
Extending Battery Lifetime in Smartphones with

Power Efficient Task Management and Energy Aware Design Tool

Hiroshi Inamura†, Takeshi Kamiyama†, Teppei Konishi†, and Ken Ohta†

†Research Laboratories, NTT DOCOMO, Inc.

inamura@nttdocomo.com, kamiyamat@nttdocomo.co.jp, teppei.konishi.xt@nttdocomo.com, ohtak@nttdocomo.co.jp

Abstract - In the use of smartphone, the battery lifetime is

important factor that determines how long users can use the
applications on the device. The application developers need
to be aware of energy consumption for their application. In
order to extend the battery lifetime, we recognize two issues;
1) Allowing developers to know the power-efficiency of their
applications in real user environments for applications in
design, 2) Optimizing the system to be power-efficient in the
execution of background tasks for existing applications. We
implemented a tool for developers to visualize how their code
consumes the energy, with low overhead for data collection
in runtime. We also improved the power efficiency in the
background task management in Android OS and it shows up
to 40% power reduction in call waiting time.

Keywords: Power Management, Android, Background Task,
Global Synchronization, Power Modeling

1. INTRODUCTION
With the wider use of smartphone, it has become

important to improve the battery lifetime of devices.
Comparing to the featurephone, the smartphones are flexible
both in development and deployment of 3rd party applications.
Among major platforms of smartphones, a large percentage
of devices are running Android OS [1]. Users are attracted to
smartphones for the variety of applications available through
application market. It is preferable all the applications are
power efficient. The application developers need to be aware
of energy consumption for their application. In order to
extend the battery lifetime, we recognize two issues;

1) Allowing developers to know the energy-efficiency of
their applications in real user environments for
applications in design. The power consumption of
device is determined by the utilization or the state of each
hardware components such as CPU, which depends on
the behavior of the application software. It is possible to
prolong the battery lifetime by eliminating inefficiency
from the applications, such as too frequent data transfer,
for example. As a case study on a particular application,
Furusho [2] showed that the energy consumption could
be decreased by optimizing the application’s behavior
through an analysis of real users’ actions. Given the
competitiveness of the smartphone market, it is critical
that developers be aware of how much power their
applications consume and of the “Power Cost” of each
function. The energy visualization integrated in SDK
tool will be great help for developer to know the “Power
Cost” in early stage of design.

2) Optimizing the system to be power-efficient in the
execution of background tasks for existing
applications. The background task (BG task) is a type of
application component that does care-taker for processes
with long waiting time and the role of service provider.
A class of BG task has arbitrariness for the timing to be
executed and does not cause any visible change to the
user interaction. We can utilize this characteristic to shift
the execution timing to minimize the utilization of
hardware components. On the managing the execution
timing, we need to consider the possibility of the
synchronization of task executions among device, since
it may leads network congestion if the communicating
tasks are involved.

In this paper we describe an approach to extending the
battery lifetime with our solutions for these two issues. With
the combination of solutions, the extension can be made both
for applications to be designed as well as existing applications
on the market. We implemented a software tool for developer
to visualize how their code consumes the energy, with low
overhead for data collection in runtime. Also, we improved
the power efficiency in the background task management in
Android OS and it shows up to 40% power reduction for call
waiting time.

2. ALLOWING DEVELOPERS TO KNOW THE
POWER-EFFICIENCY OF THEIR
APPLICATIONS

Software-based energy profiling demands an accurate
power estimation scheme. The scheme should satisfy the
following points. a) Accurate estimation based on modeled
characteristics of hardware components. b) Estimation is
based on the data obtained through actual usage of
applications.

We propose an energy profiler for Android applications [3]
based on a power model of devices and data obtained during
applications usage.

To achieve a), we extend the existing power model proposed
in [3][5] to take account of new features of hardware
components such as multi-core CPUs with dynamic
frequency scaling and 3G/LTE RRC State transition.
Regression analysis is used to allow the model to catch the
relationship between power consumption and the behavior of
each hardware component. In other words, the model is an
ensemble of formulas, each with its own coefficients and

International Journal of Informatics Society, VOL.6, NO.1 (2014) 3-10 3

ISSN1883-4566 © 2014 - Informatics Society and the authors. All rights reserved.

parameters that express the power consumption of each
component.

Figure 1: The process of power characterization

To achieve b), we log target applications while running to
obtain the data needed generate the model parameters. The
data reflects the impact of actual application usage on real
devices, so the estimation results are practical. Once the
model is generated and loaded into the profiler, there is no
need to measure power consumption directly.

Based on the above ideas, we pose 2 requirements for the
profiler as follows; 1) Accuracy of energy estimation
targeting overall system is sufficient. 2) Logging overhead is
small.

2.1 Related Works
Kaneda [5] proposed a system-wide power model that

accurately estimates the power consumption. The model
covers the main components and the power consumed by
each component is parameterized by common data which is
easily obtained at the OS-level, such as CPU utilization. Thus
the good feature of their model design is not only that it’s
extendable for system-wide estimation but also each
component can be logged with small overhead. However, it
doesn’t consider the recent features of components such as
frequency scaling of multi-core CPUs and mobile wireless
interfaces such as 3G/LTE.

ARO (Application Resource Optimizer) is a profiler that
does address such recent features [6]. It features a power
model of the mobile wireless interface. In 3G/LTE networks,
the wireless link between device and base station is managed
by RRC (Radio Resource Control), which handles the bearer
setup and release, and mobility management [8][9]. RRC
State used as model parameters can be estimated using the
RRC State machine that specifies the states from packet
capture data. However, special privilege such as root is
needed on common devices to permit packet capture for
logging and such logging incurs high CPU time overhead.

The previous works don’t satisfy our energy profiler
requirements. We describe an energy profiler by following
the model design of [3][5]. This approach makes it easy to
cover the overall system, has low logging overheads, and
allows the model to be extended to account for the features of
recent hardware components like ARO
.

2.2 Energy Estimation using Power Model
We describe here our device power model for energy

estimation. As follows, the device model is expressed as the
sum of the power consumption of each hardware component.

∑+=
N

i
iioffsetest pccP (1)

Where is the total power consumption of the device.

N is the number of hardware components. ip is a
parameter that covers the power consumption of hardware
component i . offsetc and ic are coefficients to be
determined through multiple regression analysis.

Figure 1 shows the process of power characterization to
generate the power model of a specific device. As in the
existing scheme [5], power characterization is done by
multiple regression analysis using the above equation and
training programs to collect training data used in the analysis.

To collect the data, sets of power consumption values and
parameter values, ip , are measured under many test cases by
the programs that run on the device. The coefficients of the
equation, offsetc and ic , are then obtained as a result of
analyzing the training data.

One of our key points is that the parameters should be
easy-to-obtained common values, such as CPU utilization,
because it allows the process of power characterization to be
as independent of device type as possible. We follow the
basic design of our existing power model but extend it to
cover the new features of multi-core CPUs and 3G/LTE.

2.2.1 Multi-core CPU
Recent smartphones use multi-core CPUs that can switch

the number of active cores and scale frequency for energy-
efficiency. Because our existing model assumes a single core
CPU and only CPU utilization is used as a parameter, it has
difficulty in accurately estimating the power consumption.
We introduce a new model that can handle the complexity of
multi-core operation.

Our new multi-core CPU power model is expressed as
follows.

∑∑ ==

+++=
N

i
iii

N

i
ii

coreNcorecorecpu

ufcpc

PPPP 21

 (2)

Where cpuP and 1coreP to coreNP are the overall power
consumption of target CPU and the power consumption of
each core in the CPU. We assume power consumption of
each core can be separately modeled because recent
frequency scaling technology allows cores to work
independently.

4 H. Inamura et al. / Extending Battery Lifetime in Smartphones with Power Efficient Task Management and Energy Aware Design Tool

Figure 2: RRC State transition

Table 1: Power Model of Target Device

Table 2: Values of Coefficients

i Coefficient i Coefficient
0 1.462e-01 11 8.000e-08
1 1.375e-09 12 2.048e-08
2 1.162e-07 13 3.892e-02
3 2.340e-04 14 1.723e-02
4 1.563e-01 15 3.210e-02
5 3.265e-07 16 1.633e-07
6 1.107e-07 17 1.218e-07
7 1.179e-01 18 3.712e-02
8 1.384e-02 19 3.307e-10
9 1.402e-02 20 1.336e-09
10 2.054e-01 21 7.797e-10

ic , ip , if and iu are the coefficient and parameter for
core i, frequency value of core I, and CPU utilization rate of
core I, respectively. As shown in (2), we define the core’s
work load, the product of if and iu , as a new power
consumption parameter for each core. This is because we
think the parameter should allow consideration of the change
of performance due to dynamic frequency scaling.

2.2.2 3G/LTE
In 3G/LTE networks, wireless link between device and

base station is managed by RRC (Radio Resource Control),
which handles the bearer setup and release, and mobility

management [8][9]. The multiple link states, called RRC
State, are defined in Fig.2, and the state is automatically
switched depending on data transfer from/to device for the
purpose of efficient use of wireless resources.

For example in the case of 3G, DCH is the state for the
high throughput data transfer when using applications. FACH
is the state for only low throughput. PCH is the stand-by state
(entered when no data is transferred within a certain period).
IDLE is the state of wireless link released. State transitions
occur in various conditions as defined in RRC, such as data
transfer defined in each state. For example, upper transition
to DCH from lower states occurs when data transfer is
requested. A lower transition to FACH, PCH or IDLE occurs
after the inactivity timer, which runs while no data is being
transferred, times-out. From the point of power consumption,
it is known that more power is consumed in the upper state.

ARO accurately estimates the power consumption of the
3G/LTE interface using RRC State as a model parameter. In
addition, ARO obtains the parameter value by RRC State
estimation because the state cannot be directly accessed on
general devices. Therefore, ARO loads the RRC State
machine; it estimates the states by detecting data transfer
from packet capture data (pcap), that is collected by the
device. However, this can impose big CPU time overhead and
needs super-user privileges. These limitations do not yield a
widely provided, easy-to-use, profiler for general application
developers.

In our work, we follow the basic idea of ARO’s RRC state
machine to extend our existing power model of wireless
interface, and avoid the limitations noted. In detail, we
replace packet capture logging with lightweight periodic
logging of network statistics, which are easily accessed at the
OS or API-level, such as /proc/net/dev. This yields much
lower overheads because data volume is less than with than
packet capture.

2.2.3 Result of Power Characterization
We show a result of power characterization for a real

Android device that uses Qualcomm’s MSM8960 [9] chipset.
Model equations including parameters are shown in Table 1,
and values of coefficients are shown in Table 2.

2.3 Application Energy Profiler
This chapter describes our application energy profiler

equipped with the power model generated in the last chapter.
Figure 4 shows the functional design of the profiler. The
system consists of the Logger application, which runs on the
device to collect the data needed for energy profiling, and the
energy profiler, which analyzes energy consumption of the
target application.

The logger application collects the log data needed for
parameter generation at one second intervals while the target
application is active. The energy profiler calculates the
device’s average power consumption in one second periods
using the parameter values generated from the log data.
Finally, the profiler shows the energy consumed by the
application on a time chart, see Fig.3. The power breakdown
for each hardware component is also shown in the chart. It
enables the application developer to become aware of what
factor in driving power consumption.

Componen
t

Model Equation

CPU
222111 corecorecorecore ufcufc +

Display
brightnesspc3

3G ()
idlepch

fachpchrcvBpssendBps

pcpc
pcppcpcc

98

7654

++

+++

LTE ()

LTEidleLTEcdrx

edLTEconnectrcvBpssendBps

pcpc
ppcpcc

1413

121110

++

++

Wi-Fi () flagWiFircvBpssendBps ppcpcc 171615 ++

GPS
gpspc18

Disk
writeBytereadByte pcpc 2019 +

GPU
gpuLoadpc21

International Journal of Informatics Society, VOL.6, NO.1 (2014) 3-10 5

Figure 4: Functional design of Energy Profiler

2.4 Evaluation

We evaluated our energy profiler according to the two
requirements, 1) accurate power estimation and 2)
lightweight online logging, respectively.

2.4.1 Estimation Accuracy
To evaluate the accuracy of the energy estimates we

actually measured the consumption under the following
commonly used application usage of Mail, Map, Calendar,
Movie player and Phonebook.

Figure 3 compares measured and estimated power
consumption for the mail scenario 1). It is confirmed that the
estimation basically follows the actual consumption for the
entire period.

Through the all scenario, the profiler estimates energy
consumption with about 10% error in application-mix as
shown in Fig.3. Thus, it is considered that the profiler can
works with constant accuracy.

However, at most 0.1A errors are observed around at 20
second, the period of 40 to 90 second and around at 110
second in Fig.3. We suppose the feature of display causes
these errors because the device used in this time is equipped
with OLED display; however our power model originally
assumes LCD display. According to previous work [7],

power consumption of OLED depends on the color and is able
to be explained by RGB value of each pixel. As a result,
dynamic change of color tone on the screen occurred and
became the error factor.

Figure 5: Estimation error in each scenario.

2.4.2 Overhead of logging

According to requirement 2), lightweight logging is
important so as not to disturb natural use of the application in
the tests. We pointed out the problem of ARO’s logging
overhead and presented a more lightweight logging approach
for RRC State estimation to satisfy the requirement. Thus we
compared the proposal to ARO in terms of CPU time
overhead.

Figure 6: Comparison of CPU time overhead for logging

Figure 3: Estimated and measured power consumption for the mail application scenario.

6 H. Inamura et al. / Extending Battery Lifetime in Smartphones with Power Efficient Task Management and Energy Aware Design Tool

The logger application collects log data every second
while the target application is running. First, we measured
CPU utilization in the following test cases in order to
understand the application’s overhead.

(1) Leave the device as it is without logging

(2) Leave the device as it is with logging proposal

The results, shown in Fig.6, indicate that logging imposes
3.8 % of CPU time overhead (compare (1) to (2)).

Next, we test following test cases to compare the overhead
of our logging with that of ARO.

(3) Automatic browsing without logging

(4) Automatic browsing with logging proposal

(5) Automatic browsing with ARO logging (pcap)

 These test cases must involve data transfer because
ARO’s logging is packets capture and work on only condition
that data transfer occurs. We use a test program that
automatically download and display fixed Web pages on
browser.

From the results of (3)-(5), the overhead of our logging
proposal is 3.6% (compare (3) to (4)), whereas ARO’s
overhead is 25.7 %. As CPU utilization is one of the
parameters of the CPU power model presented in section 2.2,
the power consumption increases due to this overhead.
Therefore, energy consumption estimated using packet
capture could differ from the real consumption in normal
usage of the application. Offsetting this effect is rather
difficult because CPU load of packet capture depends on
traffic pattern/volume of application usage. Furthermore,
many applications for smartphones generally involve data
transfer. Thus ARO logging may disturb natural application
usage in many cases.

CPU overhead of our periodic logging proposal is small
and always constant because it doesn’t depend on the kind of
application used. As stated above, our method achieves both
accurate and lightweight estimation of 3G/LTE power
consumption.

3. OPTIMIZING THE SYSTEM POWER-
EFFICIENT IN BACKGROUND TASKS FOR
EXISTING APPLICATIONS

We describe it is possible to improve the power efficiency
in the execution of background tasks by shifting the execution
timing. On the managing the execution timing, we need to
consider the possibility of the synchronization of task
invocations among device, since it may leads to network
congestion if the communicating tasks are involved.

3.1 The BG task management mechanisms
 Android OS has AlarmManager (AM) [12] that is a
mechanism to invoke registered tasks at specified time and
Broadcast Intent (BI) [13] that start tasks on the specified
state change in the device during the circulation of event
message. In this paper, we define wakeup task for tasks
calling AM API having time spec with waking up directive
(namely, RTC_WAKEUP,
ELAPSED_REALTIME_WAKEUP). When the specified
time has come, they wake up the device if it asleep. We also

define non-wakeup task for tasks using non-wake up directive
(namely, RTC，ELAPSED_REALTIME). The non-wakeup
tasks are executed at exact time specified if the device already
running, and at the most recent wakeup if the device asleep at
the specified time.

The BG task invocation on state change happen when the
devices’ status has changed such as the screen turned on/off,
change in the battery status and receipt on SMS, so on. For
example, suppose a battery meter application that displays the
remaining amount of electric energy in the battery. If the
amount changed, the Android OS notify the event using a
Broadcast Intent (BI) and the application updates the
displayed info. In order to circulate the BI, the device is
waked up. Therefore, the wake up for BI circulation will
initiate the BG task invocation scheduled in AM. We define
the BG task that is executed on BI, as system event (BI).

3.2 Avoiding the network congestion caused by
the simultaneous invocation of BG tasks
 We need to avoid the network congestion while enabling
the simultaneous execution of background tasks for power
efficiency.

3.2.1 Network Congestion by simultaneous BG task
invocations

Since it is possible to specify the time of BG task
invocation precisely in AM API, the network congestion is
concerned caused by simultaneous BG tasks invocation at the
specific time among many devices with the software created
and operated carelessly [14][15]. The
interworking/interference between wakeup task and non-
wakeup task can synchronize devices globally at specific time.
We define such unintended synchronization as “sync by
interference” that occur when the device wakes-up with
wakeup task, the device runs non-wakeup tasks. The issue is
the invocation of non-wakeup tasks aligning to the specific
time the wakeup task stated. In order to avoid the network
congestion, we need to suppress the “synch by interference”
among tasks that may initiates network communication when
it is invocated. For preventing the network congestion by
application activities, suppressing the “synch by interference”
is important issue.

Figure 7: Non-wakeup task is invoked with wakeup task,

which causes unintended global synchronization
of task invocation among devices

3.3 Case: A Global Synchronization by SBI

Figure 1 shows the two devices, namely phone1 and
phone2, each has been installed app A and app B. The app A
wakes up device at 6am every day, and it does not start any

International Journal of Informatics Society, VOL.6, NO.1 (2014) 3-10 7

communication but does some housekeeping task. The app B
is a non-wakeup task and will start connection to other servers.
As shown in Fig.1, even if the start timing for app B set to
different time stamp such as 5:58 and 5:55, the invocation of
app B is pending towards 6am, the app A will invokes app B
in both cases by the device wakeup. So the app B will start
communication at 6am for both devices at globally
synchronized. It is easy for developers to expect the
synchronization caused by communicating app that wakes up
at specific time. The difficulty is to foresee the wakeup task
without networking can cause congestion. Under such
circumstances, the developer may specify every 00 minutes
or 30 minutes of much “aligned” time for the invocation in
the application. The developer of app B pays no attention for
the possibility of congestion, since it does not specify exact
time for invocation. Still, as shown here, there is possibility
for global synchronization by the combination of different
type of BG tasks.

3.4 Related Works
 We could not find any single previous work to cover our
issue. For the power optimization by simultaneous task
execution, Calder [17], Kononen [18] showed the
effectiveness. But we need consideration for network
congestion. Yamamoto [19] and other related study [20]
worked on power optimization and avoiding network
congestion, still we need to preserve developer’ s design for
controlling the invocation timing. Although the task killer
applications [16] are solving the power issues utilizing user
intervention, they do not keep original behavior in
applications.

3.5 Issues in BG task management mechanism
and a proposal for a new control scheme
 We propose a new BG task management mechanism that
simultaneously invokes non-wakeup task with wakeup task in
inexact type only. The mechanism preserves their semantics
since the invocation timing in non-wakeup tasks have
arbitrariness in BG and in wakeup task with inexact type is
chosen by system inherently. Our proposal can reduce the
energy consumption in BG task and avoid the network
congestion.

3.5.1 Implication in API semantics provided by
AlarmManager
In order to modify the invocation timing of BG tasks with less
impact to intended behavior in the applications, we need to
control them keeping the real time semantics designed in AM
API. According to the API design, the real-time semantics
can be classified into following three categories.

 Exact real time(API: wakeup task with ‘exact’ specifier)
The execution time needs to align with real time clock’s
specific time stamp.

 Exact interval(API: wakeup task with ‘inexact’
specifier)

The invocation need not be exactly specified time, but the
interval between the invocations should be specified amount
of time. AM has an SetInexactRepeating API for the purpose
that keeps the interval, with the first invocation the system
specified.
 Non real time (API: Non wakeup task)
There is no strong requirement in the invocation time and
their interval in BG execution. Since it does not wake up the
device, the invocation is opportunistic that any time after the
designated time is acceptable, during the screen is off.

3.5.2 Avoiding the global synchronization between task
invocations
The current implementation of AM invokes the non-wakeup
tasks on device wakeup caused by the system events (BI) or
wakeup tasks and they are executed altogether The “synch by
interference” (SBI) happens when simultaneous execution of
wakeup tasks with exact designation and non-wakeup task.
Since system chooses specific timing for the wakeup task
with inexact designate, it does not cause SBI issue. In order
to prevent SBI, we propose a mechanism that exclude wakeup
task with exact designate from simultaneous execution with
non-wakeup tasks.

3.5.3 Power Reduction in simultaneous execution of Non-
wakeup tasks
Using a model equation, we describe the energy consumption
can be reduced by simultaneous execution of non-wakeup
tasks and wakeup tasks better than non-wakeup tasks and
system events (BI). As showed in Sec 2, non-wakeup tasks
are executed on the device wakeup later than specified time
stamp. So, non-wakeup task (N) is simultaneously executed
with either wakeup task (W) or system events (BI).

 ∑ +
i

NWBI
coffi PPt

},,{
)(

The power consumption with the simultaneous execution

of all the three types (W, N, BI) is described as follows. Let

offP as the baseline power consumption of zero utilization in

all resources. cP as the averaged power consumption over

unit time. },,{ BIWNt are the execution time for each type of
BG tasks respectively non-wakeup (N), wakeup (W) and
system events (BI). With the optimized simultaneous
execution in our proposal, the power consumption modeled
as follows. For timing manipulation, because we cannot
change the timing of wakeup (W) and system event (BI), we
will set the non-wakeup (N) aligned to either one of (W, BI)
to be invoked. The power offset are shared during the
simultaneous execution.

8 H. Inamura et al. / Extending Battery Lifetime in Smartphones with Power Efficient Task Management and Energy Aware Design Tool

Figure 8: Evaluation of Our Proposed Method

Based on Sec 3.1, suppose the execution time is the longest
among the tasks executed in parallel and the resource
utilization will be the total of each, the power consumption is
given in;









+
+

+∑
BINW

WNBI
i

NWBI
offic ttt

ttt
PtP

),max(
),max(

min
},,{

Looking at Table 3 summarized the result in our user study,

comparing the averaged execution time for non-wakeup task
and system event are 7.8[s] and 0.5[s], respectively and
differs 1:16 ratio. Considering with the averaged execution
time in wakeup of 8.2[s], we see BINW ttt >≅ ; therefore,
the non-wakeup (N) task should be executed only with
wakeup (W). With the consideration, we derive the optimized
power consumption in model as;

)),(max(
},,{

∑ ++
i

NWBI
BINWoffic tttPtP

 The non-wakeup task should be executed with wakeup
task in the same time, which improves the power
consumption of the device as a whole.

Table 3: Average execution time of BG task

Execution Time
AM tasks system

event wakeup
task

non-wakeup
task

Average (sec) 8.2 7.8 0.5
Std. Dev. (sec) 3.1 2.4 0.1

3.6 BG task control scheme

We propose a mechanism that invokes non-wakeup task
only with Exact Interval wakeup. Since the execution timing
will be chosen by system and randomized in Exact Interval
wakeup, there is no risk for causing SBI. We have a chance
to optimize power efficiency in BG task by simultaneous
execution of non-wakeup tasks. As we discussed in 3.5.2,
execution with exact real-time may cause SBI. For power
efficiency, we exclude BI from execution opportunity as seen
in 3.5.3. The remaining timing opportunity for execution is
with Exact Interval wakeup in AM.

With this scheme, it is possible to apply the optimized BG
task invocation to existing applications as is, without re-
designing them to adopt to any new API. Our idea is
preserving real-time semantics in existing AM API with
minimum modification in task invocation policy.

3.7 Implementation and Evaluation
 We have implemented our proposed scheme on
AOSP Android r4.2.1. We have modified the task
invocation policy in AlarmManager into following;
1. Classify the trigger of wakeup
2. Only if the wakeup is caused by

SetInexactRepeating, invoke the pending non-
wakeup task

The power consumption of the device with the
implementation of our proposal and without are shown in
Fig.8(a) as 0.039[W] and 0.067[W], respectively. It means
40% reduction while screen turned off (call waiting). The
result explained as the reduction of execution time in BG
shown in 8(b). In addition, the synchronization between non-
wakeup task and exact designated wakeup task is 0.3
[times/hour] in our scheme, while 3.5 [times/hour] in normal
device. So, we could eliminate 90% of SI issue during the
screen is turned off.

Our proposed method ensures the real time constraint
designed in application and avoids re-design them for
improvements. So there is least impact for user and developer
perspective while achieving energy reduction. Also we could
effectively eliminated the issue of “synch by interference”
and network congestion that may be caused by concentration
of task execution among devices. Since the amount of traffic
from devices during the screen turned off is determined the
behavior of BG tasks, our proposal is successful in prevention
of network congestion as well.

4. SUMMARY AND CONCLUSION
In this paper we describe an approach to extending the battery
lifetime with these two issues and our proposals. With the
combination of solutions, the extension can be made both for
applications to be designed as well as existing applications on
the market.

We implemented a tool for developer to visualize how their
code consumes the energy, with low overhead for data
collection in runtime. Our implementation is a model-based
energy profiler for Android applications, taking account of
the features of multi-core CPUs and 3G/LTE; Experiments
showed that it estimates energy consumption with about 10%
error in the application-mix examined, and that logging incurs
a CPU time overhead of only 3.8%, which superior to other
profilers. We improved the power efficiency in the
background task management in Android OS and it showed
up to 40% power reduction for call waiting time. We also
pointed out the issue of “synch by interference” and our
scheme successfully suppresses the issue as well.

International Journal of Informatics Society, VOL.6, NO.1 (2014) 3-10 9

REFERENCES

[1] Google.Inc : Android http://www.android.com/about/. (accessed 2013-
04-21).

[2] H. Furusho，K. Hisazumi，T. Kamiyama，H. Inamura，T. Nakanishi,
and A. Fukuda, ``An Energy Profiler for Android Applications Used in
the Real World,’’ Proc. of the 10th International Conference on Mobile
Systems, Applications and Services (MobiSys'12), pp.517-518 (2012).

[3] T. Kamiyama, H. Inamura, and K. Ohta, ``Evaluation of Model based
Energy Profiler for Android Applications,’’ Proc. of DICOMO2013
Symosium, pp286-292 (2013).

[4] T. Kamiyama, and M. Katagiri, ``Visualization of mobile terminal
power consumption based on OS-level analysis,’’ NTT DOCOMO
Technical Journal, Vol.11 No.3, pp.72-76 (2009).

[5] Y. Kaneda, T. Okuhira, T. Ishihara, K. Hisazumi, T. Kamiyama, and
M. Katagiri, ``A Run-Time Power Analysis Method using OS-
Observable Parameters for Mobile Terminals,’’ Proc. of International
Conference on Embedded Systems and Intelligent Technology, pp.39-
44 (2010).

[6] F. Qian, Z. Wang, A. Gerber, Z. Morley Mao, S. Sen, and O.
Spatscheck, ``Profiling Resource Usage for Mobile Applications: A
Cross-layer Approach,’’ Proc. of MobiSys 2011, pp.321-334 (2011).

[7] M. Dong, and L.Zhong, ̀ `Chameleon: A Color-Adaptive Web Browser
for Mobile OLED Displays,’’ Proc. of MobiSys 2011, pp.85-98 (2011).

[8] 3GPP TS 25.331 Radio Resource Control (RRC); Protocol
specification, 3GPP Website, http://www.3gpp.org/ftp/Specs/html-
info/25331.htm.

[9] Qualcomm Inc.，http://www.qualcomm.com/snapdragon.
[10] 3G Specifications, 3GPP Website, http://www.3gpp.org/3GPP-

specifications.
[11] 3GPP TS 36.331 Evolved Universal Terrestrial Radio Access (E-

UTRA); Radio Resource Control (RRC); Protocol specification, 3GPP
Website, http://www.3gpp.org/ftp/Specs/html-info/36331.htm.

[12] Android API: Alarm Manager (online) available from
http://developer.android.com/intl/ja/reference/android/app/Al
armManager.html (accessed 2013-04-21).

[13] Android API: Broadcast Receiver
http://developer.android.com/reference/android/content/Context.html#
sendBroadcast(android.content.Intent (accessed 2013-04-21).

[14] T. Konishi, T. Kamiyama, S. Kawasaki, H. Inamura, ``Reducing the
use of Energy and Wireless Resources on Android Devices during
Screen Inactive Periods,’’ DPS Workshop IPSJ, pp. 249-256 (2012).

[15] S. Kawasaki, T. Kamiyama, S. Ohkubo, H. Inamura, ``A congestion
avoidance method for event delivery mechanism,’’ IPSJ SIG Technical
Report Vol 2012-CDS-6, pp.1-8 (2012).

[16] Google Play: Advanced task killer. (online) available from
https://play.google.com/store/apps/details?id=com.rechild.adv
ancedtaskkiller&hl=ja (accessed 2013-04-21).

[17] M. Calder, and M. Marina, ``Batch Scheduling of Recurrent
Applications for Energy Savings on Mobile Phones,’’ Proc. of 7th
Annual IEEE Communications Society Conference on Sensor Mesh
and Ad Hoc Communications and Networks (SECON2010), pp. 1–3
(2010).

[18] V. Kononen, and P. Paakkonen, ``Optimizing Power Consumption of
Always-On Applications Based on Timer Alignment,’’ Proc＾ of
COMSNETS2011, pp.1-8 (2011).

[19] T. Yamamoto, S. Saruwatari, M. Minami, H. Morikawa, ``Piggyback
Transport Protocol: Energy-efficient Upload Engine for Participatory
Sensing,’’ Journal of IPSJ, Vol.53, No.1, pp.274–285 (2012).

[20] E.J. Vergara, and S. Nadjm-Tehrani, ``Energy-aware Cross-layer Burst
Buffering for Wireless Communication,’’ Proc. of the 3rd International
Conference on Future Energy Systems: Where Energy, Computing and
Communication Meet. e-Energy '12, pp.1-10 (2012).

(Received December 29, 2013)
(Revised March 26, 2014)

Hiroshi Inamura joined NTT
DOCOMO, Inc. in 1998. His research
interests include system research on
mobile device and distributed system.
Before DOCOMO, he was a research
engineer in NTT labs since 1990.
From 1994 to 1995, he was a visited
researcher in the Department of

Computer Science, Carnegie Mellon University. He
received B.E., M.E. and D.E. degree in Keio University,
Japan. He is a member of IPSJ, IEICE, ACM and IEEE.

Teppei Konishi His main research
interests include energy-efficient task
scheduling for Android OS. He
received B.E. and M.E. degree in
Osaka University, Japan. He is
currently a research engineer at
Research Laboratories, NTT

DoCoMo Inc. He is a member of IPSJ.

Takeshi Kamiyama joined NTT
DOCOMO, Inc. in 2006. His research
interests include system research,
especially energy-efficient design, on
mobile device and distributed system.
Before DOCOMO, he received MS
degree in University of Tokyo, Japan
in 2006. Also, he was co-founder and

CEO in e-jis, Inc. from 2003 to 2006. He is a menber of
IPSJ.

Ken Ohta received the BE, ME, and
DE degrees from Shizuoka
University, Japan in 1994, 1996, and
1998, respectively. In 1999, he joined
NTT Mobile Communications
Network Inc. (NTT DOCOMO). His
research interests include mobile
computing, distributed systems, and

system security. He is a member of the Information
Processing Society of Japan and of the Institute of
Electronics, Information and Communication Engineers.

10 H. Inamura et al. / Extending Battery Lifetime in Smartphones with Power Efficient Task Management and Energy Aware Design Tool

