
Seamless Application Push with Secure Connection

- System to realize effective usage of smart devices for business class sustainability -

Yosuke Nakamura†, Kazuaki Nimura† , Hidenobu Ito†, and Nobutsugu Fujino†

†Fujitsu Laboratories Ltd.

 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, Japan
{nkmr, kazuaki.nimura, itou.hidenobu, fujino}@jp.fujitsu.com

Abstract –We need to do jobs equally both inside and

outside the office when using Application push. Here, push
notifications should be reached on smart devices even if
they are on different network domains. In addition, because
push gateways that issue notifications deal with privacy and
sensitive data and the application server stores applications
including confidential data, these data should not be placed
on the Internet. Therefore, when smart devices download
applications from the Internet, a secure connection to a
company’s intranet is required. Notifications also need to be
received while using secure connections.

We propose an architecture of seamless application push
that enables notifications to be sent to smart devices
regardless of whether they are on the Internet or intranet.
We implemented the architecture using an Android
smartphone and server. We confirmed from our evaluation
that it could accomplish seamless push notifications and the
required time through the intranet on the longest path was
reasonably low at 157.4 [msec].

Keywords: Android, smart device, VPN, intranet, seamless
push

1 INTRODUCTION

Both consumers and companies have been replacing their
devices with smart devices [1] such as smartphones and
tablets with today’s rapidly expanding technology. However,
users occasionally waste too much time in setting up such
devices when they use them. We propose an “Application
Push & Play (APnP)” to solve this issue, which is a concept
of dynamic installing and executing applications without
user operations for smart devices in IWIN2011 [2]. We also
expanded this concept securely [3]. Push notifications
represent the baseline technology when smart devices
connect to push gateways (P-GWs) with transmission
control protocol (TCP) sessions and smart devices can
receive push notifications during continuous sessions [4].
The uniform resource locators (URLs) of allocated
applications are transmitted using the notifications of push
messages. After a push message is received, a smart device
downloads an application indicated by a specified URL.

The system works well in situations where both smart
devices and servers consisting of the P-GW to send push
notifications and the application server to store applications
are on the same network domain.

We need to do jobs equally both inside and outside the
office in business, where push notifications should be
reached on smart devices even if they are on different
network domains. In addition, since P-GWs deal with
privacy and sensitive data such as the identifiers and
passwords of servicers, these data should not be placed on
the Internet. i.e., P-GWs on the Internet should not contain
private data.

Further, the application server should not be on the
Internet either because business applications contain
confidential data. Therefore, when smart devices download
applications from the Internet, a secure connection to
companies using services such as virtual private networks
(VPNs) [5] would be required to connect to intranets. Push
notifications also need to be received even when using
VPNs.

2 RELATED WORK

Android cloud to device messaging (C2DM) [6] is a
service that sends data from servers to their applications on
Android devices. However, it does not deal with business
uses. In addition, a Google account is required to use C2DM.
This may not occasionally be preferable because some
companies do not allow dedicated accounts to be used for
business.

Mobile IP [7] is a network protocol that can transfer
packets with the same IP addresses even if the destination of
the device has moved to another network domain. There are
two types of protocols: mobile IPv4 [8] and mobile IPv6 [9].
The home agent in the definition of mobile IPs is located on
the same network domain as the sender and the foreign
agent is on the same network domain as the receiver. A
packet is capsuled between the home agent and foreign
agent and is able to be sent to the receiver even if it is
located at a different network domain. However, research
has identified two issues with current mobile IPs that could
be obstacles to their wider use [10]. The first is in providing
a home agent where the network environment around it is
faced with various difficulties, one of which is the home
agent needs to have a global and fixed IP address of all
smart devices, and the second is the conflict with current
Internet security mechanisms such as firewalls [11]. In
addition, another reason mobile IPs are not suitable for
introduction is because they are implemented in network
layer 3, which requires dedicated network switches.

International Journal of Informatics Society, VOL.5, NO.3 (2013) 119-127 119

ISSN1883-4566 © 2013 - Informatics Society and the authors. All rights reserved.

3 PROPOSED ARCHITECTURE

This section summarizes the requirements described in
Section 1 and presents the proposed architecture that meets
these requirements.

The proposed architecture is the same as that for mobile
IPs in terms of the necessity for servers both on the intranet
and Internet. However, the proposed architecture has three
main advantages that enable companies to adopt it more
easily than mobile IPs for their network environment.

- It is unnecessary to replace network equipment. The
proposed architecture is achieved in the application
layer, and does not require the IP packet format to be
changed. However, mobile IPs need the IP packet
format to be extended because they use the IPv6
destination option. Therefore, network equipment such
as routers and gateways must be renewed to use
mobile IPs.

- No additional network ports are required for company
firewalls. The proposed architecture uses HTTP for
communication between the intranet and Internet.
HTTP is typically permitted to pass communications
on company firewalls. However, mobile IPs must use
port number 434 in UDP for communications such as
registration requests for terminals between the intranet
and Internet. Nevertheless, this port number may not
be permitted on company firewalls.

- Our architecture does not require to have a global nor
fixed IP address of smart device because it is achieved
in the application layer and assigns a destination
address which is independent with the precious IP
address.

3.1 Requirements

The three main requirements to implement the system are:
(a) Smart devices should receive push notifications

regardless of whether they are on the Internet or
intranet.

(b) They should be able to receive notifications even VPN
connections are established.

(c) Neither confidential nor private data should be stored
on the Internet.

3.2 Architecture

We propose an architecture for seamless application push
that enables push notifications to be sent to smart devices
regardless of whether they are on the Internet or intranet.

The architecture for the system is outlined in Fig. 1.

Four components are defined in APnP [2]. However, their
use in this system is slightly different from that in
conventional use.
- A private P-GW is equivalent to a conventional P-GW.

A private P-GW is located on the intranet and accepts
connections from the push client, receives requests for
push notifications, and sends push notifications to smart
devices. Private data such as user information and push
messages are stored in the private P-GW.

- An application server stores applications and is located
on the intranet.

- A push client is a function in a smart device that
connects to the P-GW through a TCP session, receives
push notifications, and transmits the URLs of
applications through notifications. It extracts URLs
from notifications if the notifications request download
applications and the extracted URLs are passed to the
application downloader.

- An application downloader is a function in a smart
device and it downloads applications from the
application server based on URLs.

Figure 1: Architecture for Seamless Application Push

The proposed architecture has three additional new

features:
 (I) There is a public push gateway on the Internet in

addition to a private P-GW that manages the
connection to a smart device and notifies of push
messages. The public P-GW is a contracted version of
a private P-GW that particularly eliminates data
related to privacy.

(II) A connection resolver identifies whether the network
for a smart device is connected to the Internet or
intranet and it switches the connection to a public P-
GW or private P-GW. In addition, the connection
resolver establishes a VPN connection to the intranet
if necessary. When a smart device is on the intranet, it
determines whether the push client should connect to
the private P-GW without establishing a VPN
connection to download an application. However,
when a smart device is on the Internet, it determines
that the push client should connect to the public P-GW
and it makes the VPN client establish a VPN
connection to download an application.

(III) A protocol for seamless push notification is used to
synchronize the state of the private P-GW and public
P-GW to maintain consistency.

 The system should have features (I), (II), and (III) to

satisfy requirement (a). A smart device connects to a public
P-GW when it is located on the Internet and a private P-GW
when it is located on the intranet (I). A connection resolver

120 Y. Nakamura et al. / Seamless Application Push with Secure Connection

detects where the smart device is and identifies which P-GW
it should connect to (II). If the smart device is located on the
Internet, the private P-GW receives a push request and
forwards it to the public P-GW (III).

The system should have features (I) and (II) to satisfy
requirement (b). When a smart device is located on the
Internet, the connection resolver is responsible for
establishing a VPN connection. Once a VPN connection is
established, the connection resolver asks the push client to
switch the connection to a private P-GW. After the VPN
connection has terminated, the connection resolver asks the
push client to switch the connection back to the public P-
GW.

The system should have features (I) and (III) to satisfy
requirement (c). Although private data are required to send
push requests, the public P-GW should not store them or
have an interface to register them. Therefore, the private P-
GW receives the request and forwards it to the public P-GW
by using the protocol for seamless push notifications. In
addition, although the private P-GW has the delivery status
for push notifications, the public P-GW should not have this
because the delivery status includes privacy information.
Consequently, the public P-GW needs to ask the private P-
GW about its status.

4 IMPLEMENTATION

This section describes the components, protocols, and
workflows for the implementation of the proposed system.

4.1 Components

Figure 2 outlines the implementation of the proposed
system.

Figure 2: Implementation of proposed system

The system consists of five components: the private P-

GW, public P-GW, application server, VPN server, and
smart device. The private P-GW, the application server, and
the VPN server are located on the intranet. The public P-
GW is located on the Internet. The smart device moves
between the Internet and intranet.

The private P-GW consists of four components.

The private push receiver (pri-push receiver) receives a
push request and an inquiry as to whether a smart device is
connected to the P-GWs or not from a servicer. The pri-push
receiver authenticates the servicer in a push request and
checks whether the destination address is pre-registered. The
pri-push receiver checks whether the smart device is
connected in an inquiry.

The push sender is an access point for the push client
when the smart device is on the intranet. While the push
client is connected to the push sender, the smart device can
receive push notifications. It authenticates the smart device
to prevent connection to malicicious devices. It also
encrypts communication with the secure socket layer (SSL)
to protect push notifications [12].

The P-GW connector handles the protocol for seamless
push notifications. See the protocol for seamless push
notifications in Subsection 4.2 and the workflow on the
Internet in Subsection 4.3 for the protocol and its use.

The master database (MDB) manages private data such as
those for the registered identifier and password for the
servicer, the destination address that the private P-GW
assigned to the smart device, and message queue including
confidential data such as the URL of the in-house
application required to send push notifications. These data
should only be stored in the private P-GW. The pri-push
receiver, push sender, and P-GW controller handle
notifications through the MDB.

The public P-GW consists of three components.
The push sender is an access point for the push client

when the smart device is on the Internet. It has the same
functions as the private P-GW.

The privacy conscious database (PC-DB) is a DB that
only manages the connection information of smart devices
to send push notifications. There is no need to treat
connection information as privacy information if the P-GW
creates the connection information and changes it regularly
because malicious users cannot relate the user to the smart
device by using the connection information. The P-GW in
our architecture creates the connection information and
changes it regularly. Therefore, we do not need to treat the
connection information as privacy information. There is no
data shared between the MDB and PC-DB, so those DBs do
not need to be synchronized for keeping the consistency.

The P-GW connector has the same functions as those for
the private P-GW.

The smart device has four components for handling push

notifications.
The VPN client manages to establish and disconnect a

VPN connection by using the direction from the connection
resolver. We need to be able to receive the direction from
other applications to directly establish and disconnect VPN
connections from the connection resolver.

The connection resolver contains the registered service set
identifications (SSIDs) of access points on the intranet in
advance. When the smart device connects to the network,
the connection resolver checks the type of connection. For
example, if the connection is third generation (3G) or long-
term evolution (LTE), the connection resolver identifies the

International Journal of Informatics Society, VOL.5, NO.3 (2013) 119-127 121

smart device is on the Internet. If the connection is Wi-Fi, it
checks the SSID of the access point (AP) and confirms
whether the SSID was registered, and then the connection
resolver identifies the smart device is on the intranet.
Otherwise, it considers the smart device is on the Internet. It
requests the VPN client to establish a VPN connection for
the intranet. If we can use VPN even when the smart device
is on the intranet, the mode changes, and it switches the
behavior of the client regarding whether the client is using
the VPN or not. Therefore, it may not need our architecture.
However, our architecture needs the mode to change
because of the lower power consumption of the smart device.
As we want to use the smart device as long as possible,
lower power consumption is important. If we use VPN even
when the smart device is on the intranet, the VPN client is
constantly running and establishing a VPN connection.
Therefore, unnecessary CPU and memory resources are
wasted and the power consumption of the smart device
increases. Consequently, we implemented changes to the
mode because we minimized the opportunity of establishing
VPN connections and decreased the power consumed by the
smart device.

See Subsection 3.2 for the push client and application
downloader.

4.2 Protocol for Seamless Push

Table 1 summarizes the protocols for seamless push
conveyed by the hypertext transfer protocol (HTTP) POST.
Because a firewall generally blocks most communications
such as the transmission control protocol (TCP) of
customer-defined sessions, we use the HTTP protocol that is
typically permitted by the firewall.

4.3 Core Workflow for Proposed System

Our system has two P-GWs, a private P-GW on the
intranet and a public P-GW on the Internet as seen in Fig. 2.
However, the application server is only on the intranet.
Moreover, the smart device moves between the intranet and
Internet. Therefore, the smart device needs to identify
whether it is on the intranet or Internet and it connects to a
suitable P-GW to receive its push messages regardless of its
position. The smart device also needs to establish a VPN
connection if it is on the Internet to download applications
regardless of its position. The choice of connectable P-GW
and a necessary VPN connection are core workflows for our
architecture. Therefore, we will explain these workflows.

First, we will explain the method of choosing connectable

P-GW. The connection resolver needs to identify whether
the smart device is correctly connected to the intranet or
Internet to choose a suitable P-GW. First, the connection
resolver checks information for the type of network. If the
type of network is a mobile network such as 3G or LTE, the
connection resolver identifies whether the smart device is on
the Internet and the smart device connects to the public P-
GW. If the type of network is a Wi-Fi connection, the
identification is complex and the connection resolver needs
to check the SSID of the Wi-Fi AP. The user sets the SSID
preliminarily treated as the intranet to the connection
resolver. If the SSID of the Wi-Fi AP fits the setup SSID to
the connection resolver, the connection resolver identifies
that the smart device is on the intranet and the smart device
connects to the private P-GW. If not, the connection resolver
identifies that the Wi-Fi connection is the Internet such as a
hot spot and the smart device connects to the public P-GW.

For example, consider the case of setting “FUJITSU LAB”
as the SSID to the connection resolver. If the smart device
connects to the Wi-Fi network where the SSID is “FUJITSU
LAB”, the smart device connects to the private P-GW. Other
than this, the smart device connects to the public P-GW.

Next, we will explain the method of choosing whether the

smart device has established a VPN connection or not when
the smart device downloads applications.

The connection resolver also uses information on the type
of network and the SSID of the Wi-Fi access point to
identify whether it needs to establish a VPN connection or
not. If the smart device connects to a mobile network or a
Wi-Fi connection where the SSID is not the setup SSID to
the connection resolver, the connection resolver identifies
that the smart device is on the Internet and the smart device
establishes a VPN connection when the smart device
downloads applications. However, if the smart device
establishes a Wi-Fi connection where the SSID is the setup
SSID to the connection resolver, the connection resolver
identifies that the smart device is on the intranet and the
smart device does not establish a VPN connection. When
the smart device establishes a VPN connection, it
temporarily connects to the intranet. Therefore, the
connection resolver makes the smart device connect to the
private P-GW while it is establishing a VPN connection. In
this way, the smart device can continuously receive push
messages even when it has established a VPN connection.

Table 1: Protocol for seamless push
Protocol Description Source Destination

FORWARD Forward push notification from private P-GW to public P-GW. Public P-
GW only accepts FORWARD command from private P-GW.

Private
P-GW

Public
P-GW

FORWARD
_SUCCESS

If push notification to smart device is completed, public P-GW replies to
private P-GW with FORWARD_SUCCESS.

Public
P-GW

Private
P-GW

REQUEST_
RESEND

Inquiry to private P-GW is issued to check whether or not push notification
is resent to smart device, which is needed to connect to public P-GW stored
in private P-GW to resend notification when smart device is connected to
public P-GW.

122 Y. Nakamura et al. / Seamless Application Push with Secure Connection

For example, consider the case of setting “FUJITSU LAB”
as the SSID to the connection resolver. If the smart device
connects to a Wi-Fi network whose SSID is “FUJITSU
LAB”, it does not establish a VPN connection and directly
downloads applications from the application server.
However, if the smart device connects to the mobile
network or Wi-Fi network where the SSID is not “FUJITSU
LAB”, it establishes a VPN connection and downloads
applications. Further, the smart device connects to the
private P-GW while it is establishing the VPN connection.

Lastly, we discuss the impact of SSID impersonation.

When a Wi-Fi AP which has the same SSID defined in this
system is placed, the smart device may connect to the wrong
Wi-Fi AP. In this case, the push client cannot reach the P-
GW and the smart device cannot receive a push notification.
A way to avoid this issue is that the push client terminates
the Wi-Fi connection if the push client fails to connect to P-
GW in the Wi-Fi network and switches over to the mobile
network for the continuous push service.

Our system receives push messages and downloads

applications when the smart device is both on the intranet
and Internet by using these methods. Furthermore, the smart
device is establishing a VPN connection.

5 EVALUATION

This section presents the hardware, software, and network
environments we used to evaluate the system and the
performance of push notifications.

5.1 Qualitative Evaluation

First, we compared the proposed system with the
conventional push system. The new system has two main
advantages to the conventional push system. The first is its
capabilities for seamless push as listed in Table 2.

Table 2: Capabilities for seamless push

 intranet,
included via
VPN

Internet

Proposed system Yes: Refer to
Subsection 4.3

Yes: Refer to
Subsection
4.3

Conventional push
system on intranet

Yes No: *1

Conventional push
system on the Internet

No: *2 Yes

*1: VPN connection is always required.
*2: Port used by conventional push is required to open in

firewall.

“Yes” indicates the smart device can receive push

notifications without a VPN connection and a firewall is
established between the intranet and Internet when using
push notifications. “No” means the smart device cannot
receive push notifications.

The proposed system enables the smart device to receive
push notifications regardless of whether it is connected to
the Internet or an intranet. Even when it is connected to the
intranet via VPN, the connection resolver switches to
connect the private P-GW. Further, the smart device cannot
receive notifications across networks by using the
conventional push system.

Another advantage is protection of both confidential data

and private data as summarized in Table 3.

Table 3: Protection of data
 intranet Internet
Proposed system Yes: see MDB in

Subsection 4.1.
Yes: see privacy
conscious DB in
Subsection 4.1.

Conventional
push system on
intranet

Yes: *1 No: *2

Conventional
push system on
Internet

No: *2 No: *3

*1: DB stores private data, but DB is on intranet.
*2: Push notification cannot be received.
*3: DB stores confidential and private data.

“Yes” means that the system fulfills the first requirement
that confidential data and private data are not stored on the
Internet and the second that the smart device can receive
push notifications both on the intranet and Internet.

“No” means that the system cannot fulfill either
requirement.

The proposed system allows both confidential data and
private data to only be stored on the intranet. No smart
device can receive push notifications on the Internet without
storing private data there while using the conventional push
system as it is.

5.2 Quantitative Evaluation

We measured the delivery time for push notifications
from an application server to a smart device that may affect
user experience. Each component presented in Section 4 was
operated on the following hardware to evaluate the system:

Private P-GW, Public P-GW, and Application Server:
 A Fujitsu LIFEBOOK E-8290 was used as the

Private P-GW. It had an Intel Core2Duo processor
T9600 operating at 2.80 GHz, 4 GB of main
memory, and 160 GB of HDD.

 A Cent OS 6.2 [13] was used as the operating
system (OS). Apache and the Java application server
(Tomcat) were used for the Pri/Pub-push receiver
and P-GW controller. The Pri/Pub-push receiver and
P-GW controller were placed as servlets on top of
the Java application server. A C-based program
handled communication with the PC for the push
sender. These were communicating with a socket
between the three functions. MySQL was used for
the DB. The application server was a general Web

International Journal of Informatics Society, VOL.5, NO.3 (2013) 119-127 123

server. Apache and the Java application server
(Tomcat) were used.

Smart device:
 A Fujitsu F-10D [14] was used as the smart device.

It had a 1.5-GHz quad core and had Android 4.0
installed that supported the VPN client application
programming interface (API) [15]. Android native
applications such as the connection resolver could
control the establishment and disconnection of VPN
connections by the VPN Client API.

 The push client, application downloader, connection
resolver, and VPN client were created as Android
native applications with Java.

VPN Server:
 A Fujitsu LIFEBOOK A550/A was used as the VPN

server. It had an Intel Core i5 processor 540M
operating at 2.53 GHz, 4 GB of main memory, and
128 GB of capacity on a solid state disk. Fedora was
used as the OS.

Figure 3 outlines the network environment we used for
the evaluation.

Figure 3: Network environment

We can see that it has two network segments. The first is

treated as the intranet and the address is 192.168.111.0/24.
The second is the Internet and the address is
192.168.10.0/24. Other than the HTTP for the protocol of
seamless push application, it cannot transmit between the
two networks. Refer to the hardware described above for the
P-GWs, servers, and smart device. The information on
network devices is as follows:

Router dhcp:
 A WN-G54/R3 was used as the router dhcp. It

supported 100Base-TX/10Base-T as a LAN and
802.11b/g as a wireless LAN. It supplied the IP
address of the intranet to the servers and the smart
device as a Dynamic Host Configuration Protocol
(DHCP) server and it assigned the IP address of the
Internet from the Router dhcp sv. Only HTTP
requests from the public P-GW to the private P-GW
were accepted.

Router dhcp sv:
 The Aterm WM3400RN was used as the router dhcp

sv. It supported 100Base-TX/10Base-T as a LAN

and 802.11n/b/g as a wireless LAN. It supplied an IP
address of the Internet to the router dhcp, the public
P-GW, and the smart device.

Router:
 The Aterm LAN-W150N/RSPS was used as the

router. It supported 100Base-TX/10Base-T as a
LAN and 802.11n/b/g as a wireless LAN. It supplied
an IP address to the public P-GW. HTTP requests
from the private P-GW to the public P-GW and the
TCP session from the smart device on the Internet
were accepted. Although the public P-GW could
directly connect to the Internet, a buffer such as a
“demilitarized zone” (DMZ) is commonly organized
for servers on the Internet. Therefore, we used a
router.

Hub:
 FXG-05IMV was used as a hub that was used to

increase the number of ports on the Internet.

First, we evaluated the system by using the delivery time

for push notifications when the smart device was located on
the Internet. Table 4 lists the results for the delivery times of
push notifications both on the intranet and Internet when the
servicer requested a thousand push notifications.

Table 4: Delivery times for push notifications

The average time on the Internet was 157.4 [msec] and the

maximum time was 387.0 [msec].
 Application downloads came with the service by

considering the use of APnP described in Subsection 6.1. An
application download may take several seconds on the
Internet using a 3G connection. However, the delay time is
about 150 [msec] and it only has a small impact compared
with the time for the download. Therefore, we concluded
that the delay for the delivery time was acceptable.

Second, we compared the times notifications are received
on the Internet and on an intranet to evaluate the
performance of public P-GW. The average time is 104.9
[msec] on an intranet in Table 3 and the results for the
Internet are inferior to this by 52.5 [msec]. An increase in
the delivery time for push notifications was assumed
because a public P-GW was added to the communication
path on the Internet. We measured the processing time for
the private P-GW, public P-GW, and communication when
sending a push notification to verify whether the public P-
GW caused the increase or not. Figure 4 and Table 5 have
the results for processing times.

 Delivery time on
intranet [msec]

Delivery time on
Internet [msec]

Average 104.9 157.4
Maximum 391.0 387.0

124 Y. Nakamura et al. / Seamless Application Push with Secure Connection

Figure 4: Processing times for each component

Table 5: Processing times

The results reveal that the total time for private P-GW and

communication is almost the same for the intranet and
Internet. Therefore, the times measured on the Internet for
private P-GW and communication added to the processing
time for public P-GW are longer than those for the intranet
and are as expected.

The performance of push notifications was sufficient to
function as APnP from these results and the structure of the
proposed system and public P-GW was appropriate in terms
of the delivery time for push notifications.

6 USE CASE

6.1 Use Case of Seamless Application Push

Figure 5 has an example of a use case for seamless
application push, where the applications delivered with
APnP, a URL of application is transferred by push
notification then the smart device downloads the application
from the URL transferred, are the editor of a presentation
file on the intranet and the viewer of a presentation file on
the intranet or Internet. Use only on the Internet is not
assumed in this scenario. A user can only make a
presentation file on the intranet using the editor and he or
she can view a presentation file on the intranet or Internet. If
the user views the presentation on the Internet, the file is
downloaded via VPN from the server on the intranet.
The performance shown in Table 5 is enough that this use

case should be workable. The requirement of this case is to
maintain real-time notification to the smart device. A service
requests a push notification when it detects the timing of
sending an application. The delivery time is at most
150[msec] and the delay of push notification has no affect to

keep the real-time notification.

Regarding the scalability, even if the number of smart

device is increased, the public P-GW can accept the
connection from many smart devices by increasing only the
push sender. In addition, unlike mobile IP which has the
issue on the home agent that has a bottle neck by the
triangular routing and that would require sole DB [10], our
architecture does not need to have the routing in the Public
P-GW because it does not need to capture the change of IP
address, so it can be achievable the scale by introducing
additional independent DB.

Figure 5: Use case of seamless application push

6.2 Multi-tenant Push Service

This section presents an extensive use case of the
proposed system especially focusing on a general push
service. Figure 6 outlines an example of multi-tenant push
services that have multiple private P-GWs and a single
public P-GW.

Figure 6: Example of multi-tenant push services

The public P-GW treats push notifications from all
services to the smart device by the direction of each private
P-GW. The smart device can receive all services on the

 Processing times
on intranet

[msec]

Processing times
on Internet

[msec]
Pri P-GW 38.6 49.1

Communication 66.3 53.4
Pub P-GW - 54.9

Total 104.9 157.4

Delivery time:
104.9 [msec]

Delivery time:
157.4 [msec]

International Journal of Informatics Society, VOL.5, NO.3 (2013) 119-127 125

Internet and each service on each intranet. The smart device
connects to the public P-GW and can receive all services on
the Internet.

7 CONCLUSION

We proposed an architecture of seamless application push
and implemented a system using an Android smartphone.
We then confirmed that it could achieve seamless push
notifications by which the smartphone could receive push
notifications regardless of whether it was connected to the
Internet or intranet and it could download applications from
the application server. The smart device automatically could
establish a VPN connection in conjunction with receiving a
push notification. Usability was improved and the security
of the smart device was maintained with our architecture
because user interaction regarding the input of VPN
passwords was unnecessary. In addition, we measured the
delivery time for push notifications and the time we
measured on the Internet was 157.4 [msec]. Our
approximate requirements were within a second and the
results were reasonably low. Future work would be to find
ways to resume and continue downloading even a device has
moved to a different network while downloading
applications.

REFERENCES

[1] R. Cozza C. Milanesi, A. Zimmermann, T. Huy
Nguyen, H.J. De La Vergne, S. Shen, A. Gupta, A.
Sato, C.K. Lu, and D. Glenn, ``Market Share: Mobile
Devices by Region and country, 4Q11 and 2011,
Market Analysis and Statistics of Gartner,’’
http://www.gartnet.com/DisplayDocument?ref=clientF
riendlyUrl&id=1923316 (2012).

[2] H. Ito, K. Nimura, Y. Nakamura, A. Shiba, and N.
Fujino, ``Application Push & Play -Proposal on
Dynamic Execution Environment Combined with
Personal Devices and Cloud Computing.-,’’ Proc. of
IWIN2011 (2011).

[3] K. Nimura, H. Ito, Y. Nakamura, and K. Yasaki, ``A
Secure Use of Mobile Application with Cloud Service,’’
Proc. of the 2nd International Workshop on Smart
Mobile Applications in conjunction with PERVASIVE
2012 (2012). http://www.mobile.ifi.uni-
muenchen.de/aktuelles/smartapps2012/smartapps12_se
cure.pdf

[4] K. Nimura, H. Ito, Y. Nakamura, A. Shiba, and N.
Fujino, `` Proposal and Implementation of Pseudo Push
Using Network Subsystem and Task Execution for
PC,’’ Proc. of IWIN2011 (2011).

[5] Virtual Private Network (VPN).
http://en.wikipedia.org/wiki/Virtual_private_network

[6] Android Cloud to Device Messaging Framework.
https://developers.google.com/android/c2dm/

[7] C. Perkins, ``IP Mobility Support,’’ IETF RFC2002,
http://www.ietf.org/rfc/rfc2002.txt (1996).

[8] C. Perkins, ``IP Mobility Support for IPv4, Revised,’’
IETF RFC5944, http://www.ietf.org/rfc/rfc5944.txt,
(2010).

[9] D. Johnson, C. Perkins, and J. Arkko, ``IP Mobility

Support in IPv6,’’ IETF RFC3775,
http://www.ietf.org/rfc/rfc3775.txt (2004).

[10] M. Ishiyama, A. Inoue, T. Okamoto, and F. Teraoka,
``A study of the current Mobile IP status, the obstacles
of its wide usage, and the future direction of mobility
support’’ (1998).

[11] F. Baker, and P. Savola, ``Ingress Filtering for
Multihomed Networks,’’ IETF RFC3704,
http://www.ietf.org/rfc/rfc3704.txt (2004).

[12] T. Dierks, and C. Allen, ``The TLS Protocol Version
1.0,’’ IETF RFC2246,
http://www.ietf.org/rfc/rfc2246.txt (1999).

[13] The Community ENTerprise Operating System,
http://www.centos.org/.

[14] F-10D, http://www.fmworld.net/product/phone/f-
10d/spec.html?fmwfrom=f-10d_index

[15] Android 4.0 Platform Highlights, Android Developers,
http://developer.android.com/sdk/android-4.0-
highlights.html, 2011

(Received October 18, 2012)
(Revised December 28, 2012)

Yosuke Nakamura received his
BE and ME from the Graduate
School of Engineering at
Yokohama National University,
Japan, in 2002. He joined Fujitsu
Laboratories Ltd. in 2002. His
current research interests include
advanced technologies in
personal computers and human

centric computing.

Kazuaki Nimura received his
BE and ME from the Graduate
School of Information and
Communication Engineering of
Tokyo Denki University, Japan,
in 1994. He joined Fujitsu
Limited in 1994 and transferred
to Fujitsu Laboratories Ltd. in

1997. His current research interests include advanced
technologies for smart devices and human centric
computing.

Hidenobu Ito received his BE
and ME in Mathematical
Sciences from the University of
Osaka Prefecture, Japan, in
1993. He joined Fujitsu
Laboratories Ltd in 1993. His
current research includes mobile
computing and human centric
computing

126 Y. Nakamura et al. / Seamless Application Push with Secure Connection

Nobutsugu Fujino received his
B.S. and M.E. in electronics
engineering from the University
of Osaka Prefecture in 1986.
He also received his Ph.D. in
informatics from Shizuoka
University in 2008. He joined
Fujitsu Laboratories Ltd. in
1986. Since then, he has been

engaged in radio communication systems and mobile
computing, and is currently a research manager in
human centric computing and multi-device
interaction technology. His research interests include
mobile and ubiquitous computing and network
applications. He received the IPSJ Industrial
Achievement Award in 2003.

International Journal of Informatics Society, VOL.5, NO.3 (2013) 119-127 127

128

