
Implementation of a Prototype Bi-directional Translation Tool
between OCL and JML

Kentaro Hanada†, Hiroaki Shinba†, Kozo Okano†and Shinji Kusumoto†,

†Graduate School of Information Science and Technology, Osaka University, Japan
{k-hanada, h-shimba, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract - Object Constraint Language (OCL), which is
an annotation language for the Unified Modeling Language
(UML), can describe specifications more precisely than can
natural languages. In recent years, model-driven architecture
(MDA) based techniques have emerged, and thus translation
techniques such as translation from OCL to the Java Mod-
eling Language (JML) have gained much attention. Our re-
search group has been studying not only a translation method
from OCL to JML but also from JML to OCL. Bi-directional
translation between OCL and JML supports (1) development
by round-trip engineering (RTE) at the design level, and (2)
multi-translations between various formal specification lan-
guages. This paper presents our implementations based on
model translation techniques.

Keywords: model-driven architecture, OCL, JML, design
by contract

1 Introduction

In recent years, model-driven architecture (MDA) [14] based
techniques have emerged. MDA targets numerous languages.
Thus, translation techniques such as translation from the Uni-
fied Modeling Language (UML) to some program languages
have gained much attention. Several research efforts have
proposed methods that automatically generate Java skeleton
files from UML class diagrams [6], [11]. Some of these are
publicized as plug-ins for Eclipse. Translation techniques
such as the Object Constraint Language (OCL) [20] to the
Java Modeling Language (JML) [15] have also been studied.
These two languages are described as follows.

• OCL describes detailed properties of UML and is stan-
dardized by the Object Management Group (OMG).

• JML specifies properties of a Java program. It is also
used in some static program analyzers such as the Ex-
tended Static Checker for Java (ESC/Java2) [8].

However, JML describes more detailed properties than does
OCL. Both OCL and JML are based on design by contract
(DbC) [18] and are able to provide property descriptions of
classes or methods.

We previously proposed a method that translates a UML
class diagram with OCL into a Java skeleton with JML [19].
Our translation tool is implemented by mapping each of the
statements in OCL and JML by a Java program. However,
model translation, which uses abstract models to represent
common aspects of the target languages, is the primary func-
tion of MDA. One of our original goals was providing uni-
form techniques to translate from OCL to many specification

languages. Our previous prototype of a translation tool and
other tools provided by other researchers [19], [23] have low
reusability, because the goals were fulfillment of translation,
not usability. Thus, we need a tool that supports both transla-
tion and usability.

This paper presents a prototype translation tool from OCL
to JML. First, we define the syntax of UML with OCL by
using Xtext, which is a plug-in for Eclipse [5]. Next, we de-
scribe the translation rules from UML with OCL to a Java
skeleton with JML. The syntax and rules are used for transla-
tion in the framework provided by Xtext. The syntax descrip-
tion is independent of the translation rules in Xtext; therefore,
the syntax part has high reusability. However, because Xtext
can generate a dedicated editor of the defined syntax, this ed-
itor has high usability functions, such as code completion and
detection of syntax errors.

We also implement a tool that translates from JML to OCL
by using the same approach as translation from OCL to JML.
Round-trip Engineering (RTE) [17], [25] is a method that grad-
ually refines a model and source code by the repeated use of
forward engineering and reverse engineering. The aim of im-
plementation of translation from JML to OCL is to support
RTE at the specification description level.

The organization of the remainder of the paper is as fol-
lows. Section 2 describes the background of this research and
related work. Sections 3, 4, and 5 describe the implemen-
tation of our tool, the experimental results, and discussions,
respectively. Finally, Section 6 concludes the paper.

2 Background

In this section, we present the background of our research,
including techniques and related work.

2.1 Design by Contract

DbC is one of the concepts of object-oriented software de-
signing. The concept regards specifications between a sup-
plier (method) and a client (calling the method) as a contract,
with the goal of enhancing software quality, reliability, and
reusability. The contract means that if a caller of a class en-
sures the pre-condition, then the class of the caller must also
ensure the post-condition. A pre-condition is a condition that
should be satisfied when a method is called. For example,
conditions for the arguments of a method are pre-conditions.
In contrast, a post-condition is a condition that should be sat-
isfied when a process of a method ends. If the pre-condition
is not satisfied, then the caller of its class has errors, and if the
post-condition is not satisfied, then the class has errors. These

International Journal of Informatics Society, VOL.5, NO.2 (2013) 89-95 89

ISSN1883-4566 © 2013 - Informatics Society and the authors. All rights reserved.

separate responsibilities havea clear distinction for develop-
ers, and so they are useful to identify the causes of software
defects.

2.2 OCL and JML

OCL, which is standardized by OMG, details the proper-
ties of UML models. Because a UML diagram alone cannot
express the rich semantics of the relevant information of an
application, OCL allows one to describe precisely the addi-
tional constraints on the objects and entities present in the
UML model.

JML details the constraints of Java methods or objects [15].
These constraints are based on DbC. It is easy for novices to
describe the properties in JML because the syntax of JML is
similar to that of Java. Various kinds of tools verify source
codes with JML annotations. For example, JML Runtime As-
sertion Checker (JMLrac) [24] checks whether contradictions
exist between JML constraints and runtime values of the pro-
gram. JMLUnit automatically generates a test case skeleton
and a test method for JUnit [1]. Since the original use of JML
was for runtime assertion checking [4], several other program
verification tools have been developed, such as ESC/Java(2)
[7], [13], JACK [3], KeY [2], and Krakatoa [16].

2.3 Model Translation

The Query Verification Tool (QVT) [9] and the ATL Trans-
formation Language (ATL) [12] are typical model transla-
tion techniques. Model translation has two types. One is
Model2Model (M2M) that translates from model to model,
and the other is Model2Text (M2T) that translates from model
to code. For example, UML2Java [6] provides M2T transla-
tion capability.

2.4 Round-trip Engineering

RTE is a method that gradually refines the model and the
source code by the repeated use of forward engineering and
reverse engineering. RTE development needs to keep the con-
formity of the models with the source code. By using RTE,
QVT feature and requirement changes are easier to make [17],
[25]. In general, when the code or models are changed, then
the corresponding code or models are changed automatically
by using a tool supporting RTE.

2.5 Xtext

Xtext [5] is a support framework for defining both the syn-
tax of a model and the translation rules from the model to
the text. Xtext can generate a dedicated editor of the defined
syntax. This editor has high usability functions, such as code
completion and detection of syntax errors. Moreover, if tex-
tual models are written on the editor, the models are automat-
ically translated to text according to the defined translation
rules.

2.6 Related Work

Some existing methods [10][23] do not adequately support
the iterator feature, which is the most basic operation among

private T1 mPrivateUseForJML01(){
µ(init);
for (T2 e:µ(c1))

res =µ(body)
return res;

}

Figure 1: General Java template for the iterate feature method

collection loop operations. Our research group proposed a
technique to resolve this problem by inserting a Java method
that is semantically equal to each OCL loop feature [19].

An iterate feature is an operation that applies an expression
given as the argument to each element of a collection, which
is given as another argument.

Set{1,2, 3}−> iterate(i: Integer;

sum : Interger= 0 | sum+ i) (1)

Expression (1) defines an operation that returns a value rep-
resenting the sum of all elements in the Set. In expression
(1), the first argument (i: Integer) defines an iterator vari-
able. The second argument (sum: Integer = 0) defines
a variable used to store the return value and its initialization.
The third argument (sum+i) defines the expression executed
iteratively in the loop.

In JML or Java, expressions such as “sum+ i” cannot be
evaluated dynamically. For example, if expression (1) is re-
solved in the same way as expression (2), the result of the
translation would be expression (3).

JMLTools.flatten(setOfSets) (2)

JMLTools.iterate(int i, int sum = 0, sum+ i, set) (3)

In expression (3), “sum+ i” is evaluated only once when the
method is called. In other words, the expression is not evalu-
ated iteratively and dynamically in every collection element.

To resolve this problem, our research group proposed a
technique that inserts a Java method that is semantically equal
to each OCL loop feature [22]. It is worthwhile to have such
an algorithm to deal with the iterate feature, because the iter-
ate feature is widely used.

Expression (4) shows the general format of an iterate fea-
ture. The variablese, init, body, andc indicate an iterator
variable, a declaration of the return value and its initializa-
tion, an expression executed in the loop, and a Collection type
variable, respectively.

c−> iterate(e;init | body) (4)

Figure 1 shows the general format of our newly created method.
The keywordsµ(), T1, andT2 and the variableres are a func-
tion translating an OCL expression into a Java expression, a
variable declared ininit, a variablee, and the name of the
variable declared ininit, respectively.

3 Implementation

In this section, we present the implementation of our trans-
lation tool.

90 K. Hanada et al. / Implementation of a Prototype Bi-directional Translation Tool between OCL and JML

Figure 2: Overviewof implementation using Xtext

3.1 Policy of Implementation

We implement the translation tools by using Xtext. First,
we define the syntax of the models. Next, we define the trans-
lation rules from the syntax of the models to the source code.
Both translations, from OCL to JML and from JML to OCL,
are implemented by the above method. Figure 2 shows the
overview of the implementation.

Our implementation method has the following advantages.

• Syntax and translation rules are defined independently;
thus, the syntax description can be reused.

• Xtext can generate a dedicated editor of the defined
syntax. The high usability functions are explained in
the previous section.

3.2 Translation from OCL to JML

In this section, we present the implementation of a transla-
tion from OCL to JML.

3.2.1 Syntax definition of UML with OCL annotation

We define the syntax of the UML class diagram with OCL.
For the UML part, we use conventional syntax rules and ex-
tend the syntax. The extended syntax can append the OCL
constraints. For the OCL part, we consider some cases of re-
turn types and other syntax. Translation rules depend on the
syntax of the model; therefore, careful case analysis helps the
semantic analysis and enhances the reusability of the syntax
of a model. The function of the generated editor depends on
the defined syntax. Therefore, the more we take into account
the case analysis, the more usability the generated editor has.
In summary, careful consideration of the case analysis helps
both usability and reusability.

3.2.2 Definition of translation rule from OCL to JML

Table 1 shows parts of the translation rules of OCL to JML.
A translation function of an OCL statement to a JML state-
ment is expressed byµ. Here, Integer, Real, and any type
of Boolean are expressed byai. Any type of Collection is
expressed byci.

We define the translation rules OCL-JML in accordance
with many of the same rules used in existing research [19].
In Table 2, many collection loops can be replaced by iterate

Figure3: Input model

Figure4: Result of translationfrom OCL to JML

features. Therefore, our current research replaces the collec-
tion loop with the iterate feature. However, this translation
method has some challenges. For example, low readability
of the generated code is one challenge. To resolve this prob-
lem, if the OCL loop feature directly translates the JML loop
feature, we do not replace the collection loop with the iterate
feature.

Figure 3 is an example of a textual model based on the
defined syntax. Figure 4 is an example of the result of a trans-
lation from the model to the text.

3.2.3 Oclvoid Type

The OclVoid type is a class having only the constant named
Undefined. The constant is returned when an object is cast
into an unsupported type or when a method gets a value from
the empty collection. The counterpart of this constant in JML
is null. It must be noted that in OCL, a logical expression such
as “True or Undefined” is evaluated as an undefined expres-
sion, not True. To deal with OclVoid correctly, the translation

Table 1:µ translation rules from OCL to JML
µ(a1 = a2) = µ(a1) == µ(a2)
µ(a1 > a2) = µ(a1) > µ(a2)
µ(a1 < a2) = µ(a1) < µ(a2)
µ(a1 >= a2) = µ(a1) >= µ(a2)
µ(a1 <= a2) = µ(a1) <= µ(a2)
µ(a1 <> a2) = µ(a1)! = µ(a2)
µ(c1=c2) = µ(c1).equals(µ(c2))
µ(c1>c2) = µ(c1).containsAll(µ(c2))&&!µ(c1).equals(µ(c2))
µ(c1<c2) = µ(c2).containsAll(µ(c1))&&!µ(c1).equals(µ(c2))
µ(c1>=c2) = µ(c1).containsAll(µ(c2))
µ(c1<=c2) = µ(c2).containsAll(µ(c1))
µ(c1<>c2) = !µ(c1).equals(µ(c2))
µ(c1−>size()) = µ(c1).size()
µ(c1−>isEmpty()) = µ(c1).isEmpty()
µ(c1−>notEmpty()) = !µ(c1).isEmpty()
µ(c1−>excludes(a1)) = µ(c1−>count(a1) = 0)
µ(c1−>count(a1)) = µ(c1−>iterate(e; acc : Integer= 0 |

if e = a1 thenacc+ 1 elseacc endif))

International Journal of Informatics Society, VOL.5, NO.2 (2013) 89-95 91

tool needs to treat OclVoid as follows.

(a1 == null ? false : throw new JMLException())

3.3 Translation from JML to OCL

In this section, we present the implementation of the trans-
lation from JML to OCL.

3.3.1 Syntax definition of Java skeleton code with JML
annotation

We define the syntax of Java skeleton with JML. For Java,
we define the syntax of class declaration, class modifier, field
variable, and method declaration as the targets of translation.
The variable type and others are needed to translate correctly,
so we define the syntax of the Java skeleton. For JML, our
translation tool can translate a part of the formula defined in
the JML Reference Manual. JML is a more detailed language
than OCL, and JML has complex expressions that cannot be
expressed by OCL. For example, JML has an assignment op-
eration and a shift operation, but OCL does not have either
of these operations. At the time of syntax definition, we omit
the operations and syntax that cannot be translated from JML
to OCL. By omitting syntax that does not support translation
from JML to OCL, a user can input only the JML expressions
supported by the generated editor. For this reason, it becomes
much easier to understand the corresponding syntax.

3.3.2 Definition of translation rule from JML to OCL

Table 3 shows some of the translation rules from JML to OCL.
Here, the translation function of an JML statement to a OCL
statement is expressed byµ′. Any type of all are expressed by
ai. A type of boolean is expressed bybi.

In terms of elementary operation, the translation of JML
to OCL only has to replace the operator of JML with the op-
erator of OCL. However, to translate correctly, a part of the
operator needs to interchange an operand. The syntax of JML
is similar to that of Java. For example, the “+ operator” is used
in various cases, such as “Integer + Integer” and “String + In-
teger”. OCL does not support operation on different types. In
contrast, JML supports “+ operator” involving non-numerical

Table 2: A part of the correspondence table of Collection-
Iterate
c1−>exists(a1 | a2) = c1−>iterate(

a1; res : Boolean= false| res or a2)
c1−>forAll(a 1 | a2) = c1−>iterate(

a1; res : Boolean= true| res anda2)
c1−>count(a1) = c1−>iterate(

e; acc : Integer= 0 |
if e = a1 thenacc+ 1

elseacc endif)
st1−>select(a1 | a2)) = st1−>iterate(a1; res :

Set(T) = Set{} |
if a2 thenres −>includeing (a1)

elseres endif)
st1−>reject(a1 | a2)) = st1−>select(a1 | nota2)
c1−>any(a1 | a2) = c1−>select(a1 | a2)−>

asSequence()−>first()
c1−>one(a1 | a2) = c1−>select(a1 | a2)−>size()= 1

types. In terms of loopoperation, exists and forall and other
terms are defined as operations of the Collection type in OCL.
However, sometimes exists and forall and other terms are used
as a for loop of Java in JML. Therefore, the loop operation of
JML cannot be translated by the loop operation of OCL. If
the loop operation is used as a Collection in JML, our tool
translates JML to OCL. If the loop operation is not used as a
Collection in JML, our tool outputs error messages.

3.4 Type Inference

In OCL, “==” evaluates whether two objects are equiva-
lent. However in JML, “==” evaluates whether two objects
are equivalent, and “equals()” method evaluates whether two
reference types are equivalent. To translate correctly, the vari-
able type, and so on, must be correctly distinguished. When
translating from JML to OCL, our tool can distinguish the
type information correctly. However, when a user writes a
textual model, our tool cannot distinguish the type informa-
tion.

4 Experiments

This section explains our experiments in detail.

4.1 Overview of Experiments

We conducted two experiments. The goal of the first exper-
iment (Experiment 1) was to evaluate the quality of transla-
tion from JML, described as the experimental object, to OCL.
The goal of the second experiment (Experiment 2) was to
evaluate the quality of translation from OCL, generated by our
translation tool, to JML. These experiments were conducted
to ensure that our tool has possible applications for RTE.

4.2 Measurements

To evaluate the results of translation, we measured the fol-
lowing two items.

Ratio of Transformation
Ratio = OCLtranslated/JMLall

Table 3:µ′ translation rules from JML to OCL
µ′(b1?b2:b3) = if µ′(b1) thenµ′(b2)

elseµ′(b3) endif
µ′(b1<==>b2) = µ′(b1)= µ′(b2)
µ′(b1<=! =>b2) = µ′(b1) <> µ′(b2)
µ′(b1==>b2) = µ′(b1) impliesµ′(b2)
µ′(b1<==b2) = µ′(b2) impliesµ′(b1)
µ′(b1&&b 2) = µ′(b1) andµ′(b2)
µ′(b1||b2) = µ′(b1) or µ′(b2)
µ′(b1|b2) = µ′(b1) or µ′(b2)
µ′(b1 ˆ b2) = µ′(b1 xor µ′(b)
µ′(b1& b2) = µ′(b1) andµ′(b2)
µ′(\result) = result
µ′(\old(a1)) = µ′(a1)@pre
µ′(\not modified(a1)) = µ′(a1) = µ′(a1)@pre
µ′(\fresh(a1)) = µ′(a1).oclIsNew()

92 K. Hanada et al. / Implementation of a Prototype Bi-directional Translation Tool between OCL and JML

Figure 5: UML class diagramof warehouse management pro-
gram

Ratio of Reverse Transformation
Ratio = JMLreverse/OCLtranslated

JMLall is the number of pre-conditions and post-conditions.
OCLtranslated is the number of OCL statements translated
from JML statements by our translation tool.JMLreverse

is the number of JML statements translated from generated
OCL statements by our translation tool.

4.3 Results of Experiments

4.3.1 Experiment 1

Experiment 1 uses a warehouse management program. Fig-
ure 5 shows the class diagram of the warehouse management
program, which consists of seven classes. Table 4 shows the
components of the warehouse management program in detail.

The warehouse management program [21] has correct JML
statements, as shown by the results of past research [21]. The
number of described pre-conditions, post-conditions, and class-
invariants is 130. We use these statements to evaluate the
quality of the translation. The result shows that the number of
correctly translated statements is 102, and the Ratio of Trans-
formation is 78.4%. Figures 6 and 7 show cases of failure
translations.

Many cases of failure translations can be found. For ex-
ample, if multi-variables are declared in the forall feature,
then the translation from JML to OCL fails. Additionally,

Table 4: Components of warehouse management program

Class Name # of methods # of lines
ContainerItem 12 224

Customer 10 156
Item 7 110

ReceptionDesk 8 162
Request 16 245

StockState 0 9
Storage 10 258
TOTAL 63 1164

/ * @
ensures \result.matches("containerID." + containerID

+ "CarryingDate | " + carryingDate + "\n{1}")
@* /
String toString(){
}
/ * @
ensures (\forall Request r; requestList.contains(r);

r.getAmount() > 0);
ensures (\forall Request r; requestList.contains(r)

&& r.getAmount() != \old(r.getAmount());
r.getRequestState() == StockState.SHORTAGE);

@* /
List deliveringOrder(){
}

Figure 6: Example of failure translation from JML to OCL
(input)

context ContainerItem::toString()::String
post : result.matches(’ContainerID.’

[type error][type error][type error][type error])

context ReceptionDesk::deliveringOrder()::List
post : requestList->forAll(r:Request|r.getAmount() > 0)
post : requestList and r=(r)@pre and ->forAll(

r:getRequestState() = StockState.SHORTAGE)

Figure 7: Example of failure translation from JML to OCL
(output)

we can classify the following expressions as failures: expres-
sions with type operations, typeof operations, applying ”+”
between a String type and numeric type expressions, and so
on.

4.3.2 Experiment 2

In Experiment 1, 102 statements are translated correctly. We
recheck whether these generated statements are recognized
as translation objects of the prototype translation tool from
OCL to JML. In terms of correctly translated OCL, the Ratio
of Transformation of translation from OCL to JML is 100%.
For this reason, translation from JML to OCL by our tool has
no problems. However, some bugs are found in the translation
from OCL to JML, because our translation rule is still in the
trial phase. As a result, 98 statements out of 102 statements
as input statements are translated correctly, and the Ratio of
Transformation is 96.1%. The result shows that four state-
ments have some bug. Figures 8 and 9 show examples of
failure cases.

The OclAsType method is described in the lexical speci-
fication. However, the OclAsType method is not described
in the translation rules, so our tool could not translate the
OclAsType method. After reviewing these results, we modi-
fied the method to successfully translate the four statements.
Therefore, we will apply our modified translation rule in fu-
ture work.

5 Discussions

As stated earlier, the result of the Ratio of Transformation
of the translation from JML to OCL is 78.4% in Experiment
1. We implemented our tool as a prototype, so our tool has un-
supported statements. However, the Ratio of Transformation
of the experimental result shows that majority of JML con-
sisted of elementary operations, and thus shows the validity

International Journal of Informatics Society, VOL.5, NO.2 (2013) 89-95 93

pre : o.oclIsTypeOf(Request)
post : result = (receptionDate.getTime()-

(o.oclAsType(Request)).getReceptionDate())
.oclAsType(Integer) or result = 0

op compareTo(o : Object)

Figure 8: Example of failure translation from OCL to JML
(input)

/ * @
requires o.getClass().equals(Request);
ensures (\result == (receiptionDate.getTime()-

((o.oclAsType(Request)).getReceiptionDate()))
.oclAsType(Integer)) || (\result == 0);

@* /
public void CompareTo(Object o){
}

Figure 9: Example of failure translation from OCL to JML
(output)

of our translation tool. We now describe a part of the failure
translation.

Our tool could not translate the\type keyword, which is a
primitive operator returning a type name. The reason for the
above situation is that OCL has no counterpart of the\type
operator to identify a type name from a designated expression.
To solve this problem, the following approach is considered.
First, our tool keeps information on the parameter type be-
fore translation from JML to OCL. Next, our tool outputs the
parameter type directly in OCL statements.

Result of Ratio of Reverse Transformation is 96.1% in Ex-
periment 2. In Experiment 2, some unsuccessful translated
statements also occur in the translation result, because our
translation tool from OCL to JML is a prototype. The in-
put OCL is recognized as correct input; therefore, the result
shows that the quality of translated OCL is not a problem, but
the translation rules have some imperfections.

For this reason, the generated OCL has high quality. Some
of the failure translations are due to omissions in the imple-
mentation. In terms of this failure translation, our tool will be
able to translate correctly with the modified implementation.

Next, we will examine correctness of the rules. Table 1
and 3 show a part of the rules. In general, we have to check
that successive application ofµ andµ′ and vice versa, are
preserved. I.e.,µ′(µ(o)) = o andµ(µ′(j)) = j must hold,
where (o and j are an OCL expression and a JML expres-
sion, respectively). We have manually checked that it holds
for every combination of elementary operations. For exam-
ple,µ(µ′(\result)) =\result hold. However, for the iterate
operator, some expressions cannot be preserved.
µ′(µ(c1−>iterate(a1; res : Boolean= false| res ora2)))

= µ′(mPrivateUseForJML01())
= mPrivateUseForJML01() is a one of such concrete ex-
amples. To deal with such expressions is one of our future
works.

6 Conclusion

This paper presents a method of implementing the transla-
tion from OCL to JML and from JML to OCL. The aim of the
implementation of translation from JML to OCL is to support
RTE at the specification description level. We applied our

tool to a warehouse management program as an experimental
object and showed the results of the experiments. One future
work is to complete our translation tool, because our tool is
at the experimental stage. For example, our tool cannot treat
Undefined correctly and needs to be modified.

There are some expressions which cannot be translated cor-
rectly by our method including the expressions with iterate
operation, and JML loop expressions. To deal with such ex-
pressions is one of our future works.

After we improve the implementation of our tool, we will
conduct additional experiments. We will again evaluate the
quality of translation from OCL to JML and from JML to
OCL. We have not yet evaluated the translation from OCL to
JML, except for the number of successful translations.

In the future, we will also compare the result of applying
generated JML with the review tool for JML and the result
of applying described JML manually with the review tool for
JML. Two examples of review tools for JML are esc/java2
and jml4c. In terms of the translation tool from JML to OCL,
we will compare the generated OCL and the OCL described
manually to evaluate the readability. Also, we will apply the
generated OCL to the review tool for OCL. One example of a
review tool for OCL is Octopus. In addition, we will evaluate
whether our tool can do mutual transformations repeatedly by
using our translation tool from OCL to JML and from JML to
OCL.

7 Acknowledgments

This work is conducted as a part of a Grant-in-Aid for Sci-
entific Research C (21500036).

REFERENCES

[1] JUnit. http://www.junit.org/.
[2] W. Ahrendt, T. Baar, B. Beckert, M. G. R. Bubel and,

R. Hahnle, W. Menzel, W. Mostowski, A. Roth,
S. Schlager, and P. Schmitt. The KeY tool.Software
and System Modeling, 4(1):32–54, 2005.

[3] L. Burdy, A. Requet, and J.Lanet. Java applet cor-
rectness: A developer-oriented approach.K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003,
2805:422–439, 2003.

[4] Y. Cheon and T. Leavens. A runtime assertion checker
for the Java Modeling Language (JML).In Hamid
R. Arabnia and Youngsong Mun, editors, the Interna-
tional Conference on Software Engineering Research
and Practice (SERP’02), pages 322–328, 2002.

[5] Eclipse Foundation. Xtext - Language Development
Framework. http://www.eclipse.org/Xtext/.

[6] G. Engels, R.H.̈ucking, S. Sauer, and A. Wagner. UML
collaboration diagrams and their transformation to Java.
In UML1999 -Beyond the Standard, Second Interna-
tional Conference, pages 473–488, 1999.

[7] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge, G. el-
son, J. Saxe, and R. Stata. A runtime assertion checker
for the Java Modeling Language (JML).Extended static
checking for Java. In ACM SIGPLAN 2002 Conference

94 K. Hanada et al. / Implementation of a Prototype Bi-directional Translation Tool between OCL and JML

on ProgrammingLanguage Design and Implementation
(PLDI’2002), pages 234–245, 2002.

[8] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge,
G. Nelson, J. Saxe, and R. Stata. Extended static check-
ing for Java. InProceedings of the ACM SIGPLAN 2002
Conference on Programming language design and im-
plementation, pages 234–245, 2002.

[9] O. M. Group. Documents associated with meta ob-
ject facility (mof) 2.0 query/view/transformation, v1.1,
2011. http://www.omg.org/spec/QVT/1.1/PDF/.

[10] A. Hamie. Translating the Object Constraint Language
into the Modeling Language. InIn Proc. of the 2004
ACM symposium on Applied computing, pages 1531–
1535, 2004.

[11] W. Harrison, C. Barton, and M. Raghavachari. Map-
ping UML designs to Java. InProc. of the 15th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 178–187,
2000.

[12] F. Jouault, F. Allilaire, J. B́ezivin, and I. Kurtev. ATL:
A model transformation tool.Science of Computer Pro-
gramming, 72(1-2):31–39, 2008.

[13] J. Kiniry and D. Cok. ESC/Java2: Uniting ESC/Java
and JML.Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS’2004), 3362:108–
128, 2005.

[14] A. Kleppe, J. Warmer, and W. Bast.MDA explained:
the model driven architecture: practice and promise.
Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 2003.

[15] G. Leavens, A. Baker, and C. Ruby. JML: A Notation
for Detailed Design.Behavioral Specifications of Busi-
nesses and Systems, pages 175–188, 1999.

[16] C. Marche, C. Paulin-Mohring, and X. Urbain. The
KRAKATOA tool for certification of Java/JavaCard pro-
grams annotated in JML.J. Log. Algebr. Program, 58(1-
2):89–106, 2004.

[17] N. Medvidovic, A. Egyed, and D. S. Rosenblum.
Round-trip software engineering using uml: From ar-
chitecture to design and back, 1999.

[18] B. Meyer.Eiffel: the language. Prentice-Hall, Inc., Up-
per Saddle River, NJ, 1992.

[19] K. Miyazawa, K. Hanada, K. Okano, and S. Kusumoto.
Class enhancement of our ocl to jml translation tool and
its application to a curriculum management system.In
IEICE Technical Report, 110(458):115–120, 2011.

[20] Object Management Group. OCL 2.0 Specification,
2006. http://www.omg.org/cgi-bin/apps/doc?formal/06-
05-01.pdf.

[21] M. Owashi, K. Okano, and S. Kusumoto. Design of
Warehouse Management Program in JML and Its Veri-
fication with Esc/Java2 (in Japanese).The IEICE Trans-
action on Information and Systems, 91(11):2719–2720,
2008-11-01.

[22] M. Owashi, K. Okano, and S. Kusumoto. A Translation
Method from OCL into JML by Translating the Iterate
Feature into Java Methods (in Japanese).Computer Soft-
ware, 27(2):106–111, 2010.

[23] M. Rodion and R. Alessandra. Implementing an OCL to
JML translation tool. 106(426):13–17, 2006.

[24] A. Sarcar and Y. Cheon. A new Eclipse-based JML com-
piler built using AST merging.Department of Computer
Science, The University of Texas at El Paso, Tech. Rep,
pages 10–08, 2010.

[25] S. Sendall and J. K̈uster. Taming model round-trip engi-
neering. InIn Proceedings of Workshop Best Practices
for Model-Driven Software Development, pages 1–13,
2004.

(Received October 15, 2012)
(Revised December 3, 2012)

Kentaro Hanadareceived the BI degree from Os-
aka University in 2011. He is a master course
student in Osaka University. His research inter-
ests include model translation, especially transla-
tion between OCL and JML.

Hir oaki Shinba receivedthe BI degree from Os-
aka University in 2012. He is a master course
student in Osaka University. His research inter-
ests include model translation, especially transla-
tion between OCL and JML.

KozoOkano receivedthe BE, ME, and Ph.D de-
grees in Information and Computer Sciences from
Osaka University, in 1990, 1992, and 1995, re-
spectively. Since 2002, he has been an associate
professor in the Graduate School of Information
Science and Technology, Osaka University. In 2002,
he was a visiting researcher of the Department of
Computer Science, University of Kent at Canter-
bury. In 2003, he was a visiting lecturer at the
School of Computer Science, University of Birm-
ingham. His current research interests include for-

mal methods for software and information system design. He is a member of
IEEE CS,IEICE of Japan andIPS of Japan.

Shinji Kusumoto receivedthe BE, ME, and DE
degrees in information and computer sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a professor in the Graduate
School of Information Science and Technology at
Osaka University. His research interests include
software metrics and software quality assurance
technique. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

International Journal of Informatics Society, VOL.5, NO.2 (2013) 89-95 95

96

