
Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks
Despite Multiplexed Interruptions

Tatsuo Tomita†, Kazumasa Ushiki‡, Yoshiaki Kawakatsu‡, Nobutsugu Fujino‡,
and Hiroshi Mineno*

†Fujitsu Laboratories Ltd., Japan

‡Human Centric Computing Laboratories, Fujitsu Laboratories Ltd., Japan
*Graduate School of Science and Technology, Shizuoka University, Japan

{tomita.tatsuo, ushiki.kazumasa, kawakatsu.yoshi, fujino}@jp.fujitsu.com, mineno@inf.shizuoka.ac.jp

Abstract – In the real world, multiple tasks that people
conduct in their daily lives are often interrupted. In
particular, when multiplexed interruptions occur while
people are conducting tasks, they often forget to complete
tasks that they were in the midst of accomplishing, prior to
such numerous interruptions. It would be possible for people
to accomplish such multiple tasks more efficiently if
information and communication technologies (ICT) were
leveraged to assist and support them in completing their
tasks.

We have been proposing a “task-driven device ensemble
system”, which employs a user’s handheld mobile device
linked with various electronics devices available in the
user’s surroundings, to support execution of user tasks. We
have expanded on this system to enable seamless execution
of user tasks even when faced with multiple interruptions of
such tasks. This paper provides an overview of requirements
of our proposed system, and describes a prototype system
we implemented, in addition to describing a sample case
study of how the system can support retailers with their task
execution. We also evaluate usability and practicality of our
proposed system. Our qualitative and quantitative evaluation
results verify that our proposed system satisfies the
following targeted requirements and objectives, thus
demonstrating that the system is sufficient for practical use.

Keywords: device ensemble, UPnP, task-driven,
multiplexed interruptions, human centric

1 INTRODUCTION

We are currently conducting R&D in “Human-Centric
Computing”, in which information and communication
technologies (ICT) subtly and unobtrusively support users,
without the need for explicit user-operation. In the real
world, depending on the users’ real-time situations, users are
often interrupted while they are in the midst of
accomplishing various tasks in their daily lives – at times, if
such interruptions are multiplexed, users may forget to
complete some of those tasks.

For instance, it is reported that today’s knowledge
workers experience task interruptions on the order of every
4 to 11 minutes [1]. In addition, as illustrated in a hospital
scenario in Ref. [2], nurses are assigned numerous patients
and must complete routine tasks. However, if a nurse is
interrupted during a task, while bearing in mind the priority
of various tasks, the nurse is required to complete a

multitude of tasks within limited time – if ICT could be
leveraged to assist them in task management, nurses would
have more time to focus on the tasks themselves as their
core duties, thereby helping to prevent medical malpractice.

We have been proposing a “task-driven device ensemble
system”, which employs the users’ handheld mobile devices
such as smartphones, linked with electronic devices readily
available in user surroundings, to enable greater efficiencies
for task execution by individuals. In view of the
aforementioned, the primary issue is how well the task-
driven device ensemble system can handle multiplexed task
interruption.

This paper describes a newly designed task-driven device
ensemble system that operates seamlessly even with
multiplexed task interruptions. The remainder of this paper
is comprised as follows:

In Chapter 2 we describe related work. In Chapter 3, we
present the concept of task-driven device ensemble systems,
and our proposed newly designed task-driven device
ensemble system. In Chapter 4, to evaluate usability of our
proposed task-driven device ensemble system, we describe a
prototype system that supports store clerks at retailers for
consumer electronics and home appliances. In Chapter 5, we
verify the results of our usability and performance
evaluations. Chapter 6 describes our conclusion and future
works.

2 RELATED WORK

There is already a considerable body of research
addressing human behavioral support that is dependent on
a person’s context, or context-aware navigation systems
[3]–[13], as well as research related to device collaboration.
At the same time, very little work has been conducted on
the two fields in combination.

Examples of work on context-aware navigation systems
or human behavioral support are as follows: “Task-based
mobile service navigation system” [3] employs a task
model that analyzes real-world problems, thereby making
it possible to search for service provider sites when a user
specifies a task. iHospital [4] instantaneously supports
business tasks in the real world. By providing hospital staff
with Bluetooth-enabled communications units so that they
can determine the location of other staff, and by sharing
each other’s status using mobile phones equipped with
messaging capabilities, they are able to quickly respond to
emergency surgeries. Wieland et al. [5] proposes and

International Journal of Informatics Society, VOL.5, NO.1 (2013) 49-58 49

ISSN1883-4566 © 2013 - Informatics Society and the authors. All rights reserved.

describes the implementation of a system for creating
workflows based on sensor-detected contexts. WTAS [6]
models tasks using a Petri net and decides which task
should be performed based on the user’s context as
ascertained using wearable sensors. Once a task is decided,
information such as maps is provided to support the
execution of the task. Most of these papers focus on how to
acquire the user’s context and leverage it in supporting the
user’s tasks. Although these papers share the same
objective as our work in this paper, they do not involve the
linking of devices.

There have been a number of works addressing device
collaboration [14]-[20], particularly using Universal Plug
and Play (UPnP) [21], such as the following examples:
Mets et al. [14] describes a context-aware multimedia
management system for the home environment using UPnP.
All content is integrated in a way that prevents the user
from being aware of its location, and the MediaRenderer
[22] closest to the user is automatically selected. Gashti et
al. [15] makes use of UPnP proxies. In addition to enabling
UPnP services (this includes fine-grained services that
would ordinarily be called “functions”) to be employed
across subnets, each user’s device and service information
is registered, making it possible for users to automatically
use services depending on the context. Ubiquitous e-Helper
[16] is a composable UPnP-based service platform for
linking among smartphones. Each of these studies uses
UPnP to link between devices, and contexts. At the same
time, they do not go as far as to consider interruptions in
tasks.

The following are works that combine context-aware
navigation and device linking: Task Computing [23]
proposes a task-centric technology for supporting people in
performing tasks using services in the user’s vicinity. In
this study, human tasks are regarded as collections of
services in nearby devices. In its implementation, however,
the system first collects nearby services and then displays
available tasks to the user based on these services. By
contrast, in the system we propose, tasks are defined based
on the user’s context and then services on nearby devices
are collected to execute those tasks. To add to this, their
research is focused on an ontology for service linking.
Bidot et al. [24] proposes, and then discusses the
implementation and evaluation of, a workflow-
management system in which workflows are created based
on contexts and devices are controlled according to
workflows. This system involves device ensembles. For
example, to achieve the goal of helping a user relax at
home, the system will control the lighting, as well as the air
conditioning and a music player. UPnP is employed for
this, and the Device Manager (DM) exists on household
and other networks. This approach does not, however, take
into account linking between the user’s handset and nearby
devices when the user moves around. While these works
share the same goal as our research, they differ in their
implementation from the task-driven device ensemble
(device collaboration) that we have originally proposed.

Each of these works is focused on collecting contextual
information and suggesting tasks for the user. In contrast,
we are focused on what happens after a task is executed, i.e.

multiplex interruptions that occur during a task and the
recovery from these interruptions. These works also
employ an ontology, whereas we do not. Generally
speaking, the cost of constructing and maintaining an
ontology is quite high, and therefore it can be said that our
approach is more practical than these works. Table 1
illustrates the characteristics of our approach and these
works.

Table 1: Comparison between our approach and the related
works

3 TASK-DRIVEN DEVICE ENSEMBLE

3.1 Concept behind the Task-Driven Device
Ensemble

To support users in executing tasks, we have proposed a
task-driven device ensemble in which the task at hand is
first determined by the user’s context, and then devices
necessary for that task are discovered and are linked
together. Figure 1 illustrates the concept behind the task-
driven device ensemble.

Figure 1: Concept behind the task-driven device ensemble

We presume that users will always be carrying with them

handheld mobile devices such as smartphones equipped with
multiple sensors. In the cloud, this sensor data can be
combined with other environmental sensor data and
abstracted in the user’s context.

The task that best matches the user’s context is selected.
A task administration mechanism manages the priority of
each task and the functions required to execute tasks. Tasks
for users to perform are defined in advance by the users
themselves, or particularly in the case of fixed job tasks, by

50 T. Tomita et al. / Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks Despite Multiplexed Interruptions

a field manager. The task manager searches for devices in
the user’s vicinity that feature functions needed to perform a
task - if all the functions are discovered, the task is selected,
devices that have the required functions are linked, and the
task is executed.

If multiple tasks can be executed given the functions in
the devices, the highest priority task is selected and executed.
If the task can be performed on the user’s handheld mobile
device itself even without being linked to any nearby
devices, there is no need for requested functions for the task.
In such a case, the requested functions in the task definition
table shown in Fig. 1 are defined as null.

3.2 Proposed Task-Driven Device Ensemble

We propose a task-driven device ensemble that allows
multiplexed interruptions, in which it possible for the user to
resume a previous task after encountering multiple task
interruptions. In the workplace, in particular, there is
typically a flow for tasks. At the same time, user task flows
do not simply proceed in a linear order. Taking into
consideration the priority of the tasks at hand, users may
occasionally be interrupted during a task in order to perform
a new task, only to return to the previous task upon
completing the interrupting task.

To implement such a system, we expanded a basic task-
driven device ensemble system, by adding a task state
administration function to the task administration server.
Figure 2 illustrates the task administration function added to
the task administration server. If, during the execution of
Task-2, a higher priority Task-1 arrives, the already-running
Task-2 is put into interrupt mode and pushed onto the
interrupt stack. Once Task-1 is complete, Task-2 is popped
off the stack. This, in turn, enables multiplexed interruptions
to be handled correctly.

Figure 2: Task state administration for handling multiplexed
interruptions

 Figure 3 outlines the sequence whereby an already-
running application for Task-2 is interrupted by an
application for Task-1.
(1) When the start request message for Task-1 arrives, the

task control compares the priority of Task-1 with the
priority of Task-2, which at that moment is running on
the user’s handheld mobile device (e.g. smartphone).
Because Task-1 has a higher priority, the sequence
proceeds to step 2.

(2) The task control causes the function matching unit to
determine whether the functions required by Task-1—
that is, Func-A and Func-B—can be supported by the
devices nearby the user’s handheld mobile device.

(3) The function matching unit sends a search request
message to the user’s handheld mobile device’s device
search/discovery unit.

(4) To determine whether nearby devices can support the
functions required by Task-1, the device
search/discovery unit multicasts a UPnP search message
to nearby devices.

(5) Devices that are able to offer any of the needed
functions respond to the search request message.

(6) The device search/discovery unit sends the search
results received from the devices to the function
matching unit.

(7) The function matching unit checks if Task-1 can be
executed by those devices. In this case, it decides that
Task-1 can be executed, and it notifies the task control
of this result.

(8) Before starting the Task-1 application, the task control
sends a suspend request message to the task execution
control on the user’s handheld mobile device in order to
suspend the Task-2 application.

(9) Upon receiving the suspend message, the task
application execution control suspends the Task-2
application.

(10) The task application execution control sends a reply
message informing of the Task-2 application’s
suspension.

(11) After the Task-2 application has been suspended, the
task control requests the start of the Task-1 application.

(12) The task application execution control starts the Task-1
application.

(13) Task-1 is executed using device collaboration with the
devices near the user.

(14) Upon the completion of Task-1, the Task-1 application
notifies the task application execution control of the
completion.

(15) The task application execution control sends the task
control notice that Task-1 is complete.

(16) The task control requests that the Task-2 application,
which had been suspended by the Task-1 application,
be resumed.

(17) The task application execution control resumes the
suspended Task-2 application.

Figure 3: Sequential chart of task interruption control

International Journal of Informatics Society, VOL.5, NO.1 (2013) 49-58 51

The interworking between the task administration server
and the user's handheld mobile device enables automated
task switching, thus preventing users from forgetting to
accomplish tasks, without additional burden to the user. As a
user support system, it is ideal if user intervention can be
kept to a minimum to minimize erroneous user operation,
thus enabling appropriate task switching via the user support
system.

3.3 Benefit of the Proposed Task-Driven
Device Ensemble

The most prominent distinctive characteristic of our
proposed concept is the comprehensive integration of
context awareness, device collaboration and multiplexed
task interruption. This comprehensive integration is realized
in the following sequence: In addition to the user context
(e.g. user location), device context (i.e. presence of the
device in the user’s vicinity and its functions) are identified
in the cloud. Executable tasks and their priorities are
identified according to these contexts along with task
definitions, and multiplexed interruption control based on
the highest-priority task is executed for the user’s handheld
mobile device. The task is executed via collaboration
between the user’s handheld mobile device and nearby
devices.

Device collaboration execution is enabled only when a
device equipped with functions required to execute the task
is available and present nearby the user – it can be difficult
for the user to discern the appropriate timing for execution
of device collaboration. In our proposed concept, by
integrating device collaboration with context awareness, and
leveraging the cloud to recognize device context and to
request the user’s handheld mobile device to execute the
appropriate task when device collaboration required for the
task is possible, we enable the task to be executed with
suitable timing, while eliminating the need for the user to be
aware of device collaboration feasibility.

During a particular task execution, if a separate higher-
priority task needs to be executed, the integration of context
awareness and multiplexed task interruptions enables the
system to prompt the user to execute the higher-priority and
lower-priority tasks at their appropriate timing. In such a
case, the data for the interrupted lower-priority task is
preserved and stored, and execution of the lower-priority
task resumes after completion of the higher-priority task,
thus preventing the user from forgetting to complete the
lower-priority task.

As aforementioned, device collaboration is possible only
when a collaborative device is available and present nearby
the user. Therefore, if the collaborative device becomes
unavailable (e.g. if the device is switched off) during the
task execution, the task execution cannot be completed: In
this case, the task should be suspended, and meanwhile any
other existing tasks that are executable should be executed
and completed. This task control (i.e. task suspension and
execution) that accommodates changes in device context
during device collaboration is realized by the multiplexed
interruption mechanism, and hence can be said to be a

benefit resulting from the integration of device collaboration
with multiplexed task interruption.

4 PROTOTYPE SYSTEM

We developed a prototype system based on the concept
described in the preceding chapter, in order to evaluate its
usability and practicality. This chapter is comprised of a
description of the system design, implementation and a
service scenario.

4.1 System Requirements

Requirements and quantitative objectives for the
prototype system were set as follows:
(1) Management of multiplexed task interruptions and

resumption
As described in the previous chapter, for the purpose of
supporting human tasks, the system should be able to
manage multiplexed interrupted tasks and then enable
suspended tasks to be resumed.
As a numeric objective, in view of the system’s
practical use, it should be able to handle 20 multiplexed
interruptions which is anticipated will be sufficient for
use at nearly any feasible worksite or field.

(2) Real-time task processing
For reasons of usability and to enable a user-friendly
and stress-free experience for users, the time between
user operations and the delivery of device collaboration
results should be within 2.0 seconds, comparable to the
minimal average latency experienced when a TV is
turned on by remote control.

(3) Scalability for simultaneous task execution
The task administration server handles numerous users’
handheld mobile devices, and processes the tasks of
these handheld mobile devices simultaneously.
Therefore, scalability is important. As a numeric
objective, in light of practical considerations, each
server should have a capacity of handling 10,000 users’
handheld mobile devices.

For the system requirements and objectives, we have

designed an implementation structure as described in the
following section.

4.2 Implementation

Figure 4 illustrates the structure of the prototype system
and Table 2 outlines the system’s hardware specifications.
The system has been implemented using C++ for the nearby
devices and Java for everything else.

On the server side, the system consists of a context
administration server and task administration server, and the
device side consists of user’s handheld mobile devices and
nearby devices. Each of these is discussed below.

Context administration server
The role of the context administration server is essentially to
derive the user’s context from information collected by the
user’s handheld mobile device and sensors in the user’s
environment. With this said, our research is primarily

52 T. Tomita et al. / Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks Despite Multiplexed Interruptions

focused on the task administration server. Therefore, for the
purpose of this study we have implemented a pseudo-
context administration server that only sends task start
requests and receives task execution result notifications.

Task administration sever

The task administration server executes tasks at the
request of the context administration server and sends
acknowledgement of task execution results to the context
administration server. The functions of the server are as
follows:
(1) Context event administration

Upon receiving an event from the context
administration server, this function will employ user
information and task information to determine which
users and tasks relate to the event. It will then send a
notification to the user task state administration
function containing information about the user and the
executable task. To satisfy system requirement (3), a
thread for processing the events is generated in advance
for each user. This enables reduction of thread creation
overhead that causes performance degradation when the
tasks of numerous users’ handheld mobile devices are
processed simultaneously. This also has a great effect
on real-time task processing of system requirement (2).

(2) User task state administration
In accordance with each of the server’s event
administration functions, this function manages each
user’s task execution state, i.e. whether a user is
executing a task or waiting to execute a task. To satisfy

system requirement (1), it deploys the task state
administration mechanism that was described in Figs. 2
and 3 of Section 3.2. This will ensure that users can
resume suspended tasks without fail, even when there
are multiple interrupting tasks.

(3) Task execution administration
This function receives instructions from the user state
administration function, issues search requests for
functions needed by users’ handheld mobile devices,
and issues requests for the execution, interruption and
resumption of task applications.

(4) Handheld mobile device event administration
This function awaits events from user’s handheld
mobile devices. Upon receiving an event, it will notify
the user state administration function of the event.

(5) Handheld mobile device communication control
This function controls communications with users’
handheld mobile devices and sends/receives messages.

(6) Timer administration
This function manages timers when various kinds of
requests are resent by the task execution administration
function.

Users’ handheld mobile devices

Android smartphones were used for the users’ handheld
mobile devices, and UPnP was employed for controlling the
devices and searching for functions available on the devices
and user handheld mobile devices. We used a UPnP library
developed by Fujitsu for use with Android. The functions of
the prototype user handheld mobile devices are as follows:
(1) Task applications

These are applications intended to support the execution
of tasks. We developed applications based on a test
scenario for supporting sales clerks at an electronics
retail store. Details of the scenario are described in
section 4.3.

(2) Task application execution control
This function awaits events from the user state
administration function. Upon receiving an event, it will
execute, suspend, or resume a task application, and then
acknowledge the result.

(3) Device/service search
This function will use UPnP’s M-SEARCH to search
for devices or UPnP services (functions for executing
tasks) that have been specified by the task
administration server.

Nearby devices

For this prototype, we employed a notebook PC as a
nearby device. The implemented features are as follows:
(1) Search response/advertisement

Search response will respond to the user handheld
mobile device if the searched service (functions) exists
on the device. Advertisements will periodically
multicast the services offered by the device.

(2) Slide display service
In terms of the UPnP services on our prototype, we only
developed a slide display service.

Table 2: Hardware specifications of prototype system

Figure 4: Prototype system configuration

International Journal of Informatics Society, VOL.5, NO.1 (2013) 49-58 53

4.3 Service Scenario

As illustrated in Table 3, we developed a task application
to support sales clerks working at an electronics retail store.
Because the purpose of our study was to perform a basic test
with multiple task interruptions, we selected a relatively
simple scenario. Even for more complicated scenarios, the
process during multiplex interruptions will remain basically
the same.

We envision a work support flow for these applications as
follows:
(1) Store clerk A is replenishing merchandise (default state).
(2) If a customer visits the store, the customer care task

application will interrupt clerk A’s merchandise
replenishment job. We assume that each customer can
be identified by means of a store membership card, etc.
Clerk A operates the customer care task application to
access the customer’s information and then serves the
customer.

(3) If there is a display device available, such as a notebook
PC, that can be used to explain a product, the task
application for product explanation is executed and the
previous customer care task application is interrupted.
Clerk A operates the current product explanation task
application and then gives an explanation using product
sales slides shown on the nearby display device.

Table 3: Task applications of prototype system

5 EVALUATION

We evaluated the prototype system for usability and
practicality. This chapter discusses the system’s qualitative
and quantitative evaluations.

5.1 Qualitative Evaluation

We confirmed that the implemented prototype operates
with accuracy. Figure 5 is a screenshot of an actual user’s
handheld mobile device. It displays the various phases of
the system’s operation. First, store clerk A is executing the
merchandise replenishment task. Second, a customer arrives
at the store, and the customer care task interrupts the
previous task. Third, store clerk A serves the customer, and
the explanation task interrupts the previous task. Last, the
interrupted tasks resume in sequential order.

This demonstrates that the task applications were
executed properly and that transitions with multiple task
interruptions worked well.

As we focus on task administration in this research, we
verified that the basic mechanism of the task administration
was realized. Specifically, we confirmed multiplexed
interruption coupled with nearby device discovery required
for a task execution, resumption of the interrupted lower-
priority task after completion of the higher-priority task, and
task execution through collaboration between the user’s
handheld mobile device and the nearby device.

At this stage, we have not yet implemented functions
necessary for the process prior to the task administration
illustrated in Fig. 1 – in other words, sensor data collection
via the sensors in the user’s handheld mobile device,
generation of user context based on sensor data, and
matching between the user’s context and task execution
conditions. We intend hereafter to implement these
functions and evaluate the practicality of our proposed
concept in its entirety.

(a)Merchandise (b) Customer (c) Product
 replenishment care explanation

Figure 5: Screenshots of user’s handheld mobile device in
prototype system

5.2 Quantitative Evaluation

In terms of quantitative objectives, we evaluated the
prototype system for the number of multiplexed
interruptions, processing time, and scalability.

Number of multiplexed interruptions

We estimated the number of possible multiplexed
interruptions for the system. To accomplish this, we
measured the elapsed time for multiplexed task interruptions
(namely, the processing time required for interrupting and
resuming) for each number of concurrent multiplexed
interruptions. We then measured the time interval from
when the pseudo-context administration server sends a new
task execution notification, through the interruption of the
previous task by the new task, and up until the screen of the
newly executed task is displayed. 5 measurements were
taken and averaged for each number of concurrent
multiplexed interruptions from 2 to 20. Figure 6 shows these
measurement results.

This graph shows an average time between 1.9 to 2.3
seconds for the entire range of measurement, despite
variations in time intervals resulting from fluctuations in the
handheld mobile device load due to wireless network traffic
and other factors. These results indicate that, for up to at
least 20 interruptions, the number of multiplexed
interruptions does not have an impact on processing time.
Therefore, the maximum number of multiplexed
interruptions is at least 20. This, in turn, satisfies the
quantitative objective for system requirement (1).

54 T. Tomita et al. / Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks Despite Multiplexed Interruptions

Figure 6: Elapsed time for task interruption

Processing time

We measured processing time in terms of usability. For
this purpose, 2 kinds of time were measured: (1) the amount
of time for handheld mobile device-side device
collaboration to have an impact on practical usability; and
(2) server-side task event processing time.
 With respect to (1), we evaluated the operability of a task
application running on the user’s handheld mobile device.
To do so, using the product explanation task, we measured
the time elapsed between when the user presses the slide
control button and when the result of the designated slide
control is actually displayed on the PC through the device
collaboration.
 Table 4 shows the average elapsed time after performing
this operation 5 times.

Although the slide show start time includes the time
required for Adobe Acrobat Reader to launch and is
therefore longer than other operations, all of the operations
run in a sufficiently short enough amount of time. This
confirms that the device collaboration mechanism works for
users without any stress, and that this satisfies the
quantitative objective for system requirement (2).

Table 4: Elapsed time for device collaboration

For (2), we evaluated the task-related event processing
time of the task administration server, i.e. the server
response time when responding to context changes, such as
when task execution becomes possible, from the context
server, as well as the task administration server response
time when responding to operations on users’ handheld
mobile devices. To do so, we measured the processing time
of the task administration server while gradually increasing
its processing load. The specific evaluation criteria are
outlined below:
(1) Task execution without interruption:

Under the condition that there is no task application
running in the user’s handheld mobile device, the time
between the pseudo-context administration server
requesting the execution of the merchandise
replenishment task and the task administration server
requesting that the user’s handheld mobile device
executes the task.

(2) Task execution with interruption:

Under the condition that the merchandise replenishment
task application is running in the user’s handheld
mobile device, the time between the pseudo-context
administration server requesting the execution of the
customer care task and the task administration server
requesting that the user’s handheld mobile device
executes the task.

(3) Task resuming:
The time between receiving notice of the completion of
the customer care task from the user’s handheld mobile
device, up through notifying completion of the task to
the pseudo-context administration server and sending a
request to the user’s handheld mobile device in order to
resume the merchandise replenishment task.

Figure 7 shows the average time for each of the above

processes, each of which was measured 30 times.
Each processing time displays a slight upward trend on

account of increased server load, but even the longest time
was only 130 milliseconds. Therefore, it can be said that
task execution and handheld mobile device processing can
be performed in almost real time.

This satisfies system requirement (2). Discrepancies
between the processing times are considered to be due to
differences between each of the executed processes. This
graph also demonstrates that task interruptions require CPU
power and that resuming tasks consumes the largest amount
of CPU power.

If searching for devices or services (functions) is
performed prior to the execution of a task, the search time
should be added to (1) or (2) in Fig. 7. According to UPnP
specifications, the wait time for M-SEARCH must be
greater than or equal to 1 second and should be less than 5
seconds inclusive. As a result, this wait time is dominant,
and in consideration of usability, it should be set to 1 second.

Figure 7: Task event processing time of prototype system

Scalability

We evaluated the prototype system for scalability. For
this purpose, we estimated (1) the capacity of the task
administration server, and (2) the processing performance of
the task administration server.

With respect to (1), our prototype system consumes
exclusively 1 thread per user. Therefore, the system capacity
is equivalent to the number of threads that can be

International Journal of Informatics Society, VOL.5, NO.1 (2013) 49-58 55

simultaneously generated on the server. In the case of our
prototype system, this number was 12,000.

For (2), we measured the number of tasks that the task
administration server was able to process in one hour while
gradually increasing the server processing load. We defined
the maximum server capacity to be the largest number of
tasks possible before CPU utilization reached 80%. We
measured processing performance for 2 scenarios: 1) The
simplest single-task scenario, and 2) the most complicated
3-task scenario. The single-task scenario only executed the
merchandise replenishment task from Table 3. The 3-task
scenario executed the 3 tasks and interruptions in the order
listed in Fig. 5.

The results are shown in Figs. 8 and 9. The number of
tasks processed per hour was approximately 760,000 for the
single-task scenario and 670,000 for the 3-task scenario. In
both scenarios, only 1 task is processed at a time, so if a user
were to perform each task in an average of 3 minutes, for a
single user it would be possible to process 20 tasks in an
hour. Therefore, the potential system capacity would be
approximately 38,000 users for single-task scenarios and
33,000 users for 3-task scenarios. This difference is
considered to be due to the additional overhead required for
task interruptions and resuming.

The previous capacity estimate of 12,000 user threads is
thought to be due to limitations in the settings of the Java
programming language, which is used on the server. In any
case, these results satisfy the quantitative objective for
system requirement (3) of our prototype system.

Figure 8: Task processing capacity for single-task scenario

Figure 9: Task processing capacity for 3-task scenario

6 CONCLUSION

We proposed an expanded “task-driven device ensemble
system” that supports user behavior, via seamless execution
of user tasks despite multiplexed interruptions. We also

implemented a prototype system envisioned to support store
clerks at retailers, and evaluated the prototype system to
verify that it indeed operates with precision as intentionally
designed. Our quantitative evaluation results were: (1)
Seamless execution of user tasks even with at least 20
multiplexed interruptions, (2) Real-time processing within
2.0 seconds via linked devices, and task processing time of
less than 130 milliseconds in the task administration server,
(3) Scalability of system capacity for at least 12,000 users
per server. Our results verified that the implemented
prototype system satisfied our requirements and objectives,
and is sufficient for practical use.

In our future works, we aim to achieve the following: (1)
Increase system capacity, (2) System expansion to include
operability with non-UPnP devices, (3) Conduct user-
derived/user-centric evaluation. For (1), although the system
capacity of our current prototype system is dependent on
and limited by the number of user threads that the system
can simultaneously generate, to enable practical use, in
future works we will eliminate this limitation by
dynamically allocating one of the pooled threads to the
requested event processing as needed. In regards to (2), we
will target system operability that includes linking with non-
UPnP devices that are widely available. Regarding (3),
although for this work our evaluations were primarily to
verify our prototype system performance, in future works
we intend to evaluate user experience and efficacies through
field trials.

REFERENCES

[1] L. Dabbish, G. Mark, and V. Gonzalez, ``Why Do I
Keep Interrupting Myself?: Environment, Habit and
Self-Interruption,’’ ACM Conference on Human
Factors in Computing Systems, pp.3127-3130 (2011).

[2] A. Terada, T. Takaya, R. Nishino, M. Iida, E. Sato, M.
Matsutani, Y. Hirabayashi, Y. Sakyo, T. Ibe, N.
Matsuzaki, Y. Murakami, and M. Momoi,
``Anticipating Professional Nursing Practice: Trial and
Evaluation of a Bridge Program for Graduating
Students Part 3 -Multitasking Scenario Exercises-,’’
Journal of St. Luke’s Society for Nursing Research,
Vol.12, No.2, pp. 58-64 (2009).

[3] Y. Fukazawa, T. Naganuma, K. Fujii, and S. Kurakake,
``Proposal and User Evaluation of Enhanced Task-
based Mobile Service Navigation System,’’
Information Processing Society of Japan (IPSJ) Journal,
Vol.50, No.1, pp.159-170 (2009).

[4] T. R. Hansen, J. E. Bardram, and M. Soegaard,
``Moving out of the Lab: Deploying Pervasive
Technologies in a Hospital,’’ IEEE Pervasive
Computing, Vol.5, No.3, pp.24-31 (2006).

[5] M. Wieland, P. Kaczmarczyk, and D. Nicklas,
``Context Integration for Smart Workflows,’’ Sixth
Annual IEEE International Conference on Pervasive
Computing and Communications, pp.239-242 (2008).

[6] S. Xiahou, and X. Xing, ``The WTAS Framework: A
Petri net based wearable task assistance system,’’
Proceedings of the 2nd International Conference on

56 T. Tomita et al. / Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks Despite Multiplexed Interruptions

Information Science and Engineering, pp.2487-2490
(2010).

[7] D. Cheng, H. Song, H. Cho, S. Jeong, S. Kalasapur,
and A. Messer, ``Mobile Situation-Aware Task
Recommendation Application,’’ Proceedings of the
Second International Conference on Next Generation
Mobile Applications, Services and Technologies,
pp.228-233 (2008).

[8] A.Terracina, S. Beco, T. Kirkham, J. Gallop, I.
Johnson, D. Randal, and B. Ritchie, ``Orchestration
and Workflow in a mobile Grid environment,’’
Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops, pp.251-
258 (2006).

[9] M. Michou, A. Bikakis, T. Patkos, G. Antoniou, and D.
Plexousakis, ``A Semantics-Based User Model for the
Support of Personalized, Context-Aware Navigational
Services,’’ Proceedings of the First International
Workshop on Ontologies in Interactive Systems,
pp.41-50 (2008).

[10] F. Tang, M. Guo, M. Dong, M. Li, and H. Guan,
``Towards Context-Aware Workflow Management for
Ubiquitous Computing,’’ Proceedings of the
International Conference on Embedded Software and
Systems, pp.221-228 (2008).

[11] Z. Chen, Z. Shao, Z. Xie, and X. Huang, ``An
attribute-based scheme for service recommendation
using association rules and ant colony algorithm,’’
Proceedings of the Wireless Telecommunications
Symposium, pp.1-6 (2010).

[12] D. Bouneffouf, A. Bouzeghoub, and A. Gancarski,
``Following the User's Interests in Mobile Context-
Aware Recommender Systems: The Hybrid-e-greedy
Algorithm,’’ Proceedings of the 26th International
Conference on Advanced Information Networking and
Applications Workshops, pp.657-662 (2012).

[13] A. Seetharam, and R. Ramakrishnan, ``A context
sensitive, yet private experience towards a contextually
apt recommendation of service,’’ Proceedings of the
2nd International Conference on Internet Multimedia
Services Architecture and Applications, pp.1-6 (2008).

[14] K. Mets, J. Nelis, D. Verslype, P. Leroux, W.
Haerick, F. De Turck, and C. Develder, ``Design of a
Context Aware Multimedia Management System for
Home Environments,’’ Proceedings of the
Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns,
pp.49-54 (2009).

[15] S. Gashti, G. Pujolle, and J. Rotrou, ``An UPnP-
based context-aware framework for ubiquitous mesh
home networks,’’ Proceedings of the IEEE 20th
International Symposium on Personal, Indoor and
Mobile Radio Communications, pp.400-404 (2009).

[16] J. Zao, Y. Liu, M. Yang, S. Li, W. Chen, C. Chen,
K. Huan, J. Hu, and L. Kuo, ``Ubiquitous e-Helpers:
An UPnP-based home automation platform,’’
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, pp.3682-3689 (2007).

[17] K. Togias, C. Goumopoulos, and K. Achilles,
``Ontology-Based Representation of UPnP Devices

and Services for Dynamic Context-Aware Ubiquitous
Computing Applications,’’ Proceedings of the Third
International Conference on Communication Theory,
Reliability, and Quality of Service, pp.220-225 (2010).

[18] J. Ding, Y. Sheng, C. Tu, C. Huang, and J. Su,
``The Management of Device Group for Home
Automation Network,’’ Proceedings of the Fifth
International Conference on Digital
Telecommunications, pp.44-47 (2010).

[19] Y. Cui, and H. Lee, ``Method of Device Matching
for QoS Based UPnP Framework in Cloud Computing
Service,’’ Proceedings of the First ACIS/JNU
International Conference on Computers, Networks,
Systems and Industrial Engineering, pp.222-227
(2011).

[20] E. U. Warriach, E. Kaldeli, J. Bresser, A. Lazovik,
and M. Aiello, ``Heterogeneous device discovery
framework for the Smart Homes,’’ Proceedings of the
IEEE GCC Conference and Exhibition, pp.637-640
(2011).

[21] UPnP Forum, http://www.upnp.org/.
[22] UPnP Forum, MediaRenderer: 3 Device,

http://upnp.org/specs/av/UPnP-av-MediaRenderer-v3-
Device.pdf (2010).

[23] R. Masuoka, B. Parsia, and Y, Labrou, ``Task
Computing -The Semantic Web meets Pervasive
Computing-,’’ Proceedings of the Second International
Semantic Web Conference, pp.866-881 (2003).

[24] J. Bidot, C. Goumopoulos, and I. Calemis, ``Using
AI Planning and Late Binding for Managing Service
Workflows in Intelligent Environments,’’ Proceedings
of the 2011 IEEE International Conference on
Pervasive Computing and Communications, pp.156-
163 (2011).

[25] K. Ushiki, T. Tsunoda, Y. Kawakatsu, N.
Hasegawa, and N. Fujino, ``Development and
Evaluation of Task Driven Device Orchestration
System for User Task support,’’ IPSJ SIG Technical
Report, Vol. 2011-MBL-58, No. 21, pp.1-6 (2011).

[26] Y. Kawakatsu, K. Ushiki, T. Tsunoda, N.
Hasegawa, and N. Fujino, ``Development and
Evaluation of Task Driven Device Orchestration
System for User Work support,’’ Proceeding of the
FIT2011, No.4, M-019, pp.309-310 (2011).

[27] JAVA,
http://www.oracle.com/jp/technologies/java/
overview/index.html

(Received October 19, 2012)
(Revised December 3, 2012)

Tatsuo Tomita is President of
Fujitsu Laboratories Ltd. He
received a Bachelor of Science
(B.S.) in science from the
University of Tokyo in 1972. He
joined Fujitsu Limited in 1973,
and held various positions in
computer-related groups for 32
years. In 2005, he served as

International Journal of Informatics Society, VOL.5, NO.1 (2013) 49-58 57

Corporate Vice President and President, Mobile Phones
Business Unit. In 2007, he was named Corporate Senior
Vice President and President, System Products Business
Group. In 2008, he became a Member of the Board, and
Corporate Senior Executive Vice President in charge of
Fujitsu’s Product Business Group. In April 2010, he was
appointed President of Fujitsu Laboratories, the key R&D
organization for Fujitsu Limited. His industry-wide
activities in Japan include the following: a member of the
Sub-Committee on Planning, Committee on Industrial
Technology of the Keidanren of Japan, a member of the
Steering Board for the Tsukuba Innovation Arena (TIA) of
Japan. He is a member of the Information Processing
Society of Japan (IPSJ).

Kazumasa Ushiki received a B.E. and
M.E. in information engineering from
Shizuoka University in 1989 and
1991, respectively. He joined Fujitsu
Laboratories Ltd. in 1991. His
research interests include application
service control architecture for mobile
and ubiquitous network. He received
the IEICE Young Investigators Award

in 1998. He is a member of IEICE.

Yoshiaki Kawakatsu received a
B.E. in electrical engineering from
University of Miyazaki in 1990. He
joined Fujitsu Kyushu
Communication Systems Limited
(currently, Fujitsu Kyushu Network
Technologies Limited) in 1990. He
was transferred to Fujitsu
Laboratories Ltd. in 2010. His

research interests include mobile computing and sensing
technology. He is a member of IEICE.

Nobutsugu Fujino received a B.S.
and M.E. in electronics engineering
from Osaka Prefecture University in
1984 and 1986, respectively. He
joined Fujitsu Laboratories Ltd. in
1986. Since then he has been
engaged in radio communication
systems and mobile computing, and
is currently a research manager of
human-centric computing and multi

device interaction technology. His research interests
include mobile and ubiquitous computing and network
applications. He received the IPSJ Industrial Achievement
Award in 2003. He received a Ph.D. in informatics from
Shizuoka University in 2008. He is a member of IPSJ.

Hiroshi Mineno received his
B.E. and M.E. from Shizuoka
University, Japan in 1997 and
1999, respectively. In 2006, he
received a Ph.D. in Information
Science and Electrical
Engineering from Kyushu
University, Japan. Between 1999
and 2002 he was a researcher in

the NTT Service Integration Laboratories. In 2002, he
joined the Department of Computer Science of Shizuoka
University as an Assistant Professor. He is currently an
Associate Professor. His research interests include sensor
networks as well as heterogeneous network convergence.
He is a member of IEEE, ACM, IEICE, IPSJ and
Informatics Society.

58 T. Tomita et al. / Task-Driven Device Ensemble System Supporting Seamless Execution of User Tasks Despite Multiplexed Interruptions

