
An Effective Lookup Strategy for Recursive and Iterative Lookup  

on Hierarchical DHT 

Tomonori Funahashi†, Yoshitaka Nakamura‡, Yoh Shiraishi‡, and Osamu Takahashi‡ 
  

† Graduate School of Systems Information Science, Future University Hakodate, Japan 
‡School of Systems Information Science, Future University Hakodate, Japan 

{g2111032, y-nakamr, siraisi, osamu}@fun.ac.jp 

 
Abstract - Recursive and iterative lookups on the perfor-
mance of distributed hash table (DHT) are deteriorated by 
churn when nodes leave the network. When churn occurs 
infrequently, recursive lookup outperforms iterative lookup, 
but back when churn occurs frequently, the opposite is the 
case. Therefore, optimal lookup needs recursive and itera-
tive lookups to be separated by the frequency of churn. We 
propose a lookup strategy that separates recursive and itera-
tive lookups by the churn rate. However, a common DHT 
makes it difficult establish the neighboring churn rate. Hier-
archical DHT takes into consideration the reliability of 
nodes to ascertain the churn rate, but it uses only a lookup 
strategy, recursive or iterative in the DHT. We believe that 
each lookup strategy should be used that match the churn 
rate in hierarchical DHT. Therefore, we compared our 
lookup strategy with both recursive and iterative lookup on 
hierarchical DHT. 

 
Keywords: Recursive lookup, Iterative lookup, Hierarchical 
DHT 

1 INTRODUCTION 

Peer-to-Peer (P2P) is communication in which each node 
is equal and various values are dispersed throughout the 
network. Therefore, distributed hash table (DHT) is an effi-
cient lookup technology in P2P. DHT can discover values 
with low numbers of hops in large networks. Examples of 
DHT-based P2P include Chord[1], Kademlia[2], and Pas-
try[3]. Even if DHT uses the same algorithm as Chord or 
has routes on the same lookup path, their communication 
methods are defined differently. Its methods are known to 
be recursive and iterative lookups[4]. These lookups have 
different lookup latencies and numbers of messages. Recur-
sive lookup, which has low latency, is generally satisfactory. 
However, the performance of these lookups deteriorates due 
to churn where nodes leave the network. In addition, recur-
sive lookup performs worse than iterative lookup. Therefore, 
optimal lookup needs recursive and iterative lookups to be 
separated by the system churn rate. However, flat normal 
DHT it is not structured to consider the feature of nodes, e.g. 
the churn of nodes. For this reason, it is difficult to establish 
the system churn rate. 

There is a structure called hierarchical DHT[8][9] that en-
ables DHT to be used efficiently. This structure can separate 
a number of clusters depending on needs. A hierarchical 
DHT has been developed with advanced features that take 
into consideration how reliable nodes are[10]. This has a 

clustering method that establishes the reliability of nodes. 
Thus, the reliability of each cluster is approximately estab-
lished.  

 We propose applying an optimal lookup strategy to each 
cluster on hierarchical DHT that considers the reliability of 
nodes and separates recursive and iterative lookups effi-
ciently. 

2 RELATED WORK 

2.1 Chord 

Chord is a DHT algorithm that takes into consideration the 
hash space as a space like a ring and sets nodes an identifier 
called the node ID with the hash function. Keys are calculat-
ed similarly with this function. Of the nodes arriving in a 
network, the node just behind a node is called a successor 
node, and the one just before a node is called a predecessor 
node. Nodes keep the neighbor as a successor list that has a 
number of successor nodes and a finger table that can route 
efficiently to the routing table. Chord completes lookup with 
path length ( )NO log  when N is the number of all nodes. The 
state of these nodes is the previous state obtained by churn 
and failure. For this reason, Chord is implemented as a sta-
bilization process to accurately retain the state of neighbor 
nodes. This is a process where nodes ask nodes in the rout-
ing table. In addition, it is executed at regular intervals. 

2.2 Lookup strategy 

Recursive lookup is a lookup method that uses an origina-
tor node that demands value requests lookup other nodes. 
However, iterative lookup is where the originator controls 
lookup to ask other nodes about candidates for the next hop. 
Figure 1 outlines the shape of each lookup on Chord when 
there are three hops (path length).  

The originator in recursive lookup forwards a request mes-
sage to a node that is closer to the destination (Figure 1 (1)). 
If a node in the next phase receiving a request message does 
not have the value that is purposed, it forwards the request 
message to a node that is closer to the destination than itself. 
This process is executed until the request message reaches 
the destination node (Fig. 1 (2), (3)). In contrast, the origina-
tor in iterative lookup receives a reply message to a request 
message after the message has been forwarded (Fig. 1 (1-2), 
(2-2)). 

International Journal of Informatics Society, VOL.4, NO.3 (2012) 143-151 143

ISSN1883-4566 © 2012 - Informatics Society and the authors. All rights reserved.



 
Figure 1: Recursive and iterative lookup strategy on Chord 

when path length = 3. 
  

When a node that receives a request message does not have 
the value that is purposed, the reply message includes the 
addresses of nodes that are closer to the destination than 
itself. The originator forwards a request message to the des-
tination node by using the address included in the reply 
message. 

The performance of recursive and iterative lookups is af-
fected in accordance with this communication method and 
churn where nodes leave the network. The system churn rate, 
which is the probability of which nodes on the network will 
leave the network determines the life-time of nodes. R is the 
defined life-time of a node and refers to the reliability of 
nodes. R varies between nodes. The cumulative distribution 
function[5] of exponential or Pareto distribution[6] is used 
as a function to define R. R makes known how often churn 
occurs in the system. S is defined as the time until nodes 
detect failure and repair the routing table of the node when 
churn or failure occurs. For this reason, S just means the 
interval in which the stabilization process is executed. Alto-
gether, large S means that the stabilization process is seldom 
executed, but small S means that stabilization is executed 
often.  

We also assumed that E[R] and E[S] were value expected 
for the R and S of neighbor nodes for a node. By using these 
parameters, p is defined as the probability of which next hop 
candidate node is alive in the network and the success of 
forwarding a request message, which is given by the follow-
ing[7]. 

)1(
][][

][
SERE

REp
+

=  

When neighbor nodes are in a steady state when starting 
lookup and the originator is not executed to repair its own 
routing table, E[S] approximates a fixed value. As a result, p 
depends on E[R]. In addition, large E[R] means that neigh-
bor nodes are alive for a long time, and this also means that 
churn is not likely to occur. In contrast, small E[R] means 
that churn often occurs in neighbor nodes that have shorter 
life-times. That is, the churn rate is low when p is high and 
high when p is low. More specifically, p becomes a value 
that means the churn rate in the network when E[S] approx-
imates a fixed value.  

The performance of recursive and iterative lookups are de-
fined[7] by using churn rate p and latency of communication. 

First, we assume that the lookup path length is l and t is the 
latency for one hop. We also assume that physical links be-
tween nodes are not considered, and t is fixed. In addition, T 
is the time, which is timeout when nodes fail to forward 
messages by churn or failure. Here, timeout T is configured 
differently at each lookup. The originator in recursive 
lookup has to wait for responses to complete as lookup is 
completed. However, other nodes only forward request mes-
sages to the next hop node and are not concerned with the 
forwarded message. Therefore, T in recursive lookup is set 
to no less than the time to complete the entire lookup at only 
the originator. For this reason, Tr as the timeout in recursive 
lookup is configured as ( )tlTr 1+≥ . The originator in itera-
tive lookup similarly waits for a response from the next hop 
node point by point. Therefore, timeout is configured to no 
less than the time to wait for forward and reply. Consequent-
ly, Ti is the timeout in iterative lookup set by tTi 2≥ . As a 
result, the expected latency of recursive lookup E[RL] is 
defined in the following by these parameters.  

( ) )2(11][ rl

l
T

p
ptlRLE −

++=  

The expected latency of iterative lookup E[IL] is also de-
fined in the following. 

)3(12][ ilT
p

ptlILE −
+=  

In both recursive and iterative lookups, when l and t are 
fixed, p has a profound effect on performance. Figure 2 
shows that an example of all expected latencies under dif-
ferent p when l and t are fixed values.  

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6 0.5

E
xp

ec
te

d 
la

te
nc

y

Churn rate (p)

Recursive
Iterative

 
Figure 2: Expected latencies of recursive and iterative 

lookups under different p. 
 
Moreover, Tr is much higher than Ti with this timeout set-

ting. Thus, by using formula (2), the expected latency of 
recursive lookup increases especially when p is low. When p 
is low, on the other hand, iterative lookup does not have 
such high latency. However, when p is high, e.g. 1=p , this 
is higher than that of recursive lookup. Therefore, to im-
prove the performance of recursive and iterative lookups, we 
need to determine the system churn rate. 

2.3 Hierarchical DHT 

Hierarchical DHT is a structure that divides a logical net-
work configuration created by the DHT algorithm[8][9]. 
Figure 3 shows an example of a hierarchical DHT with two 
tiers in the Chord algorithm. Divided networks are called 

144 T. Funahashi et al. / An Effective Lookup Strategy for Recursive and Iterative Lookup on Hierarchical DHT



top- and lower-level clusters. A top-level cluster is built by 
particular nodes called super nodes. Super nodes generally 
adopt strong nodes in the network, e.g., those with a great 
deal of high storage and high processing capacities that have 
been alive in the network for a long time, or those with wide 
bandwidth. Other normal nodes and a specific super node 
belong to the lower-level cluster. The super node provides 
normal nodes with routes to other clusters.  

 

 
Figure 3: Example of two-tier hierarchical DHT. 

 
Hierarchical DHT can speculate clusters where the desti-

nation of lookup belongs by comparing high m bits between 
the key and node ID. This m means the number of clusters in 
the hierarchical DHT by 2m. When the high m bits of the key 
and a node ID are the same, the node forwards in the cluster. 
Otherwise, the node asks the super node of the cluster to 
forward, and the super node finds the destination cluster and 
super node address by using the key. 

Hierarchical DHT has various features, i.e., to assemble 
normal nodes for their purpose and confine the effect of 
churn locally for neighbor nodes. An advanced study of hi-
erarchical DHT found it to take into account the reliability 
of nodes[10]. This determines low-level clusters where 
normal nodes belong by using the interval from when they 
join to when they leave. The interval time is assumed by 
using a function, and this means that it is equivalent to R as 
the life-time of a node.  The function in this study assembled 
nodes that had similar R in each cluster. In addition, a super 
node was selected as a node that had the highest R in the 
cluster. Nodes are clusters obtained by R in this way in hier-
archical DHT that considers reliability. Therefore, E[R] be-
comes high due to clustering nodes that have higher R, and 
this also decreases by using clustering nodes that have lower 
R. Here, we assume that the interval for the stabilization 
process is fixed at all nodes and nodes obtain E[S], which is 
almost a fixed value. p is defined as E[R] in formula (1), and 
so this differs specifically for each cluster. Therefore, the p 
of each cluster can be speculated, and we can consider the 
optimal performance of a system that is appropriate to p. 

3 GOAL AND APPROACH 

When p is low in recursive and iterative lookups, recur-
sive lookup has an advantage, but when p is high, iterative 
lookup has an advantage. We select which lookup to uses by 
using the churn rate. This ensured that the expected latency 
of lookups was the best under any churn rate. Our goal was 
to demonstrate this. To speculate churn rate p, we noted 

hierarchical DHT took reliability into account. Hierarchical 
DHT determines clusters in which p is high or low as a re-
sult of clustering by the R of nodes. We focused on a struc-
ture where p was different for each cluster. And we believe 
that lookup strategies may be used to match the p of clusters. 
However, the hierarchical DHT uses one of the lookup strat-
egies. Furthermore, we must consider that each message 
format in recursive and iterative lookups is different.  

Here, we propose a strategy that changes over from one 
lookup to another by transforming the format of messages.  
We will explain how this strategy optimizes performance 
more than when only recursive or iterative lookup is used. 

4 PROPOSED METHOD 

4.1 System model 

We propose that each cluster separates recursive and it-
erative lookups on hierarchical DHT to consider reliability. 
We used the Chord algorithm because it had various features, 
e.g., it had a simple structure and was scalable. We also not-
ed the stabilization process for the formula (3). Although 
super nodes were adopted in the clusters, we assumed that 
super nodes would be adopted in the system. This meant that 
the R of super nodes had no relationship with the R in the 
clusters. Here, the R of super nodes is Rs, and that of other 
normal nodes is Rn. Clusters in assembled nodes that have 
low Rn, called lower clusters, use iterative lookup in the 
clusters because they have low p. However, clusters in as-
sembled nodes that have high Rn, called higher clusters, use 
recursive lookup. For example, a top-level cluster built by a 
super node has Rs. Rs is relatively high approximately R in 
the system. Therefore, a top-level cluster uses recursive 
lookup. There are recursive and iterative lookups in the sys-
tem for this reason. Here, it transforms from recursive into 
iterative and vice versa depending on the message format. 
This process is executed at super nodes. This provides the 
communication between higher and lower clusters. 

All nodes have a routing table built by the Chord algo-
rithm to structure hierarchical DHT. For example, that of the 
normal node includes normal nodes that belong to the same 
cluster and super nodes of the cluster. Also, super nodes 
have routing tables that included normal nodes belonging to 
the cluster and the super nodes of the top-level cluster. 

4.2 Transformed process 

There are request and reply messages in recursive and it-
erative lookups. Each message format is different due to the 
lookup strategy. For example, a reply message including 
next hop candidates is used in iterative lookup as a routing 
table. However, no reply messages are used in recursive 
lookup. Tables 1 and 2 indicate that both request and reply 
messages have to include information at least in recursive 
and iterative lookups.  

 
 
 
 
 

International Journal of Informatics Society, VOL.4, NO.3 (2012) 143-151 145



Table 1: Information  in request message. 
 Identifier Key ID Address of 

originator 
TTL 

Recursive ○ ○ ○ ○ 
Iterative  ○   
 

Table 2: Information in reply message. 
 Identifier Next hop 

Candidates 
Recursive ○  
Iterative  ○ 

 
Recursive lookup can forward in parallel because it trusts 

other nodes with forwarding request messages. Messages 
have to include the address of the originator, the message 
identifier that determines what value is received for which 
request message, and the Time To Live (TTL), which is 
always set to forward request messages. This includes the 
message identifier. In iterative lookup, on the other hand, 
request messages do not have to include the address of the 
originator, identifier, or TTL because the originator controls 
the lookup. It only includes the key ID. However, reply 
messages must have some next hop candidates. Forwarding 
cannot continue because request and reply messages in both 
lookups are missing some necessary information. 

By considering these differences, we implemented a 
transformed message format and lookup strategy. This trans-
formed process particularly executes the transform from 
recursive to iterative and vice versa. It needs to be executed 
at all nodes on a flat DHT that does not have a hierarchy. 
However, the extent of the lookup strategy on hierarchical 
DHT is localized by clustering. For this reason, the trans-
formed process is only executed at super nodes, which are 
contact points between clusters. The super nodes are con-
fined to belong to lower clusters. They provide normal 
nodes with forwarding to top-level cluster and other clusters. 
Also, they provide other super nodes with forwarding to 
lower clusters. The flow for this operation of super nodes is 
outlined in Fig. 4. 

 

 
Figure 4: Transformed process at super node of Lower clus-

ter. 
 

When a super node receives a request message for itera-
tive lookup from a normal node, if the destination is in an-
other cluster, it creates a request message for recursive 
lookup from the subject matter of that message. However, 
the request message for iterative lookup does not include the 
identifier, the address of the originator, or TTL. For this 

reason, the super node creates a new identifier for the re-
quest message, and sets the TTL from the route. Also, the 
address of the originator is specified by the super node. 
Normal nodes do not read messages for recursive lookup 
because they do not transform from recursive into iterative 
message format. Therefore, super nodes provide the origina-
tor with a forwarding destination node and accept the reply 
message including the value with the transformed recursive 
into iterative message format.  

However, when a super node belonging to a lower cluster 
receives a request message for recursive lookup, it can cre-
ate a message for iterative lookup by only obtaining a key 
ID from the message. The value from the destination node 
similarly passes the super node, and the value of the trans-
formed format is sent. 

4.3 Lookup strategy 

We propose that higher clusters use recursive lookup, and 
lower clusters use iterative lookup. Here, a top-level cluster 
is recognized as a higher cluster and uses recursive lookup. 
As a result, the pattern for lookup executed in the above 
transformed process is categorized as two patterns, (A) from 
the lower to the top-level cluster, and (B) from the higher to 
the lower cluster. 

First, Fig. 5 shows an example of pattern (A).  
 

 
Figure 5: Lookup from lower to higher cluster. 

 
The flow for lookup where request and reply messages 

are forwarded is indicated by the number in Fig. 5. In addi-
tion, request messages for iterative lookup are transformed 
into those for recursive lookup. First, the originator requests 
a super node to forward to another cluster with iterative 
lookup (Fig. 5 (1)). The super node transforms the message 
at the start, and starts recursive lookup. The lookup forwards 
to super and destination nodes (Fig. 5 (2)-(4)). Although the 
destination does not directly send the value to the origina-
tor, it sends the super node belonging to the originator (Fig. 
5 (5)). The super node transforms the received message, and 
sends data to the originator (Fig. 5 (6)). We consider that 
this pattern shorten the latency of the entire lookup more 
than that with only iterative lookup because it uses recursive 
lookup at the part with low churn. 

Second, Fig. 6 shows an example of pattern (B). 
 

146 T. Funahashi et al. / An Effective Lookup Strategy for Recursive and Iterative Lookup on Hierarchical DHT



 
Figure 6: Lookup from higher to lower cluster. 

 
A super node in this pattern executes the transformed pro-

cess that creates a request message for iterative lookup from 
the request message for recursive lookup. Therefore, when 
the originator sends a request message for recursive lookup, 
lookup is executed at the super node of the destination clus-
ter (Fig. 6 (1), (2)). The super node executes the transformed 
process, and forwards destination by using iterative lookup 
(Fig. 6 (3), (4)). The value is presented by using the com-
munication shown in Fig. 6 (4). The super node sends a re-
ply message including the value for recursive lookup to the 
originator (Fig. 6 (5)). Incidentally, the originator has to 
wait 2Tr because the lookup uses iterative lookup in the 
middle of lookup. By using iterative lookup at lower clusters 
where the churn rate is high, this pattern can shorten the 
latency of the entire lookup more than that with only recur-
sive lookup. 

5 EXPERIMENTS 

5.1 Presupposition 

We implemented the lookup in the Overlay Weaver[11] to 
evaluate our lookup strategy and compared its performance 
with that of only recursive or iterative lookup.  

First, the setting for running the simulation and the ver-
sion of the Overlay Weaver were:  
・ OS: Windows 7 Professional 64 bits 
・ CPU: Intel Core i5 3.2 GHz 
・ Memory: 4.0 GB 
・ Overlay Weaver: Ver. 0.10 

 
Table 3 summarizes the parameters we set in the simula-

tion. 
 

Table 3: Parameters in simulation. 
Number of nodes (N) 1000 
Number clusters (C) 4 

Latency of one hop (t) 6 ms 
Recursive timeout (Tr) 84 ms 
Iterative timeout (Ti) 15 ms 

 
The number of nodes and clusters is defined by parame-

ters in the work of Sato[10]. Sato’s simulation used a Chord 
network by a minimum of 250 nodes. Although we set 250 
nodes in a cluster, we have to discuss the number of clusters. 

C also means the number of super nodes, and C among N 
works as super nodes. Then, the lower-level cluster is built 
by other nodes as normal nodes. Therefore, a lower-level 
cluster has 250 nodes. Normal nodes have no relationship 
with the distribution of R, and there is not much difference 
between the numbers of nodes in each cluster. Thus, we 
assumed that latency t is 6 msec. This simplifies our simula-
tion, so it does not consider a real environment. In actuality, 
t may be longer than this value. 

Next, both timeout is set as a random value, so 84 and 15 
ms mean maximum value. Tr is based on the definition ex-
pressed in Subsection 2.2. We assumed that path length l 
was defined as ( )'log NO  when N’ was CN / as the number 
of nodes in the lower-level clusters. Also, we considered 
that it had the lookup of top-level clusters and a potential of 
over ( )'log NO , so we added various values to l. Tr is defined 
by multiplying t by l. Similarly, Ti is the value multiplying t 
by 2 and adding a slight allowance because a node has to 
wait for a response in iterative lookup. Therefore, Tr and Ti 
are defined formula (4), (5) when the various value is r. 
These timeouts are set for all nodes, but the originator does 
not wait for a timeout. If the originator uses iterative lookup, 
the lookup will soon end by a timeout. Thereby, originator 
has to wait for the response of the super node. 

( )41log 







++






= r

C
NtTr  

( )52 rtTi +=  
 Path length l is generally determined to be the key ID, 

which is a parameter that is not included in Table 3. This 
key ID is used the same as key ID to equalize the effect of l 
in all simulations as much as possible. By equalizing the 
effect, we ran the simulation for the key ID 100 times, and 
measured the average. In addition, we assumed that a higher 
and lower cluster were the same cluster in every simulation. 
We also assumed that churn rate p of higher clusters using 
recursive lookup was one at all times and p in lower clusters 
using iterative lookup could be set freely. According to for-
mula (1), p means the churn rate and S needs to be nearly a 
fixed value. For this reason, nodes must not repair routing 
tables by churn during lookup. Additionally, the stabiliza-
tion process was set to a large interval of 125 sec. This 
means E[S] had a fixed value because nodes repaired fewer 
routing tables due to the stabilization process. 

In addition, the following shows the routing tables of 
nodes. 
・ Predecessor node 
・ Successor List (no more than eight successor nodes) 
・ Finger table 
・ Normal nodes have super nodes in the cluster 
・ Super nodes have other super nodes in top-level cluster 
 

When a normal node forwards a request message to an-
other cluster, the node can forward the message to a super 
node in the same cluster in one hop. Additionally, a super 
node knows all other super nodes in the lookup for the top-
level cluster and can forward the message to the super node 
of the destination cluster in one hop. 

We considered lookup where a normal node forwards re-
quest messages to the node of another cluster. Additionally, 

International Journal of Informatics Society, VOL.4, NO.3 (2012) 143-151 147



there are three lookup patterns for a cluster, and each lookup 
is executed in different nodes. 

We measured latency from higher to lower clusters and 
otherwise with each lookup strategy using the above param-
eters.  

5.2 Results 

We measured average latency with simulation. Here, we 
assumed that the latency was the time until the destination 
node received a request message. In addition, the time also 
included the internal processing time of each node. There-
fore, it measured E[RL] and E[IL] as follows in this simula-
tion. 

)4(1][ rl

l
T

p
ptlRLE −

+=  

( ) )5(112][ ilT
p

ptlILE −
+−=  

First, we will consider pattern (B) in Subsection 4.3, 
which is a lookup whose destination cluster is higher. It as-
sumes that the p of the higher cluster and that of the super 
node that belongs to a lower cluster are set to one at all 
times. Also, the originator does not leave the network. Addi-
tionally, we assumed that there was one lower cluster and 
three higher clusters. Therefore, we measured the average 
latency of nine lookup patterns that forward request messag-
es to higher clusters. The results obtained from simulation 
are presented in Fig. 7. 

 

0
10
20
30
40
50
60
70
80
90

100

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive

Iterative

Our method

 
Figure 7: Average latency to three higher clusters by each 

lookup strategy. 
 
This lookup pattern has little relevance to churn rate. The 

first address is the super node belonging at the cluster be-
cause this lookup pattern necessarily forwards a request 
message to other clusters. The super node forwards the re-
quest message to a super node belonging at the destination 
cluster. Each node assumes that churn does not occur. In 
addition, churn also does not occur after that because desti-
nation cluster is higher. As a result, the average latency 
barely changes at all under any p. In Fig. 7, when all nodes 
are steady state, the latency of our method is half that of 
iterative lookup. Our method has latency comparable to that 
of recursive lookup.  

Second, we will consider pattern (A), which is the lookup 
from a higher to lower cluster. There are three lookup pat-
terns from three other higher clusters. We set lower cluster 

to p, which is single value from 1 to 0.6. Also, we ran a 
simulation for each p 100 times and measured the average 
latency in each lookup strategy. The results are shown in 
Figure 8. 

 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 8: Average latency to one lower cluster by each 

lookup strategy. 
 
If churn increases in Fig. 8, the average latency also in-

creases. Recursive and iterative lookups are much the same 
as those in Fig. 1. However, our method performs the same 
as recursive lookup when p is one. If p decreases, increment 
of the average latency is similar to that of iterative lookup. 
Also, the results of our method are not identical to those of 
iterative lookup. Margin of average latency on each lookup 
is invariant from p = 1 to p = 0.6. Recursive lookup has the 
best average latency at only p = 1. However, from p = 0.9, 
recursive lookup has the worst average latency. 

Here, we will think expected latency of this structure. 
This means the latency when any node forwards. Also, this 
has relevance to the structure. For example, the above simu-
lation has one lower cluster and three higher clusters. If 
higher cluster is more than lower cluster, it is generally ex-
pected better latency. Because there is a high probability 
that the destination cluster is higher. On the other hand, if 
lower cluster is more than higher cluster, expected latency 
becomes low because it is a high probability that the desti-
nation cluster is lower.  

 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

E
xp

ec
te

d 
la

te
nc

y 
(m

se
c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 9: Expected latency on one lower cluster and three 

higher clusters. 
 
For this reason, by using these results, we measured the 

average latency of the structure. This was measured by mul-
tiplying each of average latency when the destination cluster 
is both higher and lower by the number of higher or lower 

148 T. Funahashi et al. / An Effective Lookup Strategy for Recursive and Iterative Lookup on Hierarchical DHT



clusters. In this case, results in Fig. 7 are multiplied by three 
as the number of higher clusters and that in Fig. 8 by one as 
the number of lower clusters. Then, it measured the average 
of these results. We assumed that it is expected latency on 
the structure. Figure 9 shows the results in the case of one 
lower cluster and three higher clusters. 

This hierarchical DHT is made mostly of higher clusters, 
and so the expected latency is better than average latency to 
lower clusters. Iterative lookup and our method have flat 
latency as well.  Also, recursive lookup has better average 
latency than average latency of only lookup to lower clusters.  

Here, we think about the relationship between the average 
latency and the number of each cluster. In above case, we 
show the average latency when the structure is one lower 
cluster and three higher clusters. We think that the average 
latency is influenced by the number of lower and higher 
clusters. Therefore, we considered simulations that have 
different numbers of these clusters within C.  

First, we ran a simulation in which the structure has two 
lower clusters and two higher clusters. Each lower cluster is 
set the same p. In this case, we obtained six lookup patterns 
in which the destination cluster is lower. Also, there are six 
lookup patterns that destination cluster is higher. As shown 
in Fig. 7 and 8, we measured the average latency in each 
lookup pattern. Figure 10 and 11 show each of average la-
tency for lower and higher clusters.  

 

0
10
20
30
40
50
60
70
80
90

100

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 10: Average latency to two higher clusters by each 

lookup strategy. 
 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 11: Average latency to two lower clusters by each 

lookup strategy. 
 
These streams are not much more than Fig. 7 and Fig. 8. 

The result of Fig. 10 is a little higher than that of Fig. 7. 
Also, that of Fig. 11 becomes low a little. However, these 
results are evaluated relatively, and they mostly equal. We 

will discuss minor margin about their data on Section 6. 
Similarly, by these results, we measure expected latency of 
this structure. The result is shown Fig. 12. 

 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

E
xp

ec
te

d 
la

te
nc

y 
(m

se
c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 12: Expected latency on two lower clusters and 

two higher clusters. 
 
This result is totally a little higher than result of Fig. 9. 

When p is 0.8, the result of Fig. 9 is that recursive lookup is 
lower than iterative lookup. However, Fig. 12 shows that 
recursive lookup is higher than iterative lookup under the 
churn rate.  

Second, we ran simulation that structure has three lower 
clusters and one higher cluster. In this case, lookup patterns 
that destination cluster is higher are three patterns. There are 
nine lookup patterns that destination cluster is lower. We 
measured the average latency each lookup pattern similarly. 
The average latency of the pattern that destination cluster is 
higher is shown as Fig. 13. Also, we show the average la-
tency to lower clusters in Fig. 14. 

 

0
10
20
30
40
50
60
70
80
90

100

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 13: Average latency to one higher cluster by each 

lookup strategy. 
 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

Av
er

ag
e 

la
te

nc
y 

(m
se

c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 14: Average latency to three lower clusters by each 

lookup strategy. 

International Journal of Informatics Society, VOL.4, NO.3 (2012) 143-151 149



 
These results have mostly the same stream. However, 

max value of average latency to lower clusters is higher than 
other results to lower cluster. On the other hand, max value 
of average latency to higher cluster is better than other re-
sults. Similarly, by these results, we measure expected la-
tency of this structure, and the result is shown Fig. 15. 

 

0
50

100
150
200
250
300
350
400
450
500

1 0.9 0.8 0.7 0.6

E
xp

ec
te

d 
la

te
nc

y 
(m

se
c)

Churn rate (p)

Recursive
Iterative
Our method

 
Figure 15: Expected latency on three lower clusters and 

one higher cluster. 
 
These results are much higher than other results of ex-

pected latency. However, the stream of the results is not 
much more than those of other results. In addition, when p is 
0.9, the expected latency of recursive lookup is a little high-
er than other lookup strategies.  

According to these results, when nodes forward request 
messages to higher clusters, our method provides the per-
formance of recursive lookup. Also, our method provided 
the performance of iterative lookup when nodes forward 
request messages to lower clusters. This is possible under 
any churn rate at lower clusters and proportions of higher to 
lower clusters. As a result, our method is effective when 
compared with only recursive or iterative lookup under any 
state and structure. 

6 DISCUSSION 

We will discuss the above results. First, we note the effect 
of our method. When the destination cluster is higher, our 
method performs similarly to recursive lookup under any 
churn rate and structures. Also, when destination cluster is 
lower, our method performs similarly to performance of 
iterative lookup under any situations. As a result, the ex-
pected latency of our method is relatively better than other 
lookup strategies as integrated evaluation. 

Second, we note the average latency of lookup to higher 
cluster on each structure. For the average latency of each 
lookup strategy, although the rate is almost the same, the 
max value each of average latency is much different. This is 
considering that all lookup patterns have different path 
lengths. The path length is five at minimum and eleven at 
maximum. If the path is long, latency becomes high. There-
fore, average latency becomes high in the patterns that have 
long path length. For this reason, the results in Fig. 10 in-
clude patterns that have long path length, and those in Fig. 
13 do not. However, we can find the integrate effect of path 
length by measuring expected latency. If we consider the 
effect of churn rate, path length may have to be fixed. 

In the results of expected latency, when higher cluster is 
defined as p = 0, if super nodes know the churn rate of each 
cluster and a number of clusters, we can evaluate effectively 
the lookup strategy under the churn rate. For example, if p 
of a cluster becomes 0.8, the cluster uses iterative lookup 
when there are already two clusters using recursive lookup 
and one cluster using iterative lookup. This is shown in Fig. 
12. 

However, the case in which p is 0 is less common in P2P. 
For this reason, we have to define higher and lower clusters. 
Therefore, we will research rigorous p, the structure of clus-
ters, and the effects of different numbers of nodes and the 
clusters. 

Finally, we attended to recursive + ACK lookup strategy. 
This lookup strategy has best expected latency among 
lookup strategies under any churn rate. E[RL+ACK] is de-
fined in the following, and Fig. 16 shows comparison of 
E[RL+ACK] with E[RL] and E[IL] under different p.   

)6(1)1(][ lT
p

ptlACKRLE −
++=+  

 

 
Figure 16: Expected latencies of recursive, iterative,  and 

recursive + ACK lookups under different p. 
 
Here, we had a question, why do not we use recursive + 

ACK in hierarchical DHT. Thereby we researched about 
advantage of iterative lookup. According to Ref.[12], itera-
tive lookup has some advantages that recursive lookup lacks, 
fate-sharing, debugging, compartmentalization, and route 
table extraction.  We think that these advantages are effec-
tive on mobile P2P environment where a lot of nodes ab-
ruptly disconnect P2P network. Because intermediate peers 
of mobile have probability of lost messages. However, for 
successful forwarding, it is important that high reliability 
nodes use iterative lookup, because it has fate-sharing. In 
our proposed method, super nodes use iterative lookup at 
lower clusters. So we think that our method is more reliable 
forwarding than recursive + ACK lookup strategy. 

7 CONCLUSION 

We noted the effect of churn for recursive and iterative 
lookups in this study, and there were differences in the 
churn rate for each cluster on hierarchical DHT when the 
reliability of nodes was considered. We proposed a lookup 
method that will leverage both lookup advantages by select-
ing relevant lookup strategy at each cluster. Additionally, 
we demonstrated that the new approach is significantly bet-

150 T. Funahashi et al. / An Effective Lookup Strategy for Recursive and Iterative Lookup on Hierarchical DHT



ter in comparison to only recursive or iterative lookups. As a 
result, our method had the best expected latency under any 
churn rate. In future work, we need to consider an approach 
that dynamically applies our method to a DHT system. Ad-
ditionally, we intend to propose an adaptive method that is 
able to adjust to variations in clusters by specifically defin-
ing the reliability of nodes and measuring the churn system. 
Also, we intend to consider various other parameters for the 
lookup strategy and how to provide optimal lookup. 
 

REFERENCES 

[1] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek 
and H. Balakrishnan, ``Chord: A Scalable Peer-to-peer 
Lookup Service for Internet Applications,’’ Proceed-
ings of SIGCOMM’01, pp.149-160 (2001). 

[2] P. Maymounkov and D. Mazieres, ``Kademlia: A Peer-
to-peer Information System Based on the XOR Met-
ric,’’ Proceeding of IPTPS’01, pp.53-65 (2002). 

[3] A, Rowstron and P. Druschel, ``Pastry: Scalable, dis-
tributed object location and routing for large-scale 
peer-to-peer systems,’’ Proceedings of Middleware 
2001, pp.329-350 (2001). 

[4] K. Shudo, D. Kato, Y. Kadobayashi and Y. Doi, ``A 
Comparative Study of Iterative and Recursive Lookup 
Styles on Structured Overlays,’’ IPSJ SIG Technical 
Reports, Vol.2006, No.86(OS-103), pp.9-16, (2006). 
(in Japanese) 

[5] S. Doi, S. Matsuura, K. Fujikawa and H. Sunahara, 
``Churn Tolerant Overlay Network Using Time Lay-
ered and Time Aggregation Methods,’’ IPSJ Journal, 
Vol.51, No.4, pp.1142-1151 (2010). (in Japanese) 

[6] S. Saroiu, ``Measurement and analysis of Internet con-
tent delivery systems,’’ Doctoral Dissertation (2004). 

[7] D. Wu, Y. Tian and K. W. Ng, ``An analytical study on 
optimizing the lookup performance of distributed hash 
table systems under churn,’’ Concurrency and Compu-
tation: Practice & Experience, Vol.19, No.4, pp.543-
569 (2007). 

[8] L. Garces-Erice, E. W. Biersackm, P. A. Felber, K. W. 
Ross and  G. Urvoy-Keller, ``Hierarchical Peer-to-peer 
Systems,’’ Proceedings of ACM/IFIP International 
Conference on Parallel and Distributed Compu-
ting(Euro-Par), pp.1230-1239 (2003). 

[9] S. Zoels, Z. Despotovic and W. Kellerer, ``On hierar-
chical DHT system - An analytical approach for opti-
mal designs,’’ Computer Communications, Vol.31, 
No.3, pp.576-590 (2008). 

[10] F. Sato, ``Configuration Method for Hierarchical DHT 
Systems Based on Join/Leave Ratio,’’ IPSJ Journal, 
Vol.51, No.2, pp.418-428 (2010). (in Japanese) 

[11] K. Shudo, ``Overlay Weaver: An Overlay Construction 
Toolkit,’’ HTML available at, 
http://overlayweaver.sourceforge.net/index-j.html.  

[12] D. Stutzbach and R, Rejaje, ``Improving Lookup Per-
formance over a Widely-Deployed DHT,’’ Proceedings 
of  INFOCOM 2006, pp.1-12 (2006). 

 
 

(Received February 27, 2012) 
(Revised November 23, 2012) 

 
Tomonori Funahashi received his 
B.E. and M.E degrees in infor-
mation science from Future Univer-
sity Hakodate, Japan in 2011 and 
2013. His research interests include 
structured P2P network and proto-
col, heterogeneous P2P on fixed 
and mobile environment. 

 
Yoshitaka Nakamura received 
B.E., M.S., and Ph.D. degrees from 
Osaka University in 2002, 2004 and 
2007, respectively. He is currently a 
research associate at the School of 
Systems Information Science, Fu-
ture University Hakodate. He is a 
member of IEEE and IPSJ. 
 

 
Yoh Shiraishi received doctor's 
degree from Keio University in 
2004. He is currently an associate 
professor at the Department of Me-
dia Architecture, School of Systems 
Information Science, Future Uni-
versity Hakodate Japan. His re-
search interests include database, 
mobile sensing and ubiquitous 

computing. He is a member of IPSJ, IEICE, GISA, and 
ACM.  
 

Osamu Takahashi received mas-
ter’s degree from Hokkaido Univer-
sity in 1975. He is currently a pro-
fessor at the Department of System 
Information Science at Future Uni-
versity Hakodate, Japan. His re-
search interest includes ad-hoc net-
work, network security, and mobile 
computing. He is a member of 

IEEE, IEICE, and IPSJ. 
 

 

 

 

 

International Journal of Informatics Society, VOL.4, NO.3 (2012) 143-151 151



152




