
Evaluation of Lump-sum Update Methods for Nonstop Service System

Tsukasa Kudo†, Yui Takeda‡, Masahiko Ishino*, Kenji Saotome**, and Nobuhiro Kataoka***

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
‡Mitsubishi Electric Information Systems Corporation, Japan

* Department of Management Information Science, Fukui University of Technology, Japan
** Hosei Business School of Innovation Management, Japan

*** Interprise Laboratory, Japan
kudo@cs.sist.ac.jp

Abstract - In many mission-critical systems, the lump-sum
update of large amounts of data is performed. On the one
hand, with the development of internet business, nonstop on-
line services have become to be provided in many mission-
critical systems. So, the lump-sum update has to be per-
formed concurrently with the online entry. However, in the
actual mission-critical systems, there are various kinds of lump-
sum update operations corresponding to their business. In this
paper, we define the lump-sum update models from the point
of view of both the actual business process and characteristics
of the target data, and show the problem of the conventional
update methods. Then, we propose a novel update method
for this problem, which utilizes the transaction time database,
and show its evaluation results of the efficiency of both the
lump-sum update and online entry comparing with the con-
ventional update method. Based on these results, we show
the proposal method is effective in the case where the update
data is related to each other.

Keywords: Database, batch processing, mini-batch, trans-
action, mission-critical system, nonstop service.

1 INTRODUCTION

In many mission-critical systems, their databases are usu-
ally updated by two methods. The first is entries from on-
line terminals (hereinafter “online entry”) such as ATM (Au-
tomatic Teller Machine) in a banking system, which is per-
formed at any time in the online service time zone and its re-
sult is immediately reflected in the database. Because the on-
line entries are performed concurrently by many users, their
ACID properties are maintained by the transaction process-
ing based on the lock function of the database. So, the result
becomes as if they were performed in a certain order.

The second is the lump-sum update of large amounts of
data in the database. For example, large amounts of account
transfer in a banking system, which is entrusted by a com-
pany, is performed as a lump-sum update. This process is not
required rigorous immediacy, so it is performed at the des-
ignated time by the system administrator. Therefore, in the
old days, it was performed as the night batch to avoid the
online service time zone by the method locking the whole
target data and updating them in a lump (hereinafter “batch
update”). However, in recent years, the electronic commerce
has been expanding due to the progress of the internet busi-
ness, and many systems have become to provide the nonstop

online service, such as above-mentioned ATM. As the result,
it has become necessary that the batch update is performed
concurrently with the online entry.

On the other hand, the mini-batch has been put to practi-
cal use, which divides the lump-sum update into small update
units to reduce the individual lock time and performs them se-
quentially [2]. However, because the mini-batch updates data
one after another, the state on the way of the update is queried,
in which some data is not updated yet and the other is already
updated. That is, the ACID properties of the transaction are
not maintained as the whole mini-batch processing.

Here, in our previous study on query methods in a mission-
critical system, we showed that there are various kinds of
batch operations and the appropriate method should be adopted
for each case [3]. This suggests that the various requirements
exist for the lump-sum update process according to the busi-
ness operations, too. So, in this paper, we focus on a local
government system as an example of the mission-critical sys-
tems and define the lump-sum update models from the point
of view of both the actual business process and characteris-
tics of the target data, in which lump-sum update is divided
by both the conflict with the online entry and relevance be-
tween the update data. Then, we show the requirement of
the lump-sum update method for each update model. And,
in some case where it is performed concurrently with the on-
line entry, we show there is the problem that the consistency
of the data cannot be maintained by the conventional update
methods.

For this problem, we propose a novel update method to
maintain the ACID properties even in the above-mentioned
case. It utilizes the transaction time database, which is a
kind of temporal database and supports the record manage-
ment on the transaction time when some fact existed in the
database [4]. Hereinafter we call this method “temporal up-
date”. Moreover, we evaluate the efficiency of both the lump-
sum update and online entry about the following update meth-
ods by developing prototypes: the batch update, the mini-
batch and the temporal update. Based on these results, we
show the database can be updated in the practical efficiency
by the temporal update method, even for the update model
that was challenging for the conventional methods. In addi-
tion, we show that an appropriate method has to be adopted
based on the business operations, for not only the lump-sum
update but also the online entry.

In Section 2, we define the lump-sum update models from

International Journal of Informatics Society, VOL.5, NO.1 (2013) 21-27 21

ISSN1883-4566 © 2013 - Informatics Society and the authors. All rights reserved.

Lump-sum update

Online entry

Online entry Lump-sum update

Lump-sum update

Figure 1:Business processes with lump-sum update

the point of view of the business operations, in Section 3
we propose the temporal update method and in Section 4 we
show the prototype to evaluate its efficiency and characteris-
tic. In Section 5, we evaluate the update methods from the
point of view of update models, and in Section 6 we show our
considerations.

2 MODELING OF LUMP-SUM UPDATE IN
MISSION-CRITICAL SYSTEMS

2.1 Business Process with Lump-sum Update

In the actual mission-critical systems, there are various kinds
of lump-sum update processing corresponding with each busi-
ness process. Figure 1 shows examples of them about the ta-
bles in a local government system, which is updated also by
online entries. We show the requirement of the lump-sum up-
date based on these cases below.

Resident table of Fig. 1 stores the data of resident cards,
which is used by the various business of the local govern-
ment office for the attribute information of the resident: name,
address and so on. Here, because residents belong to each
household, the consistency of the resident data in the same
household has to be maintained. In addition, as for a resi-
dent, since a series of records from birth to death and so on
is managed, the consistency among the records also has to be
maintained. In the online entry for this table, the change of
the resident such as moving and birth is reflected in the table
immediately. And, if the resident requests his or her resident
card simultaneously, it is published immediately reflecting the
change. On the other hand, for the example of the lump-sum
update of this table, the residence indication is given. This
business is performed to change addresses to be easy to un-
derstand, so it is performed in the whole target district at the
same time. That is, since a great deal of data is updated for
this business process, it is performed by the lump-sum update
in the local government system.

Similarly, Taxation table in Fig. 1 stores the taxation data of
the residents. There is no correlation among the data, because
taxation is performed for each resident individually. Since
the taxation is managed by the fiscal year, the assessment to
tax is performed to add the tax data of the target year at first.

(a) Separated data model

(b) Individual data model

(c) Related data model

Figure 2:Lump-sum update models about business

Here, several tax declarations from residents are late for this
assessment, and several changes of residents also occur after
it. So, the reassessment to tax is performed at regular inter-
val to correct the taxation. Since these business processes are
performed for a large number of residents, they are executed
by the lump-sum update. On the other hand, when a resident
is going to move out, his or her taxation is calculated based
on the change by the online entry at the report window of the
local government office and reflected in Taxation table imme-
diately. On this basis, the settlement of tax is performed at the
same time.

2.2 Lump-sum Update Model about Business

The lump-sum update during the online entry, which is
shown in Fig. 1 from the viewpoint of the business processes,
corresponds to the following three types of lump-sum update
models from the viewpoint of the update data, which is shown
in Fig .2. Here, from the viewpoint of the business require-
ment, we assume that the online entry can update optional
target data at the optional time and the update cannot be pre-
dicted beforehand. In other words, since it is the business of
the report window about residents, the online entry cannot be
suspended even during the lump-sum update.

(a) Separated data model:the case that the lump-sum up-
dated data and online entry data are isolated as the busi-
ness process. It corresponds to “(2) Assessment to tax”
in Fig .1. In this case, the lump-sum update can be exe-
cuted without considering the online entry. As the other
example of this case, there is the business process to ap-
pend the budget data of the new fiscal year in accounting
systems.

(b) Individual data model: the case that the lump-sum up-
date and online entry are concurrently executed on the
same data, and this data independent from the other data.

22 T. Kudo et al. / Evaluation of Lump-sum Update Methods for Nonstop Service System

It correspondsto “(3) Reassessment to tax” in Fig .1. In
this case, these updates don’t effect to the other data, even
if there are conflicts between the lump-sum update and
online entry. As the other example of this case, there is
the process of a great deal of the account transfer in bank-
ing systems.

(c) Related data model:the case that the lump-sum update
and online entry are concurrently executed on the same
data, which is related to the other data. It corresponds
to “(1) Residence indication” in Fig .1. As for the resi-
dents’ information of the same household and the records
of each resident, their consistency has to be maintained
before and after the update. On the other hand, the change
of a resident is processed by online entry: transference
between households by moving, addition to a household
by moving in and so on. Therefore, the lump-sum up-
date has to be processed as a transaction that satisfies the
ACID properties for online entries.

2.3 Problem of Conventional Lump-sum
Update Method

The row lock function is provided by present database man-
agement systems, by which each single data of the table can
be locked [5]. So, as for “(a) Separated data model” of Fig .2,
we can execute the lump-sum update without affecting the
online entry by locking only its target data, because the target
data is not covered by online entry. So, it can be executed
as the transaction processing by the batch update as follows:
its commit is executed if the update succeeded; its rollback
is executed if the update failed. In addition, in this model,
the mini-batch can be also used for this lump-sum update up-
dating data sequentially, because its target data is not covered
by online entry. However, in this method, when the update
failure occurred, it is necessary to perform the separate com-
pensating transaction to cancel the whole update [2].

As for “(b) Individual data model” of Fig .2, the online en-
try becomes a waiting state when it competes with the lump-
sum update, because the both may update the same data. So,
the lump-sum update is executed by the mini-batch, because
the batch update suspends the online entry for a long while. It
is the method to update data one after another using the row
lock function, which locks the currently updated data only,
and it makes the influence on the online entry smaller because
the update time of the individual data is short [2]. However, it
performs the commit to each update. So, even though the fail-
ure occurred and the rollback was executed, the data already
committed remains in the state of having been updated. That
is, the committed data cannot be canceled in this method, be-
cause it may have been already used by the online entry. So, it
is necessary to complete all the updates finally with removing
the cause of the failure and continuing the update process.

On the other hand, as for “(c) Related data model” of Fig .2,
it is difficult to update data by these conventional methods.
First, as for the batch update, when the target data is being
tried to update by the online entry concurrently, it obstructs
the online entry in the same way as the individual data model.
Next, as for the mini-batch, the ACID properties cannot be

Household before moving

Household after moving

After update

Before update

Figure 3:Online entry example of the related data model

maintained as the whole lump-sum update because each up-
date is executed as the individual transaction, although its in-
fluence on the online entry is small. Therefore, as for the re-
lated data model, there is a problem that the integrity of data
isn’t able to be maintained by the conventional lump-sum up-
date methods.

For an example of this, we show the case of a resident trans-
ference between households by moving, during the residents
indication processed by the mini-batch in Fig .3. Here, the
household that he or her belonged before this moving is not
updated yet by the resident indication; the household after this
moving was already updated. On the other hand, both of the
present address and previous address are listed in the resident
card. And, when this moving is processed by online entry,
both of the before and after moving household data is locked
by the transaction. However, because only the after moving
household data has been updated, two types of addresses are
listed in the resident card of this resident at the same time: the
previous address is before the update; the present address is
after the update. Thus, the problem that the integrity of the
data isn’t maintained occurs.

3 PROPOSAL OF A NOVEL LUMP-SUM
UPDATE METHOD

For the problem shown in Section 2.3, we propose a novel
update method, that is, temporal update method. It utilizes the
transaction time database that is a kind of temporal database.

In the transaction time database, the time history that some
fact was valid in the database is managed. The data once
stored in the database is not deleted physically, and the time
when the data became invalid is set to delete the data logi-
cally. The relation [1] of the transaction time database is ex-
pressed asR(K,T,D). First, attributeK expresses the set of
attributes constituting the primary key of the snapshot queried
at the designated transaction time. Second,T is the time pe-
riod attribute of the transaction time, which is generated by
the system and isn’t made public to users.T is expressed
by the time set{Ta, Td}: Ta shows the addition time that
data was added to the database;Td shows the deletion time
that data was logically deleted from the database. As long as
the data doesn’t be deleted yet, the instance of the attribute
Td is expressed by “now”, which shows the current time and

International Journal of Informatics Society, VOL.5, NO.1 (2013) 21-27 23

 Past data

Transaction of online entry

Figure 4:An example of temporal update method

changes with the passage of time [7]. Third,D expresses
the other attributes. Therefore, since the time history is man-
aged, the snapshot at any designated past time can be queried.
Moreover, the query result for a designated transaction time t
becomes the snapshot of the time, and it is similar to the usual
database that is called a snapshot database.

For the proposal method, We extendK by addingP , which
shows the update process: the online entry, batch update and
so on. So, the configuration ofK is expressed by the at-
tribute set{K1,K2, ...,Kn, P}. Here, n is the number of at-
tributes exceptP . Figure 4 shows an example of this method,
in which the account transfer is executed by the lump-sum
update during the online entry from ATM in the banking sys-
tem. Here, the time period of the lump-sum update process
is betweentq and tu. Using the transaction time database,
the integrity of the snapshot result at the past timetq can be
maintained even during the online entry, because it updates
the data atnow.

As shown in (1) of Fig. 4, we perform the account trans-
fer using this snapshot by the lump-sum update, and add the
updated result to the database as the data which addition time
is tu. Here, since this data is separated from the online entry
data by the above-mentioned primary key attributeP , we can
add it by the batch update in the same way as (a) of Fig. 2.
On the other hand, data is updated by the online entry from
the ATM concurrently with this update as shown by (2). How-
ever, as shown in Fig. 3, since the batch update result is not re-
flected in the online entry, the process of the account transfer
has to be executed individually in the same transaction of this
online entry as shown by (3). Hereinafter, we call this pro-
cess “OB update”. Thus, since three types of data are added
by different update process classified byP , the valid data is
sorted out in the query process (4).

Briefly, in the temporal update, if the online entry is exe-
cuted during the batch update, the process of the later is also
executed individually as the OB update in the same transac-
tion of the former. Incidentally, the OB update continues until
the completion timetu, becausetu have to be set previously.

4 EXPERIMENTS

4.1 Composition of Prototype

To confirm that we can put the temporal update method
to practical use, we constructed the prototypes of both this

Figure 5:Dataflow of prototype

method and conventional methods, which are the mini-batch
and batch update, and evaluated their efficiency and character-
istics. The prototype intends for the processing of a banking
system shown in Fig. 4, and we show its data flow in Fig. 5.
That is, the withdrawals and deposits to the bank accounts
from the ATM are processed by the online entry to update
the balance of “Amount table”. On the other hand, large
amounts of the account transfers, which are ordered by the
trust company, are processed by the lump-sum update. Bas-
ing on the bank account and debit of “Transfer table”, this
process updates the balance ofAmount table and adds its
result to “Result table”. Each table is expressed by the fol-
lowing relations. Here,Transfer table doesn’t need to be
the transaction time database, because it isn’t updated.

Amount table(Account,Balance, T, P)

Result table(Account,Result, T, P)

Transfer table(Account,Debit)

Here, each attribute shows the following data: “Account”
shows the bank account; “Balance” shows the bank balance
of it; “Result ” shows the result of account transfer from the
bank account; “T” and “P ” shows what described above. In-
cidentally, the instance set ofP is as follows.

P = {Batch update,Online entry,OB update}

As for the bank account which account transfer is successful,
Balance of Amount table is updated, and the result data is
added toResult table, of whichResult is “0” (success). On
the other hand, as for the bank account which doesn’t exist or
doesn’t have sufficient balance,Amount table isn’t updated,
and the result data is added toResult table, of whichResult
is “1” (failure).

That is, the process of this lump-sum update was so com-
plex that we implemented its prototype by Java, because it
varies depending on the bank account presence, account bal-
ance and debit. And, we used MySQL for the DBMS (database
management system); its storage engine InnoDB for transac-
tion feature; JDBC to access the database with the row lock
from Java.

We show the procedure of each lump-sum method below.

(1) The mini-batch: the row lock with the update mode is
executed before each update ofAmount table, and its
commit is executed every specified update number. In
this experiment, we used 1 and 80 for this number.

24 T. Kudo et al. / Evaluation of Lump-sum Update Methods for Nonstop Service System

Figure 6:Program composition of prototype

Figure 7:Evaluation data about deterioration of efficiency

(2) The batch update: at first the row lock on all the tar-
get data with the update mode is executed; and then, the
lump-sum update by executeBatch statement of Java and
the commit at the end are executed.

(3) The temporal update: though the target data isn’t locked
specifically before the batch update of this method, the
added data is locked as the row lock until the commit by
the InnoDB feature. Here, the commit is executed after
the last addition. Incidentally, as shown in Fig. 4, the
corresponding OB update is executed in the online entry
transaction.

4.2 Experimental Environment

We performed this experiment by the Core i5 PC (Windows
7) in a stand-alone environment with MySQL5.1.40 and Inn-
oDB. Here, we set InnoDB as follows: the isolation level is
Repeatable read; “innodblocks unsafefor binlog” of startup
option is “1” (enabled) to suppress the next-key lock [6].

We simulated the behavior of this prototype using thread
programs of Java as shown in Fig. 6. That is, for the on-
line entry, plural thread programs are executed to simulate the
concurrent processing from multiple terminals. Here, the ex-
ecution interval of each terminal was set to 0.5 second to sim-
ulate the load of practical environment. That is, supposing
that the actual online entry interval of each terminal is 30 sec-
onds, 16 terminals simulate the load by about 1000 terminals
that are 60 times of 16 terminals. We used “sleep” method for
this process. And, the commit was executed at every process-
ing, and the OB update was also executed between the online
entry and commit during the temporal update.

As the data environment, we stored 100 thousand data in
Amount table, and performed 80 thousand of account trans-
fer by the lump-sum update, such that those all succeed. On
the other hand, to evaluate the deterioration of efficiency by

0

10

20

30

40

50

60

70

80

0 1 2 4 8 16

Mini-batch

(1)

Mini-batch

(80)

Batch update

Temporal

update

Nuber of terminals

140

130

120

40

30

20

10

0

Elapsed time (Sec)

Figure 8:Elapsed times of each lump-sum update methods

Table 1: Elapsed time of lump-sum update (Sec)

Method No-conflict Halfconflict
Mini-batch (1) 121.8 133.3
Mini-batch (80) 38.6 40.1
Batch update 27.0 29.0

Temporal update 23.5 22.4

the competitionbetween the online entry and lump-sum up-
date, we set the data ofTransfer table so that the data of
Amount table is classified as shown in Fig. 7 as follows: (A)
updated by only the online entry, (B) updated by both of the
online entry and lump-sum update and (C) updated by only
the lump-sum update. We change their number based on each
experimental purpose.

5 EVALUATIONS OF LUMP-SUM UPDATE
METHODS

To evaluate the efficiency of each update method, we ex-
ecuted them without conflicts with the online entry, that is,
there is no overlap update data area shown at (B) in Fig. 7.
Figure 8 shows their elapsed time. Incidentally, the elapsed
time is not the transaction timeT but the real time measured
by “currentTimeMillis” method of “System” class of Java. Its
horizontal axis shows the number of online entry terminals,
that is, the number of thread programs executed concurrently.
Here, the case that only the lump-sum update was executed
is shown at “0” of the scale. As shown in Fig. 8, the elapsed
time of the mini-batch to commit at every update (hereinafter
“mini-batch (1)”) is more than 3 times the mini-batch to com-
mit at every 80 update (hereinafter “mini-batch (80)”), and
it is about 5 times the batch update. In addition, the tempo-
ral update is most efficient, but the elapsed time become long
gradually with increasing the number of terminals. It is con-
sidered that this is an influence of the OB update shown in
Fig. 6, which is performed only in the temporal update pro-
cess. We discuss this in Section 6.1.

To evaluate the efficiency and characteristics of the lump-
sum update and online entry in the case of their conflict, we

International Journal of Informatics Society, VOL.5, NO.1 (2013) 21-27 25

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 20 40 60 80 100 120 140 160

Elapsed time

(conflict)

Elapsed time

(no-conflict)

Number

(conflict)

Number

(no-conflict)

Time (Sec)

0

Elapsed time (Sec)

Mini-batch processing

20

Number

Figure 9:Efficiency of online entry during mini-batch (1)

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 10 20 30 40 50

Elapsed time

(conflict)

Elapsed time

(no-conflict)

Number

(conflict)

Number

(no-conflict)

Time (Sec)

0

Elapsed time (Sec)

Mini-batch processing

20

Number

Figure 10:Efficiency of online entry during mini-batch (80)

executed them as following: the number of online entry ter-
minals is 16; 8 of them conflict with the lump-sum update as
shown at (B) in Fig. 7; the other doesn’t as shown at (A). As
for the conflicting data, to avoid a deadlock, it was updated
in ascending order of bank account by both of the lump-sum
update and online entry. Table1 shows the elapsed time of
each lump-sum update method in both of the following case
side by side: in the left side, there is no conflict as shown at
(A) in Fig. 7, and it corresponds to the data which number of
terminals is0 in Fig. 8; in the right side, half of the termi-
nals cause the above-mentioned conflict. As for the temporal
update, both of the elapsed time is similar, whereas the other
lump-sum update methods take more time in the case of the
conflict. Therefore, the elapsed time of the temporal update
is also least in the case of the conflict.

Next, from Fig. 9 to Fig. 12 show the efficiency of online
entries conflicting with each lump-sum update method as for
both the elapsed time and number of starting transactions per
second. Here, the elapsed time is the average time of the
update starting at the corresponding time. The left vertical
axis of each figure shows the elapsed time by the logarithmic
scale and the data is divided as follows: the data of terminals
with conflict; the data of the other terminals without conflict

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 10 20 30 40 50

Elapsed time

(conflict)

Elapsed time

(no-conflict)

Number

(conflict)

Number

(no-conflict)

Time (Sec)

0

Elapsed time (Sec)
Batch processing

20

Number

Figure 11:Efficiency of online entry during batch update

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50

Elapsed time

(conflict)

Elapsed time

(no-conflict)

Number

(conflict)

Number

(no-conflict)

Time (Sec)

0

Elapsed time (Sec)

Batch processing

20

Number

Figure 12:Efficiency of online entry during temporal update

(shown “no-conflict” in these figures). Similarly, the right
axis shows the number of starting transactions. In addition,
these figures show the time zone of the lump-sum update.
Here, as for the temporal update, the completion timetu of
Fig. 4 is set beforehand and the OB update continues untiltu.
So, its time zone of the batch update is shown by the solid
line, and its OB update after the batch update is shown by the
broken line. Incidentally, the elapsed time of the temporal up-
date, which is shown in Table1 and so on, corresponds to the
time zone of this batch update shown by the solid line.

The elapsed time of online entries is fluctuating during the
execution of the mini-batch or batch update, and it is the least
in the mini-batch (80). On the other hand, as for the batch up-
date, the online entries, which conflict with it, is waited until
its completion. As for the temporal update, though no on-
line entry waited for a long while, the elapsed time of online
entry transactions became more than 10 times. Because they
include the OB updates. But, the elapsed time fluctuations of
online entries are smaller than the other methods.

Table2 shows the evaluation about the lump-sum update
models shown in Fig. 2. There are constraints of lump-update
method to apply it to each model as shown in Section 2.3. As
mentioned above, as for the separated data model and indi-

26 T. Kudo et al. / Evaluation of Lump-sum Update Methods for Nonstop Service System

Table2: Evaluations about lump-sum update model

Lump-sum Online entry Lump-sum update Available method
update model elapsed time elapsed time about the model

Separated datamodel MB (80) T MB, B, T
Individual data model MB (80) T MB, T
Related data model T T T

(Notes) MB:Mini-batch; B: Batch update; T: Temporal update

vidual data model, the mini-batch (80) gives the least impact
to the online entry. However, since it cannot be applied to
the related data model, the temporal update method has to be
applied to this model. Moreover, the elapsed time of the tem-
poral update method was the least among the target lump-sum
update methods of this simulation.

6 CONSIDERATIONS

In the actual mission-critical system, it is expected that
there are various kinds of system operations and restrictions
about both of the lump-sum update and online entry. In this
section, we discuss the temporal update method based on the
evaluation results in Section 5.

6.1 Efficiency of Temporal Update Method

The temporal update had the highest efficiency about the
elapsed time of the lu -sum update in the above-mentioned
experiment. The reason for this is because only the insertion
of data is executed in the temporal update, whereas the batch
update executes querying of the data to update it. And, as
for the temporal update, since the commit is executed collec-
tively after updates, the increase of the load by the commit
was suppressed as well as the batch update comparing with
the mini-batch. Moreover, as for the temporal update, the up-
dated data isn’t queried until the completion timetu even if its
commit is executed. So, in the case that the target data is in-
creased, its update process can be executed one after another
of dividing set with maintaining the ACID properties. That
is, even in the case of extremely large number of updates, it is
possible to apply the temporal update by executing them one
after another.

In addition, the temporal update maintains its efficiency
even in the case of conflict with the online entry as shown
in Table1, whereas there are declines in the other methods.
Its reason is because the other update methods have to wait
for the lock completion of the online entries, whereas the
temporal update method executes only the data insertion that
doesn’t need to lock them. By the way, since the online entry
in the actual system operations updates data randomly, it of-
ten causes the deadlock with the batch update or mini-batch
(80). On this point, the temporal update has an advantage,
because it doesn’t lock the data being updated by the online
entry.

On the other hand, the elapsed time of the temporal update
become longer with the increase of the online entry terminals
as shown in Fig. 8. As mentioned above, there isn’t the con-

flict between the lump-sum update and online entry. So, this
is considered to be caused by the load of the OB update, to
which the processing such as the update ofResult table is
added. And, its adjustment is the future challenge.

Here, as for the temporal update method, its completion
time needs to set beforehand, so some margin is necessary
for it. But, we consider it is valid from the view point of
efficiency not only for the related data model but also for the
other models. For example, it is valid for the update that has
to be processed in a short time and processing time can be
estimated beforehand. That is, the appropriate update method
should be selected based on the business requirements.

6.2 Online Entry Method

Since the OB update is executed in the temporal update, the
online entry takes longer time than in the mini-batch as shown
in Fig. 9, 10 and 12. Though the adjustment of this part is
the future challenge as mentioned above, this time is within
about 0.1 seconds, which is different from the wait time for
the lock in the batch update as shown in Fig. 11. Therefore,
it is considered that we can apply it to actual mission-critical
systems within a certain range of load even under the present
condition.

As for the mini-batch (80), since it updates the plural data
collectively, the online entries have to complete in a short
time. That is, when its target data is locked by an online en-
try, its update process has to wait with locking the other data
updating collectively. Moreover, it makes the other online en-
tries that try to update these data await state. In other words,
there is the problem that the conflicts may spread to the un-
related online entries. Therefore, the online entry transaction
cannot include the processing that needs a long while, such
as waiting for user input. This problem is similar as for the
temporal update, because the data updated by the batch up-
date become to be valid at the completion timetu as shown
in Fig. 4. That is, the following updates have to be serialized:
the online update beforetu, the validation of the batch update
and the online update aftertu.

Therefore, based on the requirement of the target business,
the appropriate method has to be selected for not only the
lump-sum method but also the online entry. For example, as
for above-mentioned case, there are some choices. As for
the mini-batch (1), it is appropriate for the case where the
various kinds of online entry methods are used though the
restriction on the lump-sum update time is loose. On the other
hand, if the online entry time is short, the appropriate lump-
sum method can be selected based on the requirement of the

International Journal of Informatics Society, VOL.5, NO.1 (2013) 21-27 27

business:efficiency, the lump-sum update models and so on.
Incidentally, the batch update is not appropriate for the case
of conflict with the online entry as shown in Fig. 11.

7 CONCLUSIONS

With the spread of nonstop online services caused by the
development of the internet business, the lump-sum update
has to be executed concurrently with the online entry in the
mission-critical systems. In this paper, first, we showed the
lump-sum update model from the view point of the businesses
of mission-critical systems, and showed that the conventional
update methods have the problem in the case to update data
relating to each other. Second, we proposed the temporal up-
date method for this problem, and showed it has the practical
efficiency through the evaluations by the prototype. Third, we
showed that it is necessary to select the appropriate method
for both of the lump-sum update and online entry, based on
the evaluations including both the proposal method and con-
ventional methods.

Future study will focus on the implementation method of
the temporal update for the actual mission-critical system, es-
pecially the improvement of the online entry response.

ACKNOWLEDGMENT

This work was supported by KAKENHI(24500132).

REFERENCES

[1] E. F. Codd, “Extending the database relational model to
capture more meaning,” ACM Transactions on Database
Systems, Vol. 4, No. 4, pp. 397–434 (1979).

[2] J. Gray, and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” Morgan Kaufmann, San Fran-
cisco (1992).

[3] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, K. Mutou,
and N. Kataoka, “A Correction Reflected Query Method
of Database during Online Entry,” International Journal
of Infomatics Society, Vol. 3, No. 1, pp. 3–11 (2011).

[4] R. Snodgrass, and I. Ahn, “Temporal Databases,” IEEE
COMPUTER, Vol. 19, No. 9, pp. 35–42 (1986).

[5] ORACLE, MySQL Documentation: MySQL Reference
Manuals,
http://dev.mysql.com/doc/refman/5.5/en/index.html.

[6] ORACLE, MySQL Documentation: MySQL Reference
Manuals (14.3.9.4. InnoDB Record, Gap, and Next-Key
Locks), http://dev.mysql.com/doc/refman/5.5/en/innodb-
record-level-locks.html.

[7] B. Stantic, J. Thornton, and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Pro-
ceedings 10th International Symposium on Temporal
Representation and Reasoning and Fourth International
Conference on Temporal Logic, pp. 174–180 (2003).

(Received October 13, 2012)

Tsukasa Kudo received the M. Eng. from Hokkaido
University in 1980 and the Dr. Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka
Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC,

Information Processing Society of Japan and The Society of Project Manage-
ment.

Yui Takeda received the B.E. from Keio Univer-
sity, Japan in 1987. In 1987, she joined Mitsubishi
Electric Corp. She was an engineer of artificial in-
telligence and application software. Since 2001,
she joined Mitsubishi Electric Information Sys-
tems Corp. Now, she manages intellectual prop-
erty rights.

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan in 2007. In 1979, he joined Mitsubishi Elec-
tric Corp. Since 2009, he is a professor of Fukui
University of Technology. Now, His research in-
terests include Management Information Systems,
Ubiquitous Systems, Application Systems of Data-
mining, and Information Security Systems. He is

a member of Information Processing Society of Japan, Japan Industrial Man-
agement Association and Japan Society for Management Information.

Kenji Saotomereceived the B.E. from Osaka Uni-
versity, Japan in 1979, and the Dr. Eng in Informa-
tion Engineering from Shizuoka University, Japan
in 2008. From 1979 to 2007, he was with Mit-
subishi Electric Corp., Japan. Since 2004, he has
been a professor of Hosei business school of in-
novation management. His current research areas
include LDAP directory applications and single
sign-on system. He is a member of the Informa-
tion Processing Society of Japan.

Nobuhir o Kataoka received the master’s degree
in electronics from Osaka University, Japan in 1968
and the Ph.D. in information science from Tohoku
University, Japan in 2000. From 1968 to 2000, he
was with Mitsubishi Electric Corp. From 2000 to
2008, he was a professor of Tokai University in
Japan. He is currently the president of Interprise
Laboratory. His research interests include busi-
ness model and modeling of information systems.
He is a fellow of IEIEC.

28 T. Kudo et al. / Evaluation of Lump-sum Update Methods for Nonstop Service System

