
[6]. In this way, as for the distributed database, the differ- (Nat access to each data is maintained by it [4]. However,

ent transaction feature from the centralized database has to b¥1€Nn One transaction is updating a data, the other transactions
introduced. that update the same data have to wait until the commit.

Bv th the t | datab dqf th Thus, these methods intend for short time transactions. For

By 'etw?)t/h € emdpora ata aste vl\;as tptrr?p(t)_se éon_}_h eexample, since the lump-sum update takes a long while, the
viewpaint of the record management about the ime [8]. € other transactions are also waited for a long while. That is,
transaction time is one of the times of this database: the time, y.<,rbs the non-stop services. Moreover, we can't find the
that a fact is valid in the database, which is expressed by thelump-sum update method for a great deal (’)f data with main-
half-open intervalT,, T;). Here, T, shows the addition time taining the ACID property
that the data of the fact was added to the dataliBsehows '
the deletion time that it was deleted from the database. Even2 2 T
: : . . . emporal Update Method
in the case of data deletion, data is deleted only logically by P P
setting the deletion time, so the data record is left. Inciden- As for the centralized database, we proposed the tempo-
tally, if the data wasn’t deleted, the value of attribligis ral update method that utilizes the transaction time to up-
expressed byow [9]. It shows the current time and changes date a great deal of data in a lump-sum with maintaining the
with passage of time. The relatid®, of the table having the ACID property of the transaction [2]. Figure 1 shows the data
transaction time is expressed below. change with the transaction time in the case of the database

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 13

Ti 2.3 Problem about Application to Distributed
Sb T2[0z_| 0Bz] Database
SommT oF Tol Q2 [OB As for th_e temporal update method, we had been assuming
batch update AR TTTTe the centrallzec_i datab.ase and the controlled operation. That is,
1 T4 57 as mentioned in Section 2.2, we assumed that the batch update
sa{ T wait time ¢, can be established beforehand; the individual online
- L T5 > entry completes in a short time. In the actual systems, the for-
u c eal time

mer feature is often used in the lump-sum update executing at
the designated time: the bank transfer at the designated time;
the change of organization data at the designated date; and so
on. However, as for the case where we apply this method to

update by this method. In this method, the lump-sum updatethe distributed database, it has to be executed in the various

is executed by both the batch update (1) and OB update (theenvironments. So, the following problems occur.

online batch update) (3). Here, the batch update (1) corre- First, the dispersion of the batch update time is very larger

sponds to the usual lump-sum update. It updates the data ahan the centralized database. Though the batch update up-

the past time,, and stores the update results at the future time dates plural databases at the same time, the individual envi-

t, that was “beforehand” established. Incidentally, though the ronment in this distributed system is varied: the traffic on the

online entry (2) is executed even during the batch update (1),network; the load and performance of each server. So, the

it updates the data at the current timew. So, the competi- prediction of the timet,, is extremely difficult. Therefore,

tion between (1) and (2) can be avoided. On the other handjn the case that the prediction time is earlier than the actual

since the batch update also has to update the data changed gfapsed time, the batch update doesn’t complete,bySo,

the online entry, the OB update performs the process corre4t is aborted, and it has to be re-run. On the contrary, if it is

sponding to it individually. later, the unnecessary OB update must be continued after the
As a result, at time tu, three kinds of results are stored: thebatch update completion. As a result, there is a problem that

batch update, the online entry and the OB update. Thereforethe efficiency as the whole system declines.

we query only the high-priority data by the following order of Second, the problem that the online entry wait of one server

priority, and we can get the query result as if the batch updatespreads to the other servers occurs. As for the distributed

and online entry were performed in a series. database, the related online entries executing in all the servers

))) have to wait the completion of the commit of the batch update
(A) First, for each value of the primary key K of Equation 44 “as shown in Fig. 2. However, since the systems were

(1), we select the data that was updated at the latest time, individually at each branch office, there may be the on-

Here, we use, to the updated time as for only the batch jine entries having a long time transaction. Therefore, there

update. is a problem about the delay of the commit of the batch up-
(B) Second, if there are plural data having the same key valuedate, which is caused by some online entry. And, it delays the

we select the data by the following priority of update pro- ©Online entries in the all related servers.

cess: the OB update, the online entry, the batch update.

Figure 2:Serialization of batch update and online entry.

In the case of Fig. 1, since both results of the OB update3 PROPOSAL METHOD FOR
and online entry were updated at the latest time, the OB up- DISTRIBUTED DATABASE

date result is queried based on above-mentioned (B). Also, if)
there is no online entry as for the case of Fig. 1, there are the 1© SOIve the problem for applying the temporal update to

online entry data entered befarg(“Before online entry” in the distributed database, we propose the following two meth-
the Figure) , and the result of the batch update. So, the batctPdS:

update result is queried based on above-mentioned (A). That

is, in this method, all the updated data are stored, and only the3.1 ~ Setting Method of Dynamic Batch Update

valid data is queried. As a result, we can perform the lump- Completion Time
sum update and the online entry concurrently, without their
competition. For the problem about the elapsed time of the batch update,

However, at the end of a batch update, the control for the we propose the method to perform its commit immediately af-
serialization between it and the online entry is necessary. Thater the batch update. Here, as shown in “Table” of Fig. 3, since
is, the online entry, which is begun before timg is accom- the predicted completion time is set to every updated data by
panied by the OB update to reflect the batch update. On thethe batch update and OB update, it takes time to update these
other hand, another one begun aftgrhas to be performed time again. Therefore, in this method, we use a view table to
using the result of the batch update. We show this in Fig. 2. change these times when these data are queried.

Therefore, in this method, the commit of the batch update is Figure 3 shows the overview of this method. Here, time is
executed after the online entrieS,} that are begun before shown as date: year, month and day. The predicted comple-
time t,,; the other online entries (3, which are begun after tion time of the batch update is set as the temporary time, and
t., are waited until this commit. its first digit is replaced by “@” as an example. In the case

14 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

K Ta Td Process Tabl (A) Success of online entry
1 | 20130501 | 20130520 © able [Data (a) before update
1 |@0130530| now B : }
120130529 | now 0 ansactio
1 | @0130530| now 0B
1 | @0130601 | now B Correspondence table [(@=3) OB update >
V!_I Start Ta Time [(a=2) Online entry >
LEW 20130530 | @0130530 | 20130531 S (a—1) Bateh u ﬁaét_e“/\
A4 20130601 | @0130601| natl | =m-----xR i ERRPRER
K Ta Tq Process (B) Abort of onlineentry
1 | 20130501 | 20130529] O | Data (b) [h
120130531 | now B '
1 [20130529 now 0 Transaction (B)
1| 20130531 now OB View table L y-----
L —
1 @0130601 | now B (S 1(b-1) Batch update>
(G)Noonlineentry
Figure3: Change of addition time of business data. Datae) | ____________________ ;
> (c—1) Batch update >
tq tu Transaction time

of Fig. 3, the addition timd,, which is equal to the comple-

tion time, is set to “@0130530” and “@0130601". Also, its Figure4: Query result as for online entry spanning

“Process” column shows the classification of the update pro-

cess of the data: O (the online entry), B (the batch update)

and OB (the OB update). In this case, the data entered byonline enrty datéa—2) is inserted; the OB update ddia—3)

the online entry on 5/1 of 2013 was updated by the batch up-is inserted if datda) was the target of the batch update. So,

date on 5/29, which above-mentioned completiontimg {§ (a — 1) is not queried, though eithér — 2) or (a — 3) is

“@0130530”. And, the OB update was performed along with queried.

this. In addition, the batch update with the completion time ~ Next, (B) of Fig. 4 shows the abort case of the online entry.

“@0130601” was performed after this. Transaction(B) continues across the batch update comple-
When the batch update completed, its completion time is tion time¢,, similar to (A), and its result is undecided af:

set (“Time” of “Correspondence table”), which corresponds success or abort. Therefore, as for ddta- 1), the mecha-

to the temporary timé,. Incidentally, it is set tawull un- nism similar to(A) is necessary. In the case of the abort, data
til this completion. Only if the the completion time is set (b) remains without change, since the rollback of the transac-

to “Time”, T, of data of “View table” is replaced with it. tionis performed. And, since the batch update was executed,
In the case of Fig. 3, “@0130530" of this is replaced with its result(b — 1) has to be queried after the completion of the
“20130531"; “@0130601” isn’t replaced.Thatis, evenifthere transaction. That is, for the serialization, the temporal update
are many target data, &ll, of them can be replaced by up- has to be composed to obtain the following query result.
dating only one data. Therefore, this update process can be
executed by a short time transaction. Incidentally, since the
value of “@” is larger than any numerical value, the data hav-
ing the temporary time (with “@") isn’t queried by Equation

e During the online entry: the batch update result is not
queried, but the data just before the start of the online
entry transaction is queried.

(2) with designating time. e After the online entry completion (success):either
the online entry result or the OB update result is queried.
3.2 Serialization Method without Lock Incidentally, in only the case of this data being target of
Feature the batch update, the latter occurs.
alization method between the online entry and batch update. update result is queried.

In (A) and(B) of the Fig. 4, we show the case that the online
entry is executed across the batch update completionttjme
Incidentally,(C) shows the case that there is no online entry,
as the reference. Here, the black hatching shows a transactio
of the online entry; the broken line shows the data that should
not be queried though it is exists.

First, (A) of Fig. 4 shows the success case of the online en-
try. TransactionA) continues across the batch update com-
pletion timet,,. If the batch update result: — 1) is queried
between time,, and the completion time of this transaction, it
becomes a phantom read. Therefore, the mechanism, which
makes this gata not to be queried, is necessary to maintain Re(t-name, t-key) ®)
the consistency. Incidentally, after the transaction completed, Here,t_name shavs the name of the target tablekey
data(a) is deleted logically by setting the deletion time; the shows the value of the primary key of the online entry data.

Therefore, in the case that the online entry transaction con-

tinues across the batch update completion timethe con-

istency of the query result is maintained by the mechanism:
the batch update result is not queried until the completion of
the transaction. Therefore, we propose a method using a table
that manages the key of the data being updated by online en-
try transactions. And the data, which key is registered in this
table, is excluded from the query result of the batch update.
This table has the following relation.

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 15

Control tables STOCK Stock Management .

S 0p_ID Product ID || eetStatus(begin); ¢ > Control class I

dot_batch Batch Management ne_time Deletion Time i J_‘ > P

1t name Table Name od_time Data Time] .

5s_time Addition time 1% p g Process Ciass | Select; = Views for query |

0g_time Start Time 0s_time Addition Time (FK) ﬂ 1l

b_time Update Time "delflg Deletion Flag Update; Business data Temporal update
dep_id Department updateMethod() | > o
$ property Property : ables control tables

dot_mask. Mekk | ey

1t_name Table Name (FK) dOt_commit Commit Time T Online transaction / Batch update

0t _key Primary Key 1t_name Table Name (FK)

1 b_time Update Time (FK)

Figure 6:Composition of temporal update.

Figure 5:ER diagram of control tables.
fication of the update process of the data shown as “Process”
. . column in Fig. 3; Deletion Flagel_flg shows the data was
And, (t_name, t_key) composeshe primary key of thistable. deleted if it is set. Herejel_flg is used to exclude all data
In this way, it is possible to perform the serialization by the haying the same primary key from the query result. For ex-
tableRe without the lock feature between the onlien entl’y and amp'e, in the case that the OB update (3) is deletion in F|g 1,

batch update. the other data (1) and (2) also not have to be queried. For this
purpose, we exclude the unnecessary queried data (3) after
4 |MPLEMENTATION the query, and as a result, the other data is also not queried.

Second, the concurrency control between the online entries

First, Fig. 5 shows the ER diagram of the Control tables, and batch update is necessary as shown in Fig. 4. For this
which are used for the implementation of the proposal methodpurpose, we implemented the Control class by the Java to
These tables save the data to control the temporal update angerform this control as shown in F|g 6. It exposes a method
are placed in each target database of the temporal update;etStatus that is the interface of business programs, and the
Batch management tabi#)t_batch manages théme of the programs call this method at the timing of the start and com-
temporal update, and it saves the following data: Table namepletion each of the online entry transaction and batch update.
t-name; Addition time s_time, Starttime g_time; Update Then, the updating of the control tables and the control about
time b_time. Here,b_time is usedto set the completion time the serialization are performed by this method.
of the batch update at the timing of its completion dynam- |n the case of the batch updatet Status(begin) is called
ically as shown in Fig. 3. That is, if the estimation of the at the timing of start to set the control data of the batch up-
completion time of the batch update is difficult beforehand, date tod0¢_batch of all related databaseget Status(end) is
a temporary time and null are set to eactime andb_time called at the timing of its completion similarly, and it sets the
at thetiming of its beginning. Then, the completion timg completion time td_time of d0t_batch and updates
is set tob_tume at thetiming of its completion to query the 4ot_commit. Thus,the batch update result can be queried.
updated data having the addition time Also, Mask table |n the case of the online entryetStatus(begin) is called
d0t-mask is animplementation of the relation of Equation at the timing of its transaction start similarly, and confirms
(3). Commit time tablel0t_commit stores thdatest comple- whether or not the batch update updates the target table. If
tion timet,, in b_time for eachtarget table which name is set it is not being updated, only the usual online entry transac-
to¢_name. Andthe result of the batch update and OB update tion is performed. On the contrary, if it is being updated, the
which s_time is beforeb_time is queried. transaction’s data is set #0¢_mask by this method. And,

StockManagement tabletock is an example of the busi- the transaction performs the OB update after the online entry,
ness data table, and we use it for the experiment in Sectionand callsget Status(end) to delete the data af0t_mask at
5. Here, as for the stock management, various kinds of dis-the timingof its completion.
tributed databases are used. For example, in the retail com- Third, The business programs query the table through its
panies, each branch has its database system and manages Vigw table, if it is the target of the temporal update. The
stock. On the other hand, the database serves as a part afiew table is created by the DDL (Data Definition Language)
the distributed database in the case of the stock movemenghown in Fig. 7 and has the following feature.
among branches or the delivery from the distribution sector. o)

Similarly, in the manufacturing industry, the supply chains of (&) Itchanges the addition tin#&, of the view table as shown
the parts are built among the related companies. in Fig. 3.

As for the attributes oftock, the following are correspond
to the attributeg K, T,,, Ty, A) of the relationR; shown in
Equation (1): Product I[p_I D; Addition Times_time; Dele-
tion Timee_time; Departmentlep_id and Propertyroperty.

In addition, we add the following properties for the temporal
update. Data Timé_time showsthe update order of the data
as shown in Section 2.2; Process Clasfg show the classi- (c) It excludes the data from the query result of (b) by using

(b) It controls query results of the batch update and OB up-
date by using the time changed in (a): only the data,
which Addition Times_time is olderthan Update Time
b_time of d0t_commit (including b_time), is queried.
Incidentally, every online entry result is queried.

16 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

CREATE VIEW stock_v AS Data Time (Sec)

Remarks
SELECT p_id, COALESCE(b time, a.s time, b.s time), 2[4f68[10][12][14]16
e_time, d_time, p_flg, del_flg, dep_id, property FROM stock a Batch update
LEFT OUTER JOIN dOt batch b USING (s_time) Sorver! (Local
WHERE p_flg="1" erverl (Loca
OR (p_flg = '0’ AND p_id NOT IN RIID|O|® @ Sold
(SELECT t key FROM dOt_mask RO @ @ @ ©@| ©® Sale canceled, Move out
WHERE t_name = 'stock’ AND q_time = a.d_time) RI20/0/0©/ 0/ 6 6 6 Sold
OR p.flg = '2) R2I | @ @O ©@ © @ O Sale canceled, Move out
AND COALESCE (b_time, a.s_time, b.s_time) <= RIN/e/®®® 6 Move out
(SELECT b_time FROM d0t_commit Server2 (Remote)
WHERE t_name = ‘stock); RO10
RO11 @ @®| ® Move in
)) R020
Figure7: Example of DDL to create view table. R021 ®| ® |Move in
R100 @® @ ® Move in
Serverl Server2 Figure9: Query result of proposed temporal update.
. ; Batch
Online entry d .
| (0B update) update Online entry The stock movements froatabasel to Database2 are
N performed in a lump-sum when necessary. This is built by
OB update > using the temporal update method, and its batch update re-
Database1 Peialesed sults, which is shown by (1) in Fig. 1, are inserteditack of
- STOCK - STOCK each database. Among them, as for the dat®@fabasel,
= G e = @il Gl Deletion Flagdel_flg is set not to be queried after the com-
pletion of the temporal update. On the one hand, the data is
Figure8: Experimental system composition. inserted into the table dDatabase2, and they can be queried

after the completion time. In addition, in the case that the data

of Databasel is deleted by the online entry, its movement to
d0t_mask, which is being updated by the online entry Database2 has to be also canceled by the OB update. Con-
transaction. cretely, as fortDatabase2, the data with settindel_flg is in-
serted by the OB update, so the batch update results are also
excluded from the query result.

In the experiment, we performed the online entry in both
of the server, and performed the above-mentioned temporal
update on its way. In Fig. 9, we show the query result of the
typical data along the passage of time. Among the datap

Using these view table, there are the following effects: since
it doesn’t allow to query the intermediate state of the temporal
update shown in Fig. 4, the ACID properties of the database
can be maintained; the developer can build the program ef-
ficiently by it, since it conceals the above-mentioned proce-

dure. Id during the dat t by the t | update;
On the other hand, these view tables aren't always updat—WalS sold during the data movement by the temporal update,
the sale ofR011 was canceled, that is, the transaction was

able. So, though it is necessary that the table is updated di-

rectly by the business programs, transaction time attributescam:e'ed by the rollback. As fg2020 and R021, the sale of

of the table are not exposed to usetstime, d_time and them continued across the completion time of the data move-
s_time of STOCK. Therefore the methodpdate Method mi;g’ andR0|20 was jOI,SJ; thihsa::ﬁ Otim.l ;Nash canctiletd t.h
is provided, and the business programs update tables using was only moved. AISO, the black circie Snows that the

this method. In addition, the above-mentioned features abouthati:'vai qﬁened ai Ehebtlme th_rodu.gh the view table in Fig. 7;
databases were implemented by MySQL: InnoDB for the trans- € blank shows notlo be queried,

action feature; XA transaction for the distributed transaction . -
[5]. 5.2 Evaluations of Validity of Proposal

Method

First, in order to complete the temporal update immedi-
ately after the batch update, we set the temporary time “@0”
(we show only its second, the same in the following) at the

To evaluate the proposal method, we built the prototype of timing of the batch update start. Then, we set its completion
a stock management system, and performed experiments bjime “11” to Update Timeb_time of both of d0t_batch and
it. We show the composition of the experimental system in d0t_commit at the timing of the batch update completion.
Fig. 8. This system is a distributed system consisting of two As shown byR011 and 2100, we could complete the tempo-
servers, and each server has its own database. Its businesal update immediately after the batch update and query their
table is the stock management table shown in Fig. 5. And, update result.
we assume this system is a non-stop service system. Thatis, Next, for the serialization between the online entry and
its data can be deleted by the online entry transactions at anypatch update without the lock feature, we insed@tlmask
time when the corresponding goods are sold. thecorresponding data to the online entry at the timing of its

5 EXPERIMENTS AND EVALUATIONS

5.1 Overview of Experiments

International Journal of Informatics Society, VOL.6, NO.1 (2014) 11-18 17

start; wedeleted the data at its completion. As aresult, during 6 CONSIDERATIONS
online entry, the batch update results are not queried, but the
data before the online entry is queried as showikbg0 and We found that the temporal update can be completed im-
R021. That is, as for the sold dat@020, the data before its ~mediately after the completion of the batch update by this
selling is queried until the completion of the online entry; it method. As for the temporal update, since the OB update
can't be queried after the completion. Also, it didn’t be moved has to be executed as a part of the online entry transaction, its
to Database2. As for R021 in the case of sale being can- €xecution time is considered to become long particularly in
celed, since it was moved at the timing of the completion of the distributed environment. Therefore, from the viewpoint
the online entry transaction, it can't be queriedintabasel of the efficiency, to reduce the execution time of the temporal
after the completion; it can be queriedilutabase2. As de- ~ update is effective.
scribed above, the temporal update results are queried after Incidentally, we consider that the method to reserve the
the online entry transaction, that is, the serialization betweencompletion time of the temporal update is also useful in both
them could be controlled. of the centralized and distributed systems. It can be used in
the case to change great deal of data in a lump-sum at the des-
ignated time and so on. For example, we discuss the case that
5.3 Evaluations of Implementation in the share of product of each branch is changed at the prear-
Distributed Environment ranged date in Fig. 8. In this case, we execute the temporal
update with reserving its completion time at 0 a.m. of the
As for the data movement by the temporal update, its busi- designated date a'nd the stpck of each brqnch office can be
ness programs in the destination server could be composedPdated at once with reflecting the sale earlier.
by only local transactions. That is, as shown in Fig. 8, as for Also, we found that the serialization between the temporal
Stock Management Tablgock in Database2, since the ex- ~ update and online entry can be composed without the lock
isting data in another database is only inserted by both of thefeature. It has been pointed out that the long time transactions
batch update and OB update, there is no Competition with theand the lock feature cause the fault in the distributed SyStemS.
online entry. Also, since Control tables are used only inside SO, we consider that the lump-sum update can be composed
of the view table and hidden from the above-mentioned pro- Mmore secure by this method.
grams, these tables could be implemented without influences Moreover, in the case of the data movement from one server
on the existing programs dferver2 except the implementa- to another server, we found that we need to implement only
tion about the view tables. the control tables and the view tables as for the latter; the
On the other hand, as for the business program in the servefXisting business programs are not affected except the imple-
where the temporal update is performed, the implementationé“entat'on about the view table. In particular, even the lock
about it were necessary. As for the updating of Control ta- féature for update isn't necessary, because the lump-sum up-
bles, by developing the control class for the temporal update,date can be ege_cuted by only the insertion of data. That is, t.hIS
the business programs could be configured to call its meth_metho_d is v_alld in the case of data transfer from the specified
ods at the timing of start and end of the online entry trans- @dministration server to the other servers widely.
actions as shown in Fig. 6. So, these tables are hidden from
the business programs. However_, since the OB up_date _has tey CONCLUSIONS
be executed as a part of the online entry transaction, it had
to be integrated into th(_e correspond_ing onliqe entry program. |5 |WIN2012, We showed the temporal update method in
By the way, as for the implementation of this method, since 5 centralized database is effective in the viewpoint of main-
the data ofl0t_mask has tobe inserted before the online en- zining the consistency and updating data efficiently. How-
try transaction start, the transaction of this method had to begyer, to apply this method to the distributed database, there
executed separating from it. Similarly, in the case of abort, gre problems: it is difficult to estimate its completion time; an
since the rollback of the online entry transaction is executed, gpjine entry wait is spread to the other servers at the comple-
the data 0fd0t_mask had tobe deleted by another transac- ton timing of this method, because the serialization between
tion. In addition, in the case of success, the deletion could bethe patch update and the online entry transactions has to be
executed in the same transaction. performed. For these problems, we propose the method in
As for the batch update, the serialization control between this paper for the following purpose: the beforehand estima-
the temporal update and the online entry transactions had tdion of its completion time becomes unnecessary; the serial-
be executed at the start and end of the transaction. On thézation can be executed without the online entry waits. And,
other hand, since this control wasn't necessary except thesave confirmed by experiments that these feature was valid and
timing, the business tables of each database could be updatecbuld be implemented in the distributed database. Moreover,
by the local transactions one after another. In particular, in thewe find through these experiments this method is also valid
case of the number of the updating data was small, its com-in the case of data transfer from the specified administration
mit was not necessary in the middle of the updating. So, theserver to the other servers in a wide area.
updating features could be implemented by only using SQL The future challenge is the evaluation of the operational
statement without the cursor operations, and we could imple-efficiency and performance in the viewpoint of the business
ment it more efficiently than the mini-batch. system in order to adopt it to the actual distributed systems.

18 T. Kudo et al. / Application of a Lump-sum Update Method to Distributed Database

ACKNOWLEDGMENT Institute of Science and Technology. Now, his re-
search interests include database application and
This work was supported by JISPS KAKENHI Grant Num- software engineering. He is a member of IEIEC,
ber 24500132. Information Processing Society of Japan and The Society of Project Manage-
ment.
REFERENCES

Yui Takeda received the B.E. from Keio Univer-
sity, Japan in 1987. In 1987, she joined Mitsubishi
Electric Corp. She was an engineer of artificial in-
telligence and application software. Since 2001,
she joined Mitsubishi Electric Information Sys-
tems Corp. Now, she manages intellectual prop-
erty rights.

[1] J. Gray, and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” San Francisco: Morgan Kauf-
mann (1992).

[2] T. Kudo,, et al., “A batch Update Method of Database
for Mass Data during Online Entry,” Proc. of 16th In-
ternational Conference on Knowledge-Based and Intel-
ligent Information & Engineering Systems (KES2012),
pp. 1807-1816 (2012).

[3] T.Kudo, et al., “Evaluation of Lump-sum Update Meth-
ods for Nonstop Service System,” Proc. of Intenational
Workshop on Informatics (IWIN2012), pp. 3-10 (2012). Masahiko Ishino received the master's degree in

[4] P.M. Lewis, A. Bernstein, and M. Kifer, “Databases and .

Transaction Processing: An Application-Oriented Ap-
proach,” Addison-Wesley (2001).

[5] ORACLE, XA Transactions,
http://dev.mysqgl.com/doc/refman/5.1/en/xa.html. e

[6] M.T. Ozsu, and P. Valduriez, “Principles of Distributed | !

science and technology from Keio University in

1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japanin 2007. In 1979, he joined Mitsubishi Elec-
tric Corp. Since 2009, he is a professor of Fukui
University of Technology. Now, His research in-

4{; terests include Management Information Systems,

[7] U. Shanker, ,M. Misra, A.K. Sarje, “Distributed real g]?r']?:;c’;s dsﬁgermzﬂp‘oﬁpggiﬁz?ysg’;:;“nf;’fg:ti‘z
t'_me dat_ab_ase systems: background and literature -2 member of Information Proce:c,sing Society of Japan, Japan Industrial Man-
view,” Distributed and Parallel Databases, Vol. 23, Is- agement Association and Japan Society for Management Information.
sue 2, pp. 127-149 (2008).

[8] R. Snodgrass, and I. Ahn, “Temporal Databases,” IEEE
Computer, Vol. 19, No. 9, pp. 35-42 (1986).

[9] B. Stantic, J. Thornton, and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Proc. of
10th International Symposium on Temporal Representa-
tion and Reasoning and Fourth International Conference
on Temporal Logic, pp. 174-180 (2003).

[10] T. Wang, J. Vonk, B. Kratz, and P. Grefen, “A survey
on the history of transaction management: from flat to
grid transactions,” Distributed and Parallel Databases,
Vol. 23, Issue 3, pp. 235-270 (2008).

[11] J. Yang, I. Lee, O. Jeong, S. Song, C. Lee, and S.
Lee, “An architecture for supporting batch query and on-
line service in Very Large Database systems,” Proc. of
IEEE International Conference on e-Business Engineer-
ing (ICEBE '06), pp. 549 — 553 (2006).

Database Systems,” Springer (2011).

Kenji Saotomereceived the B.E. from Osaka Uni-
versity, Japan in 1979, and the Dr. Eng in Informa-
tion Engineering from Shizuoka University, Japan
in 2008. From 1979 to 2007, he was with Mit-
subishi Electric Corp., Japan. Since 2004, he has
been a professor of Hosei business school of in-
novation management. His current research areas
include LDAP directory applications and single
sign-on system. He is a member of the Informa-
tion Processing Society of Japan.

Nobuhiro Kataoka received the master’'s degree
in electronics from Osaka University, Japan in 1968
and the Ph.D. in information science from Tohoku
University, Japan in 2000. From 1968 to 2000, he
was with Mitsubishi Electric Corp. From 2000 to
2008, he was a professor of Tokai University in
Japan. He is currently the president of Interprise
Laboratory. His research interests include busi-
ness model and modeling of information systems.
He is a fellow of IEIEC.

(Received December 2, 2013)
(Revised March 4, 2014)

TsukasaKudo received the M. Eng. from Hokkaido
University in 1980 and the Dr. Eng. in industrial

science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi

Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka

