
Application Push & Play – Proposal on Dynamic Execution Environment Combined
with Personal Devices and Cloud Computing. -

Hidenobu Ito†, Kazuaki Nimura†, Yousuke Nakamura†, Akira Shiba†, and Nobutsugu Fujino†

†Fujitsu Laboratories Ltd.
4-1-1, Kamikodanaka, Nakahara-ku, Kanagawa, Japan

{itou.hidenobu, kazuaki.nimura, nkmr, shiba.akira, fujino}@ jp.fujitsu.com

Abstract – Mobile devices have become essential tools in
our life. To make effective use of a smartphone, a user may
install many small applications and use them according to
his/her circumstances. However, it is becoming impossible
to ignore the time and effort a smartphone user spends to
discover and install appropriate applications. In this paper,
we propose a concept wherein desirable applications and
data automatically descend from the Cloud and are executed
on a device when a user is authorized to receive a service.
Such applications are available only at the right moment and
go away when a user no longer requires them. As a proof of
concept, we implemented the system on an Android
smartphone and confirmed that it can reduce installation
steps and has a good enough response. The proposed system
would be able to help users in their daily activities and pro-
vide a new user experience different from the conventional
one.

Keywords: Mobile device, Cloud computing, Push services,
Android

1 INTRODUCTION

A variety of personal devices such as smartphones, tablets,
and personal computers are now on the market. In addition,
there are many applications for such devices.

In terms of the usability, it is not necessarily easy to start
using smartphone applications. The initial setup can be es-
pecially troublesome and annoying. For example, those who
have purchased a smartphone tend to spend a long time find-
ing and installing applications from an app store, etc., even
from stores they frequently visit. Moreover, smartphones
without any preinstalled applications would not be able to be
used conveniently. Users hence have to find and install ap-
plications before use their phones. In addition, installing too
many applications on local devices makes them inconven-
ient because it would be difficult to identify an application
they want to use on the small screen of a smartphone. In
short, people do not like to spend too much time setting up a
smart phone because it has a short life cycle. It would thus
be good to have a system where a user can receive services
with minimal preparation.

There are several studies about usage of smartphone ap-
plications. Some point out that users use these applications
as important tools to manage information, tasks, work, and
social relationships in their busy lives. Time management is
one of the most important factors for them.

According to the report of the SBE Council [7], mobile
application discovery is a big problem for smartphone users.

Moreover, there are several studies showing that the re-
tention rate of mobile applications is rather low. The
Ringcentral Survey [6] found that the retention rate after six
months is only 36%. Scott Kveton, CEO of Urban Airship, a
mobile notifications provider, stated that there is only a 5%
retention rate of free applications after 30 days.

Therefore, it is not always true that smartphone users can
save time by utilizing mobile applications because they
waste too much time in preparing seldom-used applications.
In other words, reducing the time for discovery and installa-
tion of applications would give them a better mobile experi-
ence.

In this paper, we propose a concept of dynamic installa-
tion and execution called Application Push & Play (APnP)
to resolve the above problem. In addition, we propose an
architecture for a smartphone to embody the concept. We
prototyped an APnP system by utilizing web applications
executable on local devices and an Android smartphone. We
used the results of the experiment to evaluate the feasibility
and efficacy of our architecture.

2 RELATED WORK

Apple Inc. provides the App Store on iTunes [4] to dis-
tribute applications for iPhones. An iPhone user can down-
load applications via iTunes on a PC, and synchronize and
install them on an iPhone through a USB connection. A user
can also download and install applications directly on an
iPhone. Google Inc. provides the Android Market [3] for
Android smartphones. The advantage of the Android Market
is that a user can download and install applications from a
PC to any android smartphone he/she owns. On the other
hand, Apple has recently started to provide iCloud to syn-
chronize all applications between devices. The problem is
that Google and Apple do not care when and what applica-
tions a user wants to use though they provide a mechanism
which delivers applications. In addition dedicated ids such
as Google account and Apple id are required for a user to
get application. It might be preferable for business purpose
because some company policies does not allow to use such
kind of ids in order to avoid the risk of information leakage.

In terms of applications for mobile devices, Jason Grigs-
by [5] compared three types of application: Native, Web,
and Hybrid. ‘Hybrid applications’ are executable on local
devices and are written in HTML, CSS and JavaScript.
Though they look like web applications, they can run in a
dedicated runtime environment on a local device. As far as
Web applications go, HTML5 [1] specifies a disk cache that

International Journal of Informatics Society, VOL.4, NO.3 (2012) 135-142 135

ISSN1883-4566 © 2012 - Informatics Society and the authors. All rights reserved.

can let web applications run on a local device even when the
network is disconnected.

MIT Project Oxygen [9] is a project that addressed chal-
lenges to support highly dynamic and varied human activi-
ties. The goal of Oxygen system is to help us do what we
want when we want to do it using embedded devices,
handheld devices, dynamic self-configuring networks and
software that adapts to changes in the environment or in user
requirements. The architecture relies on control and plan-
ning abstractions that provide mechanisms for change, on
specifications that support putting these mechanisms to use,
and on persistent object stores with transactional semantics
to provide operational support for change. For example, it
realizes that when a user having listened his favorite music
in his room moves to living room, it automatically continue
the music from the speaker in the room. The focus of this
project is maintaining continuity of services by involving
various available resources. On the other hands, our ap-
proach improves user experience by narrowing down of
service delivery.

3 PROPOSED ARCHITECTURE

As described in the introduction, a big issue is how to re-
duce the time for discovery and installation of applications.
Additionally, we believe this discovery and installation
should proceed without user operations in order to save time
and labor. In this section, we define the requirements and
describe the architecture to enable this.

3.1 Requirements

The requirements are as follows:

(R1) Applications exist on a personal device only when a

user needs them.
(R2) A user need not explicitly install/uninstall applica-

tions.
(R3) A set of suitable applications is automatically identi-

fied by a user’s context.

The best way to resolve the issue of application discovery

and installation is that a user does not have to think about it.
All user wants to do is to deal with content; that is, s/he may
not want to worry what kind of application can operate on
the content. Thus, the requirement is that not the user but the
system should identify applications which the user needs
and can deliver them to a personal device just in time. (R3)
is equivalent to the requirement of identification. The re-
quirement of delivery is a combination of adequate notifica-
tion (R1) and automatic installation (R2).

3.2 Architecture

Figure 1 illustrates the architecture of Application Push &
Play in order to fulfill the above requirements.

Figure 1: Architecture of APnP

The architecture consists of the following features:

(A1) Application Push
(A2) Application Play
(A3) Context-based Screen

Our approach assumes that all applications are in the

Cloud environment and are downloadable and executable on
local devices whether network connections are available or
not.

‘Application Push’ (A1) handles distribution of applica-
tions and data based on a user’s context determined from
sensor information, user behaviors, etc. Once the system has
detected a user’s state as being likely to use a service, a par-
ticular application in the Cloud would be injected into the
local storage of the user’s device.

 ‘Application Play’ (A2) deals with automatic installation
and execution of applications injected by ‘Application Push’.

 ‘Context-based Screen’ (A3) provides a user with a sim-
ple and comprehensible GUI. It is a dynamically morphing
home screen in accordance with the place and time of the
user.

To meet requirement (R1), the system should have a
method of real-time notification to deliver an application in
a timely manner. In general, there are two methods of notifi-
cation: “polling” and “push”. In polling, a client checks a
server periodically to see if there is an event. A typical ex-
ample is an e-mail system in a PC. The push method is that
a server notifies a client when an event occurs. A typical
example is the SMS system in a cell phone. In terms of
power consumption, the polling method is not as good for a
smartphone. That is why the push notification of application
(A1) is an important feature. Our architecture includes a
server and push handler as a client.

To meet requirement (R2), the system should have a
method of automatic installation (A2). This method includes
a management functionality for downloading, storing data,
and launching applications based on commands in a pushed
message.

To meet requirement (R3), the system should have a
method for a user to reach an application identified at a
glance under a particular context. At a client-side’s point of
view, a user-friendly interface as a home screen optimized
by context (A3) is important. In addition, the definition of
the user’s context is also important. There has been a lot of

136 H. Ito et al. / Application Push & Play -Proposal on Dynamic Execution Environment Combined with Personal Devices and Cloud Computing.-

works about it, and many people are still considering what is
the best way. The performance of our architecture extremely
depends on which method is applied to. Therefore, it might
not be practical even if we measured the performance in a
particular method. In this paper, we address how stable the
performance of our architecture except context identification.
The mechanism for determining it can be placed in the
Cloud, and it can collect information such as sensor data
about a user. A simple example of a context engine is a loca-
tion-based or schedule-based system. Typically, a task serv-
er includes a context engine and invokes notification via a
push server.

Figure 2 shows the APnP Framework which presents the
relationship between the three layers and the components
described above.

Figure 2: APnP Framework

4 PROTOTYPE IMPLEMENTATION

Figure 3 shows a prototype system to prove the feasibility
of our architecture.

Figure 3: Implementation of the proposed system

4.1 Components

The system consists of the following components:

 ‘Application Repository Server’: This stores universal re-
source indicators (URIs) of applications. It picks up an ap-
propriate URI upon an order from the ‘Task Manager,’ and
commands the ‘Push Server’ to send a PUSH message with
the URI.

‘Application Provider’: This stores an actual application
and provides an interface to send it upon request.

‘Task Management’: This manages the user’s context on

the basis of calculating data from sensor information. Once
it evaluates the timing to send a particular application to a
particular user, it issues a command to the ‘Application Re-
pository Server’ to send the application.

‘Push Server’: This constructs PUSH messages and sends

them to client devices. Upon receiving a command from the
‘Application Repository Server’ it chooses an appropriate
client device to send a PUSH message to with an application
URI. Google already uses the PUSH mechanism in its An-
droid Cloud Device Messaging Framework [2]. However, it
is not suitable for business users because it requires a
Google Account. Therefore, we implemented a dedicated
PUSH Framework.

‘Push Handler’: This is a background process working on

a client device to receive a PUSH message from a ‘Push
Server’. It keeps a TCP connection to ‘Push Server’ and can
communicate with the ‘Push Server’ as long as physical
network connectivity through 3G or WiFi is maintained.
Once it receives a PUSH message and it finds an APnP
command in the message, it hands the command to the
‘Home Manager’. In this implementation, the ‘Push Handler’
is realized as an android application.

‘Downloader’: This is a client module to download appli-

cations from the ‘Application Provider’ to SD memory in
the smartphone upon request from the ‘Home Manager’. In
this implementation, the ‘Downloader’ is realized as a li-
brary module included in the ‘Home Manager’.

‘Home Manager’: This displays a home screen. It has three

functionalities. First, it is an application launcher to execute
applications. Second, it performs management of icons to be
shown on the home screen. The home screen is dynamically
changeable on the basis of APnP commands from the ‘Push
Handler’. It displays only icons necessary in context to pro-
vide a simple user interface. Finally, it orders the ‘Down-
loader’ to download applications. In this implementation,
the ‘Home Manager’ is realized as an Android application.

‘PhoneGap’ [8]: This is a runtime environment to execute

applications stored in SD memory in the smartphone.

4.2 Work flow

A typical work flow is as follows:
1. Deploy applications

Developers distribute their packaged applications via
an application server provided by an application pro-
vider. After that, they register the URI of the applica-
tion with the application repository server. IT admin-
istrators might have to supervise this step for enter-
prise usage.

2. Request Application Push

PUSH
Server

Application
Repository
Server

Application

Smartphone

PUSH
function

Device
Management

PUSH
Process

Register URI

HTML5

①Deploy application

②Request
Application PUSH

④Get
application

Hardware

Smartphone
Platform

Android

Phone Gap

Software
Application

Connection
Manager

Push
Handler

Down
-loader

Home
Manager
App
Management

3G/WiFi

SD memory

Application

Application Provider

③Push
notification

⑤Launch application

International Journal of Informatics Society, VOL.4, NO.3 (2012) 135-142 137

Once the context engine, which knows the user’s be-
havior, detects an event in which the user wants to
use the application, it creates a command message
and requests the push server to a notify the target de-
vice via.

3. Push notification
After receiving the request from the application re-
pository server, the push server sends a push message
which includes an APnP command to download and
invoke the application.

4. Get application
When the push handler inside the smartphone re-
ceives the pushed message, it analyzes the APnP
command and downloads zipped resources of the ap-
plication by utilizing the HTTP protocol. After com-
pleting the download, it stores them in the SD card
which is accessible to the home manager and Phon-
eGap.

5. Launch application
Finally, the downloader sends the Intent to the home
manager to tell it that the download is complete. The
home manager changes the screen and launches the
application by invoking PhoneGap.

4.3 APnP Commands

APnP commands in a push message consist of the follow-
ing elements:

Table 1: List of APnP Commands
Command Name Description
APCTL Operations of the Downloader, such

as download an application, update
part of an application, delete an ap-
plication, etc.

HMCTL Operations of the Home Manager,
which displays options on how it
shows notifications to a user.

HMOP Option values which the Home Man-
ager use, such as context infor-
mation, delay period before execut-
ing an application, etc.

URI The URI of applications.
RESOUCES The resource name of the application

to be downloaded.

4.4 Packaged application

An application is packaged as a set of resource files, a list
of resources, and a manifest file.

Figure 4 is an example of a list of resource files. All files
are described in plain text.

Figure 4: Example of a list of resource files.

In this example, HTML files (‘*.html’) and image files

(‘walking.png’, ‘title.jpg’) are the actual content of the web
application. The set of files constitutes the minimum re-
sources in a common web application. Additional resources
specific to this system are the ‘walkingApp.manifest’ and
‘webapp-manifest.json’. The ‘walkingApp.manifest’ is the
name of this file. It is specified in HTML5 [1] as a means of
local execution. The resources described in this file are
cached in local storage and can be executed without com-
munication to a web server. The‘webapp-manifest.json’ is a
manifest file to describe the properties of the application.
Figure 5 is an example of ‘webapp-manifest.json’.

Figure 5: Example of a manifest file.

An application package is uniquely identified by an ‘ap-

pURI’. The Downloader refers to the appURL to download
the application and deploys the downloaded files in the local
storage in the same folder tree. For example, files down-
loaded from http://www.example.com/ walkingApp/ are
placed in /sdcard/apps/www.example.com /walkingApp/.

‘appName’ is the name of the application. ‘description’ is
a detailed explanation of the application. ‘creator’ is the
contact address of the developer. ‘version’ is the version
number of the application. ‘manifest’ is the name of the
HTML5 manifest file. The Downloader can get information
about where each resource is located. ‘icon’ is an image file
to show an icon on the home screen. ‘toppage’ is the entry
page to be displayed first after launching the application.

5 EVALUATION

5.1 System evaluation

To evaluate the feasibility of the proposed system, each
component shown in Section 4 was implemented in the fol-
lowing hardware:

Index.html
pageA.html
pageB.html
webapp-manifest.json
walkingApp.manifest
images/walking.png
images/title.jpg

{
 "appURI":
"http://www.example.com/walkingApp/",
 "appName": "walking",
 "description": "This application recommends a
good walking place.”
 "creator": "fujitsu_healthcare@example.com",
 "version": "1.0 ",
 "manifest": "walkingApp.manifest",
 "icon": "images/walking.png ",
 "toppage": "index.html"
}

138 H. Ito et al. / Application Push & Play -Proposal on Dynamic Execution Environment Combined with Personal Devices and Cloud Computing.-

Fujitsu PRIMERGY TX100: This was used an IA server
to run the Application Repository Server, PUSH Server and
Applications. It had an Intel Xeon Processor (E3120 3.16
GHz), 8GB DDR2 memory, 1TB SATA HDD, and
1000Base-T for NIC. The operating system was Cent OS 5.5

Smartphone T: This was a smartphone equipped with An-
droid 2.1 to run client-side modules, such as Push Handler,
Downloader, Home Manager, and PhoneGap, as a runtime
environment.

Smartphone N: This was a smartphone equipped with An-
droid 2.3.

Figure 6 shows an example screen transition.
The home screen provides a user-friendly interface to use

application. The screen is switched based on user’s context
and displays limited icons for each screen even though a
user installed a lot of applications. It should be a good navi-
gation by giving a user limited choice to do in a particular
context.

Figure 6: Example of Context-based Home Screen

The picture on the left is a snapshot of the home screen. In

this example, it displays only icons suitable to outside when
a user stays out. Example of context is outside, home, work,
etc.

The picture in the middle is a snapshot of a notification
that a business application is in a meeting room. In this case,
the home screen changes from “Outside” to “Meeting room”
as soon as the user comes into the company’s meeting room.
After that, a new icon of the application appears in the cen-
ter of the screen, and a small icon is deployed on the home
screen. It is optional to display icons on the home screen
without invocations of an application.

The picture on the right is a snapshot of running the noti-
fied application. After notification, the system automatically
executes the application without the user having to perform
an operation.

After the user stops using the application, it might disap-
pear from the device if the user no longer needs it.

It provides a simple user interface to a user and helps to
discover application icons in the particular context.

5.2 Performance evaluation

5.2.1. Test Environment

To improve the user experience, the period from when a
user notices a notification till when he/she starts to operate
is very important. The time from receiving the PUSH mes-
sage till the icon appears or till the application is invoked
may be a bottleneck to providing the user a sufficient re-
sponse rate. Therefore, we evaluated the difference in per-
formance for four kinds of implementations on smartphones
T and N. The specifications of each smartphone are shown
in Table 2.

Table 2: Specifications of smartphone T and N

Model Smartphone T Smartphone N
CPU QSD8250 1GHz S5PC110 1GHz
Internal
Memory 512MB RAM 16GB iNAND

External
Memory 2GB Micro SD

Use a partition
of internal
memory

OS Android 2.1 Android 2.3

Four kinds of implementation are determined by the com-

bination of how to download and store an application and
whether the application is compressed or not. The differ-
ences between the implementations are as follows:

I) Download a zip-compressed file and store it in SD

memory. After that, unzip it and store the unzipped
files.

II) Download a zip-compressed file and store the un-
zipped files in SD memory by utilizing ZipIn-
putStream class without storing the zipped file.

III) Download an uncompressed file packed by using a
tar tool and store it in SD memory. After that, un-
pack it and store the unpacked files.

IV) Download the uncompressed file packed by tar and
store the unpacked files in SD memory by utilizing
the TarInputStream class without storing the packed
file.

At this point, we can make the following hypothesis:

Hypothesis:
The best method to reduce the delay is that an application

package is compressed and is stored it directly as unzipped
files in local storage.

To prove the hypothesis, we should confirm the following:

A) Total throughputs in Case-II and Case-IV are higher

than in Case-I and Case-III, respectively.
B) Total throughputs in Case-I and Case-II are higher

than in Case-III and Case-IV, respectively.
It is expected that (A) and (B) is true if the CPU is suffi-

ciently fast. The reason why (A) should be true is because
two times the file I/O operations occur in Case-I and Case-

International Journal of Informatics Society, VOL.4, NO.3 (2012) 135-142 139

III, in comparison with Case-II and Case-IV. The reason
why (B) should be true is because the increase in data traffic
has a large impact on the total performance in comparison
with a reduction in the load of decompression process.

We measured the actual time spent from the beginning of
downloading till the end of storing an application package
for each case. In Case-I and Case-III, we also measured the
download time and unpacking (or decompressing) time. The
sum of both times is the total time.

The application package to be downloaded was a 167KB
file containing 25 zip-compressed files in 5 folders, the re-
write is a guess. The original is unclear.>. The total size
before compression was 655KB. The compression rate was
27%. The application was downloaded through a WiFi con-
nection.

5.2.2. Test results

Table 3 shows the results of the measurement. Each time
in Table 3 is the average of 10 measurements.

Table 3: Measured results

Item

Device Case

Total
time
(msec)

Down-
load
time
(msec)

Un-
pack
time
(msec)

N-I N I 203.2 110.2 93
N-II N II 190.8 - -
N-III N III 434.4 264.6 169.8
N-IV N IV 402 - -
T-I T I 817.6 197.9 619.7
T-II T II 653 - -
T-III T III 1318.6 524.6 794
T-IV T IV 861.4 - -

Figure 7 compares the elapsed times for each test case.

Figure 7: Comparison of the elapsed times.

Figure 8 compares the throughputs calculated from the re-

sults in Table 3.

Figure 8: Comparison of throughputs.

5.2.3. Discussion on experimental results

The histograms reveal the following facts:

i). Smartphone N is approximately twice as fast as
smartphone T in all cases.

ii). The fastest implementation is Case-II on both
smartphones.

iii). There is little difference in time between Case-I and
Case-II or between Case-III and Case-IV on
smartphone N, whereas there is a significant difference
on smartphone T.

iv). On smartphone N, the cases of using a compressed ap-
plication package (Case-I and Case-II) are approxi-
mately two times faster than cases without compres-
sion of the application package (Case-III and Case-IV),
whereas on smartphone T, there is little difference in
total throughput between Case-I and in Case-IV.

The reason why smartphone N is faster than smartphone T

is due to their different storage devices. The application is
stored in external memory. The Micro SD memory used in
smartphone T is significantly slower than the NAND flash
memory used in smartphone N. Therefore, the difference in
I/O performance has a large impact on total throughput.
Fact-iv is due to the same reason.

Even the throughput of downloading on smartphone N is
faster than on smartphone T. This result is presumably due
to the difference in OS version. Android 2.3 is faster than
Android 2.1 because it has the JIT (Just-In-Compiler). How-
ever, smartphone T has enough throughput because even the
worst total time is less than a second if the application is
zip-compressed.

In addition, the results of the cases without compression of
application package were worse than expected. It is natural
that data traffic is increasing, and download time is conse-
quently increasing. However, there was difference between
the unpack operations and there was supposed to be little
difference between them because the performance of TarIn-
putStream class on Android was poor. Hence, an application
package should be compressed.

To summarize, the experimental results satisfied condi-
tions (A) and (B) described in 5.2.1. Therefore, we were

140 H. Ito et al. / Application Push & Play -Proposal on Dynamic Execution Environment Combined with Personal Devices and Cloud Computing.-

able to confirm that the hypothesis in 5.2.1 is true. In addi-
tion, it took less than 1 second even in the worst case using a
compressed package in smartphone T. A user would rarely
be able to notice the delay. The proposed method can be
used for delivering applications since the performance of
smartphones will improve in the future.

The results of the experiment utilizing an actual business
web application confirmed that the smartphone was notified
of the application’s delivery within a few seconds after an
event was issued, and that an application icon was dynami-
cally added to the home screen, and the application was in-
voked shortly after.

6 USE CASE

 In this section, we present an effective use case of an
APnP system.

To simplify the user interface further, the home screen
could be removed. That is, an application could be directly
executed without displaying the home screen once it is dis-
tributed to our devices.

Figure 9: Example of service.

Figure 9 shows an example service. A user’s device can be

transformed into a textbook while he/she is at school. While
he/she is in a museum, it can be a navigational guide. In
such cases, a personal device with our system can behave as
if it were a dedicated device and provide the user with a
rather simple interface. Such a functionality might be more
useful for a tablet device than for a smartphone.

7 CONCLUSION

We proposed the concept of APnP and prototyped a sys-
tem where appropriate applications are automatically dis-
tributed and executed. Such applications are made available
only at the right moment and disappear when a user no
longer requires them. We confirmed that APnP can reduce
the installation steps and has a sufficient response. In con-
clusion, APnP can help a user in his/her daily activities and
provide a new user experience different from the conven-
tional one.

REFERENCES

[1] HTML5, http://dev.w3.org/html5/spec/Overview.html.
[2] Android Cloud to Device Messaging Framework,

http://code.google.com/android/c2dm/index.html.
[3] Google Android Market, https://market.android.com/.
[4] Apple iTunes, http://www.apple.com/itunes/.
[5] Jason Grigsby, ``Native vs Web vs Hybrid Mobile

Development Choices,’’
http://assets.en.oreilly.com/1/event/34/Native%20Apps
%20vs_%20Mobile%20Web%20vs_%20Hybrid%20A
pps_%20Mobile%20Development%20Choices%20Pre
sentation.pdf (2010).

[6] Ringcentral Survey, ``Small Business Professionals
Admit to Smartphone Addiction,’’
http://blog.ringcentral.com/tag/ringcentral-survey
(2011).

[7] SBE Council, ``Saving Time and Money with Mobile
Apps – a small business “app”ortunity –,’’
http://www.sbecouncil.org/uploads/Mobile%20APP%2
0Final%20Report%20SBE%20Council.pdf (2011).

[8] PhoneGap, http://www.phonegap.com/.
[9] MIT Project Oxygen, http://oxygen.csail.mit.edu/.

(Received February 27, 2012)
(Revised March 1, 2013)

Hidenobu Ito received the BE and ME
degrees in Mathematical Sciences from
University of Osaka Prefecture, Japan,
in 1991 and 1993, respectively. He
joined Fujitsu Laboratories Ltd in 1993.
His current research includes mobile
computing and human centric compu-
ting

Kazuaki Nimura received the BE and
ME degrees in Graduate School of
Information and Communication Engi-
neering, Tokyo Denki University, Ja-
pan, in 1992 and 1994, respectively.
He joined Fujitsu Limited in 1994 and
transferred to Fujitsu Laboratories Ltd,
in 1997. His current research includes
advanced technology of smart device

and human centric computing.

Yosuke Nakamura received the BE
and ME degrees in Graduate School of
Engineering, Yokohama National Uni-
versity, Japan, in 2000 and 2002, re-
spectively. He joined Fujitsu Laborato-
ries Ltd in 2002. His current research
includes advanced technology of per-
sonal computer and human centric
computing.

International Journal of Informatics Society, VOL.4, NO.3 (2012) 135-142 141

Akira Shiba received the B.S. and
M.S. degrees in electronics engineering
from Sophia University in 1980 and
1982, respectively. He joined Fujitsu
Laboratories Ltd. in 1982. Since then
he has been engaged medical
electronics and mobile computing, and
is currently a Research Manager of
human centric computing technology.

Nobutsugu Fujino received the B.S.
and M.E. degrees in electronics engi-
neering from University of Osaka Pre-
fecture in 1984 and 1986, respectively.
He joined Fujitsu Laboratories Ltd. in
1986. Since then he has been engaged
radio communication systems and mo-
bile computing, and is currently a re-
search manager of human centric com-

puting and multi device interaction technology. His research
interests include mobile and ubiquitous computing and net-
work applications. He received IPSJ Industrial Achievement
Award in 2003. He received Ph.D. degree in informatics
from Shizuoka University in 2008.

142 H. Ito et al. / Application Push & Play -Proposal on Dynamic Execution Environment Combined with Personal Devices and Cloud Computing.-

