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Abstract - People, businesses and economies are increas-
ingly dependent on Cloud and internet services. At the same
time, the systems on which these services are built are be-
coming more complex and interdependent. The cost of fail-
ure is high, but systems are too complex for human detection
of problems. We review methods for online fault diagnosis,
process mining and Virtual Machine Introspection. We sug-
gest bringing these techniques together for automated iden-
tification, diagnosis and prediction of risk of failure in large
systems. We present examples from telecoms and Cloud in-
dustries in support of these ideas.

Keywords: Models, process mining, diagnosis, failure pre-
vention, complex systems

1 INTRODUCTION

The Internet and the services it supports now play a key
role in most people’s daily lives, and in the day-to-day opera-
tion of business enterprises and nations. The Oxford Internet
Surveys 2011 [1] surveyed over2000 respondents in Britain
and reported that over80% of employees used the internet to
obtain news and information. Usage for other purposes and
by people in other ‘life categories’ was only slightly lower.
Students were the largest consumers of media via the internet
(over90%), closely followed by other groups.

More importantly, the survey reported increasing levels of
use of the internet for accessing critical services such as bank-
ing, grocery shopping and paying bills. Increasingly, citi-
zens accessed government services online, with only21% of
households lacking internet access. Use of online services
was highest among the young, wealthy and well-educated.

New technologies such as Cloud and virtualisation are en-
abling the move to internet-based systems architecture. Cloud
enables computing resources to be provided on demand ac-
cording to a utility model, using many instances of commod-
ity hardware and software components shared between ser-
vices. Costs of set up and ongoing provision of new services
are thus reduced, since payment is only for the resources or
time used. Businesses need no longer invest in costly in-
frastructure [2], [3]. Virtualisation abstracts services from
the hardware, operating systems, storage and network. This
makes the resources more flexible, increasing business value
by increasing agility and resilience. Services are democra-
tised by use of open Service-oriented Architectures (SoA) and
standards such as SOAP and HTTP. The success of public
clouds has seen private versions of the same concepts imple-
mented within businesses.

However, new technologies and pace of change present new
risks from system problems, and new opportunities for nefar-
ious activities such as malware and cyber-attack. Heteroge-
neous systems (cloud and open standards) duplicated many-
fold may all be affected by the same bug, security breach or
performance problem [3]. Shared resources mean one prob-
lem may affect many services, and introduces the risk that
the activities of one business may impact those of another.
A business abstracting its infrastructure to a Cloud platform
faces new questions of availability and performance unpre-
dictability. Well documented outages to cloud services (see
for example references from [2]) have taken many hours to
resolve, each outage affecting many services.

Security can also be a concern. As far back as 2004, Byres
et al. reported a steady rise in reported incidents of industrial
problems caused by ‘cyber attacks’ [4]. They attributed this to
increased use of heterogeneous interconnected systems, and
the increasing attractiveness of targets due to the wide con-
sequences possible. These factors are multiplied in today’s
online environments. Water [4] and power transmission in-
dustries [5] are given as examples of interconnected, critical,
vulnerable industries which have been the subjects of attacks.

The security viewpoint provides extreme examples of the
seriousness of potential damage caused by problems or at-
tacks on highly interconnected systems, the difficulty of con-
taining such problems and their potential to spread beyond
the ‘cyber’ world to physical effects. Examples are the the
Stuxnet attacks on Iranian nuclear facilities (e.g. [6]), and in-
dustrial ‘cyber-crime’ using ‘botnets’ (networks of many hi-
jacked connected computers), reported to be responsible for
disruption to Estonia’s national networks in 2007, and in the
2008 Russia-Georgia war among others (also [6]).

We conclude that reliability of online services is of cru-
cial importance. Problems may affect very many people si-
multaneously, prevent access to critical services, and have the
greatest impact on the most economically and politically ac-
tive groups. Service outages thus have the potential to impact
economies, enterprises and national governments, both finan-
cially and through damaged reputations. ‘The major problem
for cloud computing is how to minimise such kinds of out-
age/failure to provide reliable services’[2]. A major challenge
is how can we deliver such crucial services reliably while re-
ducing cost?

In this paper we consider the internet- and cloud-based tech-
nologies underlying these services and describe three of the
techniques used to tackle the above challenges. First we intro-
duce model-based methods for automated detection of faults
or undesirable scenarios using automated ‘Diagnosers’ (soft-
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ware modules or services) to diagnose occurrence of failure or
undesirable scenarios in real time or near real time. Model-
based techniques are powerful, but sometimes there are no
models of the system available or it is very costly or even im-
possible to produce a model of the system. For example, sys-
tems produced from merging of legacy systems are often too
complex and large to be modelled. Often there is no access to
the designers of such systems and it is costly to re-engineer
a model. However, most modern systems produce logs cap-
turing run-time information for various purposes. The sec-
ond group of techniques discussed in this paper applies Pro-
cess Mining to extend this diagnosis framework to situations
where we do not have models of the system. Finally, we ad-
dress the specific challenges of diagnosis of faults related to
occurrences of malicious behaviour in Cloud. There are simi-
larities between malicious behaviour as malware writers tend
to use components available on the web which are used in ex-
isting malware. We present a framework which uses symp-
toms caused by using such components to discover newly
emerging malware. We present examples from telecoms ser-
vices and security in the Cloud to describe the three sets of
methods.

The paper is organised as follows. In section 2 we intro-
duce terminology and concepts necessary for the remainder
of the paper, particularly to specify what are system failures
or undesirable behaviours. Section 3 describes the problem
in more detail. The core of the paper is sections 4, 5 and 6 in
which we discuss in depth our methods for diagnosis. Section
7 concludes the paper.

2 PRELIMINARIES

We describe terminology and concepts necessary to under-
standing the rest of the paper.

2.1 Service-Oriented Architectures (SoA)

A SoA is a distributed business application architecture
where heterogeneous components communicate and provide
services to each other using open standards. Examples of
open standards are WSDL [7] and XSD [8], which are used
to define the interfaces between services, and communica-
tion protocols such as SOAP and HTTP. The use of such
open standards means that the services and protocols can be
changed with minimal impact on the service. A simplified
SoA, for broadband failure resolution in a telecoms business,
is illustrated in Fig. 1 (described in full in section 4).

Most essential is the business process describing how these
services interact to complete the task such as resolving a fault.

2.2 Business Processes and Process Mining

Business processes describe activities carried out to fulfil
a business function, and the relations between them. Among
other aspects we may describe the process ‘control-flow’, i.e.
how the activities are related; interactions between people and
organisations; or business rules or constraints. In this paper
we are concerned with the control-flow. Business process are
commonly represented formally by languages such as BPEL,

Figure1: An interaction between the Customer and System

BPMN and Petri nets. Figure 2 shows a BPMN model of part
of the business process for broadband fault resolution.

Let A be a set of business activities. A single pass through
the business process from start to end task is acase, for exam-
ple processing one order, Theeventsof their occurrence are
recorded in anEvent logE. We assume that as a minimum,
each evente is recorded with a case IDc, activity namea ∈ A
and timestampt. An event log can then be represented by a
non-empty set of triples

E = {e : e = (c, a, t)}+, (1)

assuming that timestamps are unique. Process mining algo-
rithms [9], [10] use workflow logs to learn models of the busi-
ness processes. We discuss process mining in section 5.

Process mining algorithms often assume that events are
atomic (taking no time), are uniquely labelled (the same label
always refers to the same event and vice versa), and make no
use of additional information such as timing of events, merely
the order in which they are recorded. We assume that the un-
derlying process to be discovered is unchanging.

If the activities in our example service were encoded with
symbolsa, b, . . . from some alphabetΣ then (abstracting from
detail) the ‘trace’ of one possible enactment of the process
might be recorded in the event log as a string, e.g.‘abcdef ’.
These strings are also calledtraces. A workflow logW is a
multiset over traces,

W = {x : x ∈ Σ+}+, (2)

e.g.W = {abcdef, abcdef, abcdeg, . . .}.

2.3 Discrete Event System

A Discrete Event System (DES) is a ‘discrete-state, event-
driven system whose state depends on the occurrence of asyn-
chronous discrete events over time’ [11]. DES uses models to
curb complexity. We can define a general model of a DES as
a tupleG = (X,Σ, δ, x0, A, L), where

• X is a set of states,

• Σ is a set of events,

• δ ⊆ X × Σ×X is a set of transitions between states,

• x0 ⊆ X is a set of initial states.
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Figure2: Customer Service BPEL, with some process struc-
tures highlighted (sequences A, F, G, XOR splits B, C, D, E).

• A is an alphabet of event labels, with labelling function
L : Σ → A.

Such a model can be realised using various modelling lan-
guages including automata, Petri nets, Workflow graphs mod-
els [12], [13] or ad hoc graphical representations. We do not
give details here.

2.3.1 Observable and Un-Observable Events

Eventsτ ∈ Σ are partially observable (an event is either
observable or unobservable), i.e.Σ = ΣO ∪ ΣUO where
ΣO ∩ ΣUO = ∅.

Some unobservable events indicate failure, i.e.

Σf ⊆ ΣUO

We do not concern ourselves with observable failure events,
which can be handled trivially, without need for diagnosers.
There may be different types of failure, i.e.Σf is partitioned

Σf = Σf1 ∪ Σf2 , . . . ,Σfn ,

such thatΣfi ∩ Σfj = ∅, 1 ≤ i < j ≤ n.
Let stringσ = τ1τ2τ

′
3τ4τ5τ

′
6, . . . represent a sequence of

events generated byG. Of these events only a subset are ob-
servable, e.g.τ ′3, τ

′
6.

Definition 1 (Projection to Observable Events). We define a
mappingP to project sequences to just the events which are
observed,

P : Σ → ΣO ∪ {ϵ} such that (3)

P (α) =

{
ϵ if α /∈ Σ0, i.e. α is not observable,

α otherwise, where

ϵ is the identity of the alphabet, i.e.αϵ = ϵα = α, α ∈ ΣO.

Definition 2 (ExtendP to Sequences of Events). Let

P : Σ∗ → (Σ0 ∪ {ϵ})∗, where

P (α0α1 . . . αn) = P (α0)P (α1) . . . P (αn). (4)

For example,P (τ1τ2τ
′
3τ4τ5τ

′
6) = τ ′3τ

′
6.

2.4 Cloud and Introspection of Virtual
Machines

Benefits of moving to Cloud are well publicized; adopting
could result in lower cost of IT due to the economics of scale,
reduce the up-front cost for infrastructure, decrease the time
to market by using off-the-shelf components, and boost the
‘Green’ credentials of the company [14]. However, in order
for the Cloud environment to be profitable, there is temptation
to homogenize the applications and operating systems used.
But as the Cloud becomes more homogeneous, it will pro-
vide bigger and richer targets for attackers; places where the
attacker may be confident of finding lucrative information or
where disruption will have the greatest impact. As a result,
ensuring security of the cloud is seen as a major engineering
challenge [15]. In the next two subsections we shall give a
brief description of two of the technologies used in Cloud.
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Figure3: Virtual Machine Architecture

2.5 Virtualisation

Virtualisation is ‘A framework or methodology of dividing
the resources of a computer hardware into multiple execu-
tion environments. . .’ [15]. Virtualisation relies on Virtual
Machines (VMs), software that emulates or simulates the ca-
pabilities of the hardware. It is capable of running a com-
plete operating system along with any applications that run
on top of that OS [16]. Figure 3 depicts a high level view
of Xen [15], which is an open source virtualisation software
based on ‘paravirtualization’ technology. In this architecture,
the Virtual Machine Monitor (VMM) is an abstraction of the
underlying physical hardware and provides hardware access
for the different virtual machines. Xen includes a special
VM called Domain 0 (Dom0). Only Domain 0 can access
the control interface of the VMM, through which other VMs
can be created, destroyed, and managed. This powerful VM
is used to create other Virtual Machines that can access the
hardware through secure interfaces provided by Xen. In ad-
dition it is possible to create other virtual machines that can
access the physical resources provided by Domain 0’a s con-
trol and management interface in Xen. Virtual Machines are
heavily used within the Cloud. In addition to the advantage of
running multiple operating systems simultaneously, Virtuali-
sation reduces the cost of infrastructure implementation and
the associated cost of maintenance by optimising the utilisa-
tion of resources. A user can ask for new VMs when extra
resources are required and decommission some of the VMs,
when they are no longer required. Virtualisation also makes
it possible to secure the VMs by a powerful technique, which
is commonly known as Virtual Machine Introspection.

2.6 Virtual Machine Introspection

Virtual Machine Introspection (VMI) can be defined as a
virtualisation based technique that enables one guest VM to
monitor, analyse and modify the state of another guest VM

by observing its virtual memory pages. Such introspection
can be carried out by a VMM that hosts the VM or another
VM which has been granted special privileges by the VMM.
VMI will allow product developers and researchers to move
the security related software out of a probable target host or
VM and take advantage of the host’s lack of awareness to de-
tect any malicious events or code that is being executed in
runtime. One of the early methods of introspecting a Virtual
Machine from an external VM is by Garfinkel and Rosen-
blum [14]. They used VMI to develop an Intrusion Detection
System (IDS), called Livewire, for a customized version of
VMWare Workstation for Linux. VMI techniques have also
been used in Digital Forensics [17] and [18]. Hyperspector
[19] implemented another Intrusion Detection System for dis-
tributed computer systems using VMI to isolate the IDS from
the servers that they monitor. These isolated IDSs are located
inside distinct VMs which are termed as IDS VM. There are
also commercial products built using VMI technology [20].

3 PROBLEM STATEMENT

As discussed in the introduction, we see a proliferation
of online public services provided over the internet. These
services are provided by multiple suppliers, whose informa-
tion systems interact through standards-based ‘services’ (e.g.
SOAP, HTTP). At the same time, the information systems
providing these public services are evolving towards Cloud
infrastructures comprised for example of many homogeneous
commodity servers with standardised operating systems, ap-
plications and hardware. This allows computing services to
be provided as a utility, with virtualised hardware and ap-
plications, and the consumer of services unaware of how or
where they are hosted.

At the same time, people, corporations and governments
are more dependent on these services. So the cost of service
failure is high, while at the same time risks are multiplied.
Heterogeneity of systems mean a system problem or success-
ful attack can have rapid, widespread effect, while pooled re-
sources increase the attractiveness of targets. However the
complexity and interconnectedness of systems means they are
impossible for humans to diagnose.

The problem we face is how to detect, diagnose and predict
problems in such system architectures. We discuss this under
three headings. Firstly we look at model-based online fault
diagnosis. Next we discuss using Process mining techniques
where models are not available, and finally we discuss some
results in prediction of problems in cloud-based systems.

4 MODEL-BASED DIAGNOSIS OF
FAILURE

Models representing Internet-based systems are partially
observable. The growing trends of using Service oriented
Architecture means that services are developed and their in-
terfaces are made available for the users. As a result, busi-
ness processes models are produced that capture external be-
haviour of the system by accessing the interfaces of the ser-
vices while the internal behaviour remains hidden from the
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Figure4: Diagnosis of Fault

users. As a result such models are inherently partially observ-
able. In this context, as depicted in Fig. 4, diagnoser services
(sometimes called Monitors or simply Diagnosers) are them-
selves services which receive sequences of observable events
produced by the system and identify if a failure has happened
or may have happened, in addition to the type of failure. Pro-
ducing Diagnosers deals with two challenging issues:

1. is the system Diagnosable? i.e. whether it is possible
to create a Diagnoser, and

2. creation of algorithms to construct Diagnosers from any
given model.

The theory of Diagnosability of partial observable systems
for Discrete Event Systems is well developed. Sampathet
al. [21] in their seminal paper formulate Diagnosability and
present a necessary and sufficient condition for Diagnosabil-
ity. They also provide an algorithm for creating Diagnosers
for Regular Languages. In their approach failure is modelled
as transitions. Sampathet al. [21] has been extended to larger
categories of models such as Petri nets [22]–[24] and even
temporal logic [25], among others. The following definition
from [26] extends the classic definition of diagnosability [21].

Definition 3. Consider a Petri netN with an initial marking
M0, which has no deadlock after firing of a transition which
represents failure. We sayN is Diagnosable if there are no
two firing sequencess1 ands2 satisfying the following con-
ditions:

1. P (s1) = P (s2),

2. no failure transition appears ins1,

3. there exists at least one failure transition ins2

4. It is possible to makes2 arbitrarily long after the occur-
rence of a fault.

The above definition states that in a diagnosable system it
is not possible to come across any two execution sequences
with the same observable behaviour (P(s1) = P (s2)), so that
only one of them has a failure transition. The part about ‘. . .
arbitrarily long after the occurrence. . . ’ is to ensure that the
systems continues long enough after occurrence of failure and
is also present in [21]. The classic theory of Diagnosability
which was originally designed for DES has now been adopted
to develop Diagnosers for Service oriented Architectures and
Telecom services [27]–[33], [13]. In these approaches, a num-
ber of services are considered in a SoA, as depicted in Fig.
5. We assume that models of such systems exist and failure
which is going to be diagnosed is also modelled. Then, if the
system (consisting of all involved services) is Diagnosable a
new service is created andintegratedin the infrastructure to
use observable events and establish occurrence and type of

Figure5: Diagnoser in a SoA

failure. Our recent work also uses code generation techniques
to produce the Diagnosers and interfaces for integrating them
into the system automatically [30]–[32].We shall explain this
process with the help of an example [32].

Example 1. Right-First-Time failure. Consider a simplified
interaction between a customer and a number of services in
a typical Telecommunication Company for technical support
related to the Broadband connection.

As depicted in Fig. 1, the customer logs1 onto the company
website and enters details such as the account number. Choos-
ing the ‘Broadband problem’ option, he submits his form on-
line. Next, the company’s Check Customer Account (CCA)
service determines whether the customer account is in a sat-
isfactory condition in order to progress the fault report. If the
current status of the account is not satisfactory the customer
is advised to phone the call center and the process ends. If
the account status is satisfactory, the CCA invokes a request
to another service called General Evaluation Services (GES).
The GES examines the availability of service at the exchange
side and ensures that everything is up and running, in which
case the process moves to the next step. If GES identifies any
problem with the availability of the services at the exchange
side, the customer is informed of the status and a separate pro-
cess is invoked to deal with this problem (not shown as part
of this example). If everything is fine on the exchange side,
the Customer Services sends a request to Line Test Service
(LTS), which is an automated service to check line status up
to the customer premises. However, LTS can also indicate
problems on the exchange side which were not detected by
the GES. There are three possible outcomes: 1) the line has
no problem, move to next step, 2) the line has some prob-
lems, advise the customer or 3) There is no problem with the
line, although there is likely a problem with the exchange.
Option 3 is shown by the bold arrow in Fig. 1. If case 3 hap-
pens, a failure emerges which means that GES should repeat
its course of action violating Right-First-Time. Finally, LTS
sends a request to analyse data history in the customer router.
If it is possible to carry out analysis then get a decision from
the analysis algorithm (either all OK so the customer has to
call technical support, or the analysis finds the problem and

1We assume that the Customer can log into the company’s website, for ex-
ample supposing the customer is not happy with the speed of his Broadband
connection.
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customeris advised what to do).

For the details of the method of automated production of
the Diagnoser we refer the reader to [32], where four methods
of integration of the Diagnoser are also described. We make
use of the models of the system that represent the interaction
between the involved services. Figure 2 shows the example of
the model used in BPEL. We converted this model based on
the formalism suggested by Vanhataloet al. [34] which draws
on Petri net theory so that to apply Petri net Diagnosability
theory techniques. Without such a model and formulation of
failure, it is not possible to design Diagnosers on the basis of
this technology. In the next section, we focus on techniques
which are applicable to scenarios where models of the system
are not available.

5 MONITORING OF LARGE SYSTEMS
VIA LOGS USING PROCESS MINING

In the previous section we discussed automatically produc-
ing Diagnosers for near identifying failure in near real time.
These require a model of the system to be diagnosed. In this
section, we ask what we can do if there is no model, for in-
stance if the services are built on legacy systems or is too
complex or poorly understood to model. In this case we first
need to find a model of the system to which we can apply
Diagnosers. For this we use Process Mining.

Figure 1 showed a simplified problem resolution process
from telecoms, implemented using a SoA. In a more complex
example, this might be spread across several service providers
(business entities). Each part of the process will involve in-
formation systems, so events pertaining to the business pro-
cesses (e.g. Fig. 2) may be recorded in multiple event logs
Ei. Assuming event logs defined as in (1), theEi can be eas-
ily merged and traces extracted into a single workflow logW .
This log contains full process traces from start to end activity,
e.g. from the customer loggin in to the website, to resolution
of the problem.

Process mining [9], [10] is the discovery and analysis of
models of business processes from workflow logs. A pro-
cess discovery algorithmΦ uses a minimal log such asW
to attempt to recover a modelM of the ‘control flow’ of the
underlying process, such as that in Fig. 2, i.e.

Φ(W ) → M (5)

The recovered modelM represents the ‘true’ business pro-
cess and can be compared with an ‘assumed process’M ′ (Fig.
6), used to troubleshoot differences, check adherence to busi-
ness rules, SLA and audit requirements. Mined modelM can
be extended (e.g. with performance information) and used
for performance analysis and identifying bottlenecks.M may
also be used for planning, e.g. of business change, load bal-
ancing or energy efficiency by using as a basis for modifi-
cations, simulating the changed model. Models showing the
interactions between people or organisations can be used to
analyse the efficiency of work practices.

Many algorithms have been proposed for the control-flow
discovery aspect of process mining. These start from differ-
ent theoretical bases, or focus on different priorities. We refer

Figure6: Process Mining

the interested reader to references in [9], [10], [35] for fur-
ther details of algorithms. Business processes are often char-
acterised by structuredness and concurrency: process models
are (ideally) composed of substructures such as sequences and
matching splits and joins, and activities or parts of the process
may take place in parallel.

As a simplified example of a process discovery algorithm
we outline the Alpha algorithm [36]. Consider two eventsa
andb from the set of activitiesA belonging to a processM
recorded in a workflow logW . These two events must be
related in one of four relations, defined as follows.

• a → b (a may appear immediately beforeb in traces in
W , neverb beforea), or conversely

• b → a,

• a ∥ b (sometimesa appears immediately beforeb,
sometimes immediately after),

• a# b (a andb are always separated by at least one other
activity).

The algorithm processes workflow logW to determine the
relation between each pair of activities(a, b) ∈ A×A. From
this set of relations compiled for each pair of activities, a Petri
net is created that satisfies all these relations. Note that this
assumes that events are always recorded correctly inW .

One key question that arises is, ifa is seen beforeb thou-
sands of times andb beforea only once, should this be in-
terpreted as a mistake in the log or a rare scenario? In gen-
eral this question can only be answered with knowledge of
the business environment or service, and different algorithms
make different assumptions.

So using a process mining algorithm such as Alpha we can
discover process models as a basis for the diagnosis tech-
niques described in the previous section. However,workflow
logs can be large, and processing them can be computation-
ally expensive (or data can be expensive or time-consuming
to collect). Can we minimise the amount of data we need to
use? How many process traces do we need to be confident
that the model we have mined is the correct one? We next
look at these questions.

5.1 Real Time Business Process Mining
(RTBPM)

In this section we outline a probabilistic framework for
considering process mining questions (for a fuller presenta-
tion see [35]). This provides a rigorous basis for answering
questions such as ‘how many traces do we need to be confi-
dent in the results of mining?’, ‘how different are two mod-
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els?’,and ‘what is the probability that a detected fault is real
and not an artefact of the data?’.

We here describe using this framework to determine the
probability of identifying an undesirable scenario. Given a
workflow logW , what is the probabilityPf of identifying a
failure or undesirable scenario, if we only useX% of the log?
Conversely, given a desiredPf , can we calculateX?

To answer such questions involving uncertainty, we first
need a probabilistic framework within which to consider busi-
ness processes and process mining. Whereas business pro-
cesses have traditionally been viewed as languages over ac-
tivities, with no probabilistic structure, we consider business
processes as probability distributions over strings of activities
(‘traces’). The primary task of a process discovery algorithm
is to learn these distributions.

As introduced in section 2.2 we represent activities as sym-
bols from a finite alphabetΣ, and traces as stringsx ∈ Σ+.
We assume a probabilistic model for the generation of event
traces, i.e. that traces are drawn into the event logi.i.d. (in-
dependently and identically drawn). Thetrue business pro-
cessM is modelled by a probability distributionPM over
traces, where the probability of a tracex is PM (x), such that∑

x∈Σ+ PM (x) = 1. As before, the workflow logW is a fi-
nite multiset overΣ+, now understood to be drawni.i.d. from
PM . The task of a process mining algorithm is to learn from
W a distributionPM ′ , to approximatePM .

We are now assuming that we have a correct process model
M of the system, e.g. previously mined from a ‘large’ log.
We want to use process mining to monitor the system for fail-
ure, so the question becomes how many tracesn do we need
to use from the logW to be confident in miningM correctly?
If we answer this question, we can be confident that if we use
n traces and mine a significantly different modelM ′, then the
underlying process changed and we may have a fault scenario.

Since processes are distributions over traces, we use dis-
tances between distributions, such as the Euclidean distance,
to test for significant difference between models, e.g.

d2(PM , PM ′) =

√∑
x

(
PM (x)− PM ′(x)

)2
> ϵ, (6)

for small0 < ϵ ≪ 1

We use the Alpha algorithm [36] as an example. First
we consider the basic substructures from which business pro-
cesses are constructed, highlighted for example in Fig. 2.
For acyclic processes, Alpha can discover sequences of ac-
tivities, exclusive (XOR) splits (to alternative sequences of
activities) and parallel (AND) splits (to parts of the process
that may execute concurrently) and the corresponding join
structures. Next we analyse the probabilistic behaviour of the
algorithm to produce formulae for the probability of success-
ful mining of these substructures, in terms of the probabilities
in the model andn, the number of traces used for mining.
These probabilities for discovery of structures can be com-
bined to give the probability of successful mining by Alpha
of the whole modelM .

The discovery of structures in the model can be treated
as conditional on the discovery of ‘earlier’ structures in the

model, so ifM is the example model in Fig. 2, then

Pα(M) = Pα(A)× Pα(B|A)× Pα(C|B)× . . . , (7)

wherePα(S) is the probability of Alpha correctly mining
structureS, Pα(M) the probability of mining the full model.
These probabilities are given in terms ofn (the number of
traces in the workflow log used for mining) and probabilities
of substrings in the log.

To obtain the number of tracesn needed to ensure that with
confidencePc the algorithm will produce the correct model,
we invert the equation and fix a desired confidence in the min-
ing results,Pα(M) = Pc. Thus when a model is mined from
a log ofn traces, if the distance between the true and mined
modelsd(M,M ′) > ϵ (equation 6), then with probability
Pf = Pc we have identified a fault.

The Alpha algorithm is relatively simple and makes many
assumptions, e.g. no noise in the recording of the traces,
and that the underlying process can be modelled by a re-
stricted Petri net (Structured Workflow Net). However the
same method can in principle be applied to any process min-
ing algorithm.

6 MONITORING EMERGING
MALICIOUS BEHAVIOUR

Having discussed using model-based Diagnosers to iden-
tify known faults, and process mining to learn unknown busi-
ness process models from logs, in this section we ask whether
we can diagnose a new fault which we have not seen before.
This seems impossible in general. However it is possible in
some cases to discover failure which is associated to emerg-
ing behaviour which has not seen before. In this section we
give an example of such failure detection technology. The
proposed method can be compared to the use of symptoms in
human pathology, in which study of symptoms directs physi-
cians to diagnosis of a disease or possible causes of illness.
Observing unusual symptoms, even a physician cannot iden-
tify the illness, he will be alerted to conduct further exper-
iments or to ask for expert advice. In that sense, from the
observation of unusual symptoms the possibility of illness is
discovered. In this section we argue that modern malware
is becoming component wise. We also argue that in an en-
vironment such as Cloud in which introspection is possible,
components used in malware produce symptoms. As a result,
similar to pathology, observing of the symptoms can lead to
discovery of possible malicious behaviour which can be new
malware, or malware created from components used in old
malware.

6.1 Reuse of Components and Techniques in
Modern Malware

A malware writer must overcome a large number of obsta-
cles to reach his objective. Among them, there are problems
related to how to gain entry to a machine, how to install ma-
licious code, how to evade detection, how to prevent the in-
fected machine informing the owner, how to propagate, how
to make analysis difficult, how to stop other malware writers
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to gain access to an infected machine and so on. Considering
the sophisticated nature of modern defence, solving all these
problems demands huge resources. In addition, a low quality
malware might ‘give the game away’ resulting in alerting se-
curity experts of the vulnerabilities of the target system. As
a result, malware developers reuse the existing components,
algorithms and techniques to improve the quality of the code.
Some of the reuse is of legitimate components, for example
using existing encryption libraries, and some are illegal soft-
ware available online [37]. Consequently, it is common to
come across variants of the same script within various mal-
ware products [38].

6.2 Symptoms That Point to Malicious
Activities

Reusing code or techniques can leave symptoms behind.
For example, a wide range of malware disables the defences
of the system by stopping the antivirus software. Conficker
[39] for example is a well-known computer worm that targets
the Microsoft Windows operating system and forms a bot-
net. in theConficker C, 23 processes are immediately aborted
whenever they are discovered running on the victim host, in-
cludingsysclean,tcpview, wireshark,confikandautorun. See
page 12 of [39] for a list. Absence of Antivirus software from
the Process Table of a system can be seen as a symptom that
points to the possibility of malicious behaviour. Of course,
it is possible that the Antivirus has been stopped for various
legitimate reasons. Other examples of symptoms are unusual
values for registry keys, or existence of high entropy code as-
sociated with encryption, which is essential for the malware
when communicating with the malware writer. For a list of
symptoms see [40], where we have included a list of symp-
toms which we have come across when studying well known
malware.

The key point is that appearance of the symptoms can be a
reason for further investigation. In particular, observing more
than one symptom can convince us of the greater possibility
of an undesirable behaviour. This is similar to the patient who
is suffering from a disease which has caused multiple symp-
toms. Shifting the attention to looking for the symptoms, as
opposed to looking for the malware that creates the symp-
toms, can alert us of existence of malicious behaviour.

6.3 FVMs and Monitoring of Malware While
Remaining Hidden

To cope with sophisticated defence mechanisms deployed
in modern systems, malware writers have developed tech-
niques to remain hidden. For example, a common practice
is to stop an infected system from contacting security vendors
such as antivirus providers. In some extreme cases, malware
writers can completely incapacitate the system by conduct-
ing aggressive actions such as killing the operating system
to cover their tracks [37]. However, it is very difficult to re-
main invisible to someone viewing from ‘outside’ when VMI
is used. Relying on VMI, the external viewer can observe
the changing state of a VMs memory, processes that take in-
ordinately long times to initialize, snippets of program code

Figure7: Forensic Virtual Machine Architecture

that has been obfuscated, snippets of code containing known
crypto algorithms, or any modifications to the system code.
Figure 7 depicts the outline of the approach suggested in this
paper. It shows a number of small independent VMs, called
Forensic Virtual Machines (FVMs), which have been given
the capability to inspect the memory pages of specific Cus-
tomer Virtual Machines. Once a symptom has been detected,
then the FVM reports its findings to other FVMs via secure
multicast. In such cases, other FVMs will be prompted to in-
spect the VM for additional symptoms. In addition, when
a symptom is discovered, this fact is reported, via Dom0,
to a Command & Control centre. The Command and Con-
trol Centre correlates this information with information from
other sources to identify an appropriate mitigation. For in-
stance, the Command & Control, through the Dom0 and hy-
pervisor, can ‘freeze’ the customer’s VM by denying it any
CPU cycles as a result to stop the malicious activity. The
memory will remain frozen until it can be forensically exam-
ined or copied for further analysis.

FVMs make use of the computational resources that could
otherwise be allotted to the customers VMs. As a result,
management of the efficient allocation of the resources to
the FVMs is crucial. In particular, creating and deploying
an FVM is computationally intensive. In addition, perma-
nent monitoring of an FVM is costly and wasteful, as the
symptoms are expected to appear sparsely. We have designed
the FVMs so that they regularly change their target Customer
VM. To achieve this, a distributed algorithm is created to al-
low the FVM to schedule moving its searching process from
one Custome’s VM to another. We refer to such algorithms as
mobility algorithms. For an example of a mobility algorithm
see [40].

6.4 Limitations

The proposed approach has a number of limitations. Firstly,
the suggested approach cannot cope with malware products
which do not make use of component or existing algorithms.
This although it seems unlikely is not impossible. Secondly,
compromising Dom0 will allow taking over the virtualisation
layer. To the best of our knowledge this has not happened yet.
Securing the virtualisation layer is the subject of extensive re-
search and technical innovations and will possibly define the
battleground between malware writers who focus on Cloud.
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Thirdly, it is possible to detect if a system is running on a vir-
tualised environment. This would alert malware writers who
wish to remain undetected to stay away from Cloud and focus
on systems which are not virtualised.

7 CONCLUSION

In this paper we argue that the problem of ensuring cor-
rect functioning of modern systems is essential, due to their
ubiquity and involvement in every area of modern life. We
presented three examples of how we can approach these prob-
lems. Firstly, when we have a model of the system to be diag-
nosed, and secondly using logs to produce such a model when
one does not already exist. Finally we discussed the situation
when we are interested in emerging behaviour, such as de-
tecting new malware threats in the Cloud, from the symptoms
they present.

These examples all deal with very large and complex prob-
lems, where the size, complexity and amount of computa-
tion involved means it is not possible to manually avoid or
even detect any the failures in the above categories. There-
fore we have no no choice but to use computational resources
to deal with the problems. As a result we are ‘fighting fire
with fire’, using modern, distributed computing techniques
to deal with faults caused within modern, highly distributed
computer based systems.
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