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Abstract - Ensuring the reliability of embedded systems
has become very important. Reliability may be ensured by
a number of formal verification techniques including model
checking. We study one such verification technique through
a physical example of an embedded system, a line tracing
robot. This paper describes how to model the behavior of
a line tracing robot program as a network of timed automata
and we also present experimental results for this verification
by the UPPAAL model checker. The line tracer was built us-
ing LEGO Mindstorms and this paper also describes the im-
plementation using LeJOS, a Java development environment
for LEGO Mindstorms.

Keywords: Embedded System, Real-time System, Formal
Verification, Timed Automaton

1 INTRODUCTION

Embedded systems have become ubiquitous in our society
touching many aspects of our daily life. Ensuring the safety
properties of these embedded systems has become crucially
important. Model checking techniques are often used in order
to ensure these properties. Most model checking techniques
are based on the finite state machine model. The behavior of
the target system is modeled as a tuple of automata. Usually,
program variables, such as integer variables, are translated
into corresponding state variables. For example, a general 32-
bit integer variable might be translated into an 8-bit integer as
long as the target program does not use constants with val-
ues lying outside the -128 – 127 range available. Even with
these constraints such modeling can detect important faults
during the design phase. Some embedded systems, however,
require time properties in their specification. Several mod-
els have been proposed to deal with such real-time systems.
One such model is the timed automaton, proposed by Alur
and Dill [1]. The most interesting point of the timed automa-
ton model is that it uses clock variables which range over
real numbers. Locations and transitions within the timed au-
tomaton model have a limited form of syntax for applying
constraints on clocks. Timed automaton models can, there-
fore, naturally represent the behavior of real-time systems.
The most popular verifier for the timed automaton model is
UPPAAL [2], developed by Wang-Yi’s research group. The
timed automaton used in UPPAAL is a strong extension of
the original timed automaton. It can deal with bounded inte-
ger variables and guard expressions on transitions can express

constraints on such variables. Several successful applications
of UPPAAL have been reported, these include verification of
audio-video protocols [3], a gear controller [4], and timeliness
properties of multimedia systems [5].

Embedded systems sometimes control continuous systems.
For example, a water level controller may observe the level
in a certain tank and control the inflow and outflow valves
associated with that tank. Note that the water level and the
valve flow are usually continuous values. Hybrid automaton
models have been proposed in order to deal with such systems
consisting of discrete and continuous sub-systems. Several
studies have proposed simulators for hybrid systems.

The question at the core of our research is how can we for-
mally verify the behavior of such hybrid systems [6]? Our
first step is to find what properties can be verified using con-
ventional verifiers such as UPPAAL by working on a real ap-
plication. We use a line tracer as our application for the fol-
lowing reasons.

• It contains time properties as design specification;

• We can implement a real system with reasonable costs
using LEGO Mindstorms kit [7];

• We can freely describe the control program in Java us-
ing LeJOS [8].

A line tracer is an autonomous robot which traces a line painted
in black on white background sheet according to values read
by color sensors.

Through experiments, we have succeeded in the verifica-
tion of safety properties of a line tracer, using timed automa-
ton model and UPPAAL. The main contributions of this study
are; i) the translation of a control program and its operating
environment into a formal model, and ii) to show applicabil-
ity of model checking for verifying embedded systems. Our
study is still in its preliminary stage because we set limita-
tions such as no disturbance and handling only straight lines.
However, we believe that this study leads to verification of
real embedded systems using model checking.

The rest of the paper is organized as follows. Sec. 2 outlines
the foundations of our work. Sec. 3 and Sec. 4 describe the
model and implementation of our line tracer. Sec. 5 presents
preliminary but promising experimental results and Sec. 6 of-
fers some discussion of these results. Finally, Sec. 7 provides
a concluding summary and outlines future plans for our work.
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2 PRELIMINARIES

Here, we will briefly outline the background to our work
and introduce definitions and notions used in this paper.

2.1 Timed Automata

A timed automaton is an extension of the conventional au-
tomaton with clock variables and constraints for expressing
real-time dynamics. These are widely used in the modeling
and analysis of real-time systems.

Definition 1 (constraints) We use the following constraints
on clocks.

1. C represents a finite set of clocks.

2. Constraintsc(C) over clocksC are expressed as in-
equalities in the following BNF (Bacchus Naur Form).

E ::= x ∼ a | x− y ∼ b | E1 ∧ E2,

wherex, y ∈ C,∼∈ {≤,≥, <,>,=}, anda, b ∈ R≥0,
in whichR≥0, is a set of all non-negative real numbers.

Time constraints are used to mark edges and nodes of the
timed automata and for describing the guards and invariants.

Definition 2 (timed automaton) A timed automatonA is a
6-tuple(A,L, l0, C, T, I), where

• A: a finite set of actions;

• L: a finite set of locations;

• l0 ∈ L: an initial location;

• C: a finite set of clocks;

• T ⊆ L×c(C)×A×2C ×L is a set of transitions. The
second and fourth items are called a guard and clock
resets, respectively; and

• I : L → c(C) is a mapping from location to clock
constraints, called a location invariant.

A transitiont = (l1, g, a, r, l2) ∈ T is denoted byl1
a,g,r→

l2.
A mapv : C → R≥0, is called a clock assignment (or clock

valuation). We define(v + d)(x) = v(x) + d for d ∈ R≥0

and somex ∈ C.
For guards, resets and location invariants, we introduce

some notation for clock valuations. For each guardg ∈ c(C),
a functiong(v) stands for the valuation of the guard expres-
sion g with the clock valuationv. For each resetr, where
r ∈ 2C , we introduce a function denoted byr(v), and let
r(v) = v[x 7→ 0], x ∈ r. For each location invariantI, we
shall introduce a function denoted byI(l)(v), which stands
for the valuation of the location invariantI(l) of location l
with the clock valuationv.

The dynamics of a timed automaton may be expressed via
a set of states and their evaluations. Changes from one state to
a new state may be as a result of either the firing of an action
or an elapsed time.

Definition 3 (state of timed automaton) For a given timed
automatonA = (A,L, l0, C, T, I), let S = L × RC

≥0 be the
complete set of states ofA , whereRC

≥0 is a complete set of
clock evaluations onC.

The initial state ofA can be given as(l0, 0C) ∈ S. For a
transitionl1

a,g,r→ l2, the following two transitions are seman-
tically defined. The first one is called an action transition,
while the latter one is called a delay transition.

l1
a,g,r→ l2, g(v), I(l2)(r(v))

(l1, v)
a⇒ (l2, r(v))

,
∀d′ ≤ d I(l1)(v + d′)

(l1, v)
d⇒ (l1, v + d)

The semantics of a timed automaton can be interpreted as
a labeled transition system.

Definition 4 (semantics of a timed automaton)For a timed
automatonA = (A,L, l0, C, T, I), an infinite transition sys-
tem is defined according to the semantics ofA , where the
model begins with the initial state. ByT (A ) = (S, s0,

α⇒),
the semantic model ofA is denoted, whereα ∈ A ∪ R≥0.

Definition 5 (run of a timed automaton) For a timed automa-
ton A , a runσ is finite or infinite sequence of transitions of
T (A ).
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒ · · ·

2.2 Computation Tree Logic

In model checking, specifications are written as logical for-
mulas. Computation Tree Logic (CTL) [9] is a temporal logic
suited to dealing with such formulas. Using CTL we are able
to describe specifications relating to behaviors of a program
for a line tracer robot.

Let APbe a set of atomic propositions. The syntax of CTL
is defined as follows:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∨ φ | φ ∧ φ | φ → φ
| AXφ | EXφ | A♢φ | E♢φ | A□φ | E□φ
| A[φ Uφ] | E[φ Uφ],

wherep is an atomic proposition inAP. The symbols⊥, ⊤,
¬, ∨, ∧ and→ have their usual meanings. The symbolsX
(“next”), ♢ (“eventually”),□ (“globally”), andU (“until”) are
temporal operators. The symbolsA (“always”) andE (“ex-
ists”) are path quantifiers. Intuitively, temporal operators rep-
resent statements of a path, and path quantifiers represent
statements on one or more paths which are branching for-
wards from a state. In a CTL formula, temporal operators
are preceded by a path quantifier. Due to space limitation, we
omit semantics. Please refer to Emerson [9] for details of the
semantics of CTL.

For example, a safety property that “variablex is less than
10 for all paths” is written as a CTL formulaA□(x < 10).

2.3 UPPAAL

UPPAAL, Wang-Yi et al. [2], is a popular model checker
for extended timed automata. It supports model checking for
both conventional and timed automata. UPPAAL allows ver-
ification of expressions described in an extended version of
CTL. In addition, it supports local and global integers and
primitive operations on integers, such as addition, subtract
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andmultiplication with constants. Such expressions are also
allowed on the guards of transitions. System models can be
created from multiple timed automata which are synchronized
via a CCS (Common-Channel Signaling)-like synchroniza-
tion mechanisms.

An important point is that, with the exception of clocks, the
extended timed automaton used in UPPAAL cannot deal with
real valued variables. We, therefore, have to round real values
to integer values when we model the target systems.

3 MODEL

A “line tracer” is a vehicle which traces a course, assumed
to be painted in black on white background using a line of
constant width. The line tracer’s starting point may or may
not be on the course. For example, an oval course (the same
as the track used in an athletic field) is frequently used.

A model for a line tracer consists of the following three
models:

• Controller Behavior;

• State Transition of Environment;

• Disturbance.

Controller behavior can be modeled using a state machine.
Usually, controller programs change the values of some state
variables depending on the values of other state variables.

For example, the state variables of a line tracer may be the
location of the tracer, the locations of the right and left sen-
sors, the output values of the right and left sensors, direc-
tion of the line tracer and the rotation speed of left and right
wheels.

The output values of the right and left sensors are used as
inputs to the controller. The rotation speed of left and right
wheels are set by outputs from the controller.

State transitions in the environment are usually represented
by differential equations on state variables. In a hybrid sys-
tem, such equations are used, while in a finite state model,
differential-difference equations are used as an approxima-
tion.

For a line tracer, the principle state variables are summa-
rized in Table 1.

We need some additional constants to complete the model,
more specifically, these describe the physical dimensions of
the line tracer. These are listed in table 2,los, ros are a tuple
of (l, a), wherel anda are distance and angle relative to the
center of the vehicle. Figure 1 illustrates the relationships
between state variables and constants.

Let us assume that a line tracer turns at speed directly re-
lated to that of the left and right wheels,hs andls. Then its
equation of motion can be written as follows.

dθ

dt
=

hs − ls
w

(1)

dx

dt
= −rc · sin θ ·

dθ

dt
(2)

dy

dt
= rc · cos θ ·

dθ

dt
(3)

Table 1: State Variables of a Line Tracer
variable description
x: x-coordinateof the center of a line tracer
y: y-coordinate of the center of a line tracer
θ: direction of a line tracer
slx: x-coordinate of the left sensor of a line tracer
sly: y-coordinate of the left sensor of a line tracer
srx: x-coordinate of the right sensor of a line

tracer
sry: y-coordinate of the right sensor of a line

tracer
wl: revolution speed of the left wheel of a line

tracer
wr: revolution speed of the right wheel of a line

tracer
sl: the sensed value of left sensor
sr: the sensed value of right sensor

Table 2: Constants
constant description
w : width between left and right wheels of the

line tracer
los: offset to the left sensor from the vehicle cen-

ter
ros: offset to the right sensor from the vehicle cen-

ter
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Figure1: Constants and State Variables

International Journal of Informatics Society, VOL.5, NO.3 (2013) 147-155 149



Table 3: Conversion Table for Sine Function
domainof x (degree) round of100× sin(x)
[0, 10) 8
[10, 20) 26
[20, 30) 42
[30, 40) 57
[40, 50) 71
[50, 60) 82
[60, 70) 91
[70, 80) 96
...

...
[350, 360) -9

rc =
w

2
· hs + ls
hs − ls

(4)

Disturbancescan be modeled as an uncertainty error for
each of the observed variables. For example, the line tracer’s
sensor output value,s, may change with an uncertainty value
given by the following equation:so = sr+ε(s), whereso, sr,
andε(s) represent the observed value, ideal value and error in
observation, respectively.

3.1 Quantization

The timed automaton used in UPPAAL can model the be-
havior of our controller. As we have noted above, however,
UPPAAL uses integer variables only. Most of the state vari-
ables in our model have real values, therefore, we must ap-
proximate these as integer variables.

Most of our state variables use trigonometric functions (for
example, equations (2) and (3)). Thus, we have to approxi-
mate these functions by rounding to integer values as long as
we use finite models. The values of trigonometric functions
range in [-1,1], this is clearly not suited to integer representa-
tion which would give only three values -1, 0, and 1. There-
fore, we assume that trigonometric functions range in [-100,
100]. Also we adopt degree as unit for angle. Table 3 shows
an approximation conversion table for the sine function.

3.2 Sampling

Another problem is that we cannot deal with functions on
time. Usually state variables can be represented as a function
on time, however, UPPAAL does not provide suitable func-
tions. Therefore, we have to regard state variables as discrete
signals.

Sampling is a useful method for reducing a continuous sig-
nal into a discrete signal. For a discrete signal, we can then
model its change in time as a timed automaton with update
functions.

Let us consider the state variablesx, y, θ, slx, sly, srx,
sry, wl, wr, sl, andsr. Values forslx andsly are calculated
usingx and y with the constants listed in Table 2. Values
for sl andsr are determined from the values ofx, y, los and
ros, and a course model, which consists of some parameters
and the equations of the course. The values ofwl andwr are
determined by the controller.

Table 4: Logic for Color Sensors
RightSensor

black white

LeftSensor
black gostraight turn left
white turn right gostraight

Therefore,we need calculate the current value ofx, y and
θ using equations (1)∼ (4).

Using sampling and update functions, we can construct a
model where the values of variables are updated at a fixed
time interval using small deltas. We will describe update ex-
pressions in detail in Sec. 5.

4 IMPLEMENTATION

LEGO Mindstorms NXT [10] is a kit for assembling robots
and machines with various actuators and sensors. These robots
and machines can be programmed with user defined behav-
iors. The actuators include stepping motors which allow ac-
curate control of rotation angles. There is a range of sensors
which include color sensors, touch sensors, and sound sen-
sors. Various programming languages are available for pro-
gramming the NXT kit. The most popular languages are NXC
(Not eXactly C) [11] and LeJOS which is a Java development
environment. NXC and LeJOS have program classes for NXT
sensors and actuators.

This research uses LeJOS for developing the control pro-
gram for a line tracer. Our line tracer has two color sensors
located left front and right front of the tracing car.

Table 4 shows the controller logic associated with these
sensors. If, for example, LeftSensor and RightSensor sense
white and black respectively, then the controller issues a “turn
right” command to the motors.

The output of these sensors is a bounded integer value. If
the value is greater than some threshold level then the con-
troller treats it as white. Wheel motors react independently to
turn commands. For example, “turn left” makes left and right
wheel motors speed up and slow down, respectively.

Figure 2 shows the controller in LeJOS. Figure 3 shows the
physical implementation as a line tracer robot.

5 EXPERIMENTS

Here, we consider an ideal model and we ignore distur-
bances. In this experiment we use a simple controller pro-
gram, where the rotation speed of the wheels has only two
values,hs andls. Also, we assume that sensors discriminate
only between white and black in the robot’s operating envi-
ronment. In other words, the values ofsl andsr are depen-
dent on the position of the line tracer. We explicitly model
the delays in sensors and actuators. We do this by setting pa-
rametersds, da, anddt for delay between the time when the
program senses color and the time when the sensors obtain
the values of colors, delay between the time when the pro-
gram issues a command and the time when the motor reacts,
and sleeping time before next sense-act loop, respectively.
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import lejos.nxt.Button;
import lejos.nxt.ColorSensor;
import lejos.nxt.SensorPort;
import lejos.nxt.ColorSensor.Color;
import lejos.nxt.LCD;
import lejos.nxt.Motor;
public class Controller {

public static void main(String[] args)
throws Exception {

int rid,lid;
final int HS = 420, LS = 120, BLACK = 7,
MS = 360, HSEC = 500;
Color colorR ,colorL;
ColorSensor sensorR =

new ColorSensor(SensorPort.S3);
// 1(S3):right

ColorSensor sensorL =
new ColorSensor(SensorPort.S4);
// 2(S4):left

Motor motor = new Motor();
motor.B.setSpeed(MS);
motor.C.setSpeed(MS);
Thread.sleep(HSEC);

// wait for devices to be stable
motor.B.forward();
motor.C.forward();
while(true) {

rid = sensorR.getColorID();
lid = sensorL.getColorID();
if (rid == BLACK)

motor.B.setSpeed(LS);
else motor.B.setSpeed(HS);
if (lid == BLACK)

motor.C.setSpeed(LS);
else

motor.C.setSpeed(HS);
if (Button.readButtons()

== Button.ENTER.getId())
break;

}
}

}

Figure 2: Controller in LeJOS

Figure3: The Implemented Line Tracer

Figure4: Timed Automaton Representing the Controller

Figure5: Timed Automaton Representing Update

For modeling and verifying the behavior of a line tracer,
it is necessary to model not only the controller program but
also position updates depending on the course that the robot is
tracing. We therefore use the two models shown in Figs. 4 and
5, which correspond to the controller and updating processes,
respectively.

The control behavior model shown in Fig. 4 corresponds
to the LeJOS programController described in Fig. 2.
As described in Section 4, theController decides motor
speeds according to the four possible combinations of read
values from the color sensors. This timed automaton repre-
sents the control program. From the initial location, repre-
sented by double circle, one can see that there are four transi-
tion each of which corresponds to a pair of sensor values.

Figure 5 shows the timed automaton which updates state
variables at regular, discrete time intervals. The automaton
periodically calls functionsupdateX, updateY, updateT, up-
dateL, andupdateR which update state variablesx, y, θ, sl,
andsr, respectively. The automaton deals with these in se-
quence first updating the value ofθ, and then the values ofx
andy. It then updates the values ofsl andsr based on the
new values ofx, y, andθ. The following equations forθ, x,
andy are used by the update functions.

θ′ = θ + α (5)

x′ = x+
wl + wr

2
cos θ (6)

y′ = y +
wl + wr

2
sin θ (7)

α = 90 · wr − wl

w · π
(8)
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If we assume that the time increment between samples is small
then the distance moved by the vehicle can be approximated
to (hs + ls)/2. The above equations use this fact. Note that
here we are using the pseudo sin/100 defined in Table 3
and not the standardsin function. Also we let the values
of the parameterp range in[0, 359] by using an expression
(p+ 360)%360.

To allow the updating of parameters including positions it
is necessary to include the course in model. We assume that
the course is a straight line along withx-axis. We also assume
that if the value ofx becomes greater than 1000 then it is reset
to 50. This device let a line tracer run infinitely in the finite
state model. The automaton shown in Fig. 5 incorporates in-
formation on the straight course.

We obtain a model representing the line tracer by combin-
ing the above-mentioned automata. We then checked the cor-
rectness of the line tracer program by verifying the following
queries

1. E♢(900 < x).

2. E♢(C.turnRight).

3. E♢(C.turnLeft).

4. E♢(C.unwanted).

5. A□¬(C.unwanted).

6. E♢(C.goStraight).

7. A□((x > 280) → (−100 < y < 100)).

8. A□((x > 280) → (θ < 10 ∨ 350 < θ)).

9. E♢((x > 280) → C.turnRight).

10. E♢((x > 280) → C.turnLeft).

The first of these, query (1), means that the line tracer will
reach the areax > 900. Queries (2) and (3) mean that the con-
troller eventually reaches stateC.turnRight andC.turnLeft.
Queries (4) and (5) mean that the controller eventually reaches
stateC.unwanted and that the controller never reaches state
C.unwanted, respectively, where both of sensors detect black
color. Note that queries (4) and (5) contradict each other, i.e.,
query (5) is negation of query (4). Query (6) means that the
controller eventually reaches stateC.goStraight.

Queries (7), (8), (9) and (10) use the assumption that the
line tracer is in stable state. Note that we consider that the
tracer is in a stable state after the pointx = 280. This can
be observed in traces of the simulation. The traces are ob-
tained from the UPPAAL using the simulation mode view.
Queries (7) and (8), respectively, mean that the line tracer
roughly keeps on track and moves in the appropriate direc-
tion when it is in its stable state. The last two queries mean
that the line tracer eventually turns left or right even if the
tracer is in stable state.

Each of these queries (except for query (4)) was verified
successfully using the parameters in Table 5. Verifications
were performed within one second using UPPAAL ver. 4.0.13
on Windows 7 64 bit OS, Intel Core i7 960 3.20GHz, with

Table 5: Parameters used for Verification
params value description
wc: 100 width of the track line
w: 120 width between left and right

wheels of the line tracer
los: (180,30◦) offset to the left sensor from

the vehicle center
ros: (180,−30◦) offset to the right sensor from

the vehicle center
hs: 12 high speed
ls: 6 low speed
x0: -200 initial value of x-coordinate of

the center of the vehicle
y0: 200 initial value of y-coordinate of

the center of the vehicle
θ0: 340◦ initial value of direction of the

vehicle
ds: 1 time delay of sensors
da: 1 time delay of actuators
ds: 2 periodical sleeping time

12 GB memory. Figure 6 shows verification process using
UPPAAL.

Every query, except for query (4), represents a specification
that the line tracer has to satisfy. Ideally, conjunction of all
queries should be verified. Unfortunately, UPPAAL does not
allow nesting of path quantifiers in a formula so we verified
the queries one by one. However, when we consider all the
queries together, they describe necessary conditions to check
the behavior of the line tracer.

Let us consider the effect of changing parameters. Query
(4) is verified if we change the parameterslos and ros to
(170,30◦) and (170, -30◦). As an obvious consequence of this
Query (5) is no longer verified. This is because changing the
positions of the two sensors,los andros, reduces the distance
between them. If the width of line is unchanged then the pos-
sibility of both sensors detecting black becomes higher. Veri-
fication of query (4) means that stateC.unwanted is eventu-
ally reached.

6 DISCUSSION

Here we discuss our experiments and consider related work
in the field of control engineering.

6.1 Discussions on the Experiments

These experimental results are not enough to convince us
that the line tracer runs safely. They do, however, show that
from the theoretical point of view, our approach of using a
verifier for timed automata, will work.

The parameters used in verification are not the same as the
those used in the implementation. For example, the widthws
between the left sensor and the right sensor is 180. This value
of ws is greater than 120, the width of the line tracer. This
might lessen the validity of the model. The parameters are,
however, acceptable because the valuews is greater than 100,
the width of the track, which allows the control logic to work.
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Figure6: Verification using UPPAAL

Also the wheel speed 6 or 12 is acceptable given the size of
the line tracer.

The workload involved in modeling the system was consid-
erable (it took over 2 man-months) due to our limited knowl-
edge of modeling, especially that of dealing with with contin-
uous models. Some of parameters in Table 5 are very sensi-
tive to variation, if these values are different by only a small
amount then the behavior of the whole system changes and,
consequently, verification will fail. For example, if we change
the value ofds to 4, then the verification fails.

One might think that low wheel speed increases the pos-
sibility of successful verification. In other words, the slower
a line tracer moves, the more successively it keeps on track.
However, due to quantization, a low wheel speed causes the
delta values per unit of time to be 0 in our model. There-
fore, we cannot use a value smaller than 6 as the low speed
for the model’s wheels. This problem can be resolved by in-
creasing the physical sizes in the model. However, such a
revision causes a so-called state explosion which means that
model checker either cannot respond in a reasonable time or
it exhausts its available memory.

Nevertheless, this still shows the importance of design anal-
ysis and verification in the early stages of development.

During the modeling, we would have liked to have had an
automated generation tool which translated from an abstract
parameter model to a concrete UPPAAL model, as well as a
simple tool to analyze counter-examples and simulation re-
sults obtained from UPPAAL. Such tools would have been
very useful in refining the model.

6.2 Related Work

It is important to assure reliability in the field of control en-
gineering and other fields. In this section, we briefly describe
related work on formal verification of applications in control
engineering.

One of major approaches to verification of control systems
is conversion from continuous into discrete systems using var-
ious techniques such as abstraction and reduction. This ap-

proach allows verification using ordinary model checking. For
example, T. K. Iversen et al. reported on the verification of a
real-time control programs using UPPAAL [12]. In their pa-
per, the authors constructed a brick sorter system using LEGO
RCX and wrote control programs in Not Quite C (NQC).
The paper also describes the verification of safety and live-
ness properties by automatic translation from the control pro-
grams. The brick sorter system has similar characteristics to
our research at the point that writing programs to simulate
real-time systems. However, the brick sorter system is essen-
tially a discrete system even though it contains time depen-
dencies.

In verification of robotics, Sharygina et al. carried out a
survey of model checking of the control system of NASA
robotics systems [13]. In this survey, the authors summarize
various techniques for verification and show verification of a
robot control system. Safety and liveness properties are ver-
ified but these properties were not related to continuous dy-
namics. Even though survey does not cover the handling of
continuous dynamics, it is a good resource. As a similar area,
the verification of a real vehicle is described by Proetzsch et
al.[14]. Even though our aim is the verification of continu-
ous systems, our approach in reflects those above, i.e., con-
version to timed automaton using quantization and sampling
techniques.

There are alternative approaches to handling control sys-
tems. For the analysis of real models, such as cyber-physical
systems, hybrid systems [15] seem to promise models which
reflect the target systems more precisely. This is because a
hybrid system is one in which continuous and discrete dy-
namics are mixed with time progression. Several approaches
have been proposed to deal with hybrid systems. One of
these approaches is hybrid automaton [16] which is a for-
mal model for describing mixed discrete-continuous systems.
HyTech [17] is a model checker for linear hybrid automata.
Another approach is hybrid constraint languages such as Hy-
brid CC [18] and HydLa [19]. These languages are declar-
ative and provide the power to write programs with logical
formulas. Execution environments for these languages are
available, Hybrid CC interpreter and Hyrose, respectively.

As with many control systems, a line tracers can be consid-
ered as a hybrid system by describing their movements using
differential equations and their control programs in discrete
time. It is generally accepted that real embedded systems are
too big to fully verify. Therefore, it is usual to focus on impor-
tant behaviors. As an example of hybrid approaches, Fehnker
et al. [20] described the verification of the behaviors of a line
tracer by constructing a model using hybrid I/O automata and
correctness proofs. In that paper, the authors presented veri-
fication of safety property, that is, a line tracer should move
along a straight line and never run off. However, the authors
noted that some time details, such as time delay between two
motors, were not considered .

7 CONCLUSION

We have modeled the controller of a line tracer as a timed
automata. We have also verified the model so as to ensure that
the line tracer keeps on track by using the UPPAAL model
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checker. In this paper, we dealt with simplified conditions
such as there being no disturbance and the course being straight.
However, we believe that our study shows the applicability of
model checking for verifying real embedded systems.

Future plans for this research involve exploring other con-
trol algorithms, hybrid modeling and detailed analysis of de-
lays in the model. We would like to introduce a PID con-
troller (proportional-integral-derivative controller), which is a
widely used feedback control system. PID control is widely
used in control systems in control engineering. When PID
control is applied to a line tracer, it enables smooth motion.
However, PID control requires the maintenance of some his-
torical records of state variables, and also requires compli-
cated calculation. This approach seems to be better suited to
hybrid modeling. We intend to use hybrid model, as well as
verifiers and simulators to determine suitable parameters for
PID control. Finding suitable parameters for tuning PID con-
trollers to deal with particular problems is difficult and we
believe that our approach may prove viable.

Another research direction is timing analysis of motor de-
lays. From preliminary experiments, we have found that mo-
tor delay cannot be ignored in the design of a controller pro-
gram if we wish to obtain a high quality controller.
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