
Experimental transformations between Business Process and SOA models

Akira Tanaka†, and Osamu Takahashi‡

†view5 LLC, Japan
‡School of Systems Information Science, Future University Hakodate, Japan

a.tanaka@view5.co.jp, osamu@fun.ac.jp

Abstract - in designing enterprise IT systems, two major
architectural styles exist today: process-oriented and
service-oriented architectures. Either one of them can be
used to define behavioral aspects of the business
specifications. In reality, a process can make use of various
services, and a business service can be implemented as a
process. This duality applies to such technology as BPMN
and SOA. In RM-ODP standard, however, both are part of a
standard viewpoint language, and they complement with
each other. In this paper, using a textual domain specific
language and a tool supporting it to capture the essence of
those modeling languages, we examine the relationship
between process-based specifications and service-based
specifications for a typical buy-sell-ship business process or
collaboration. Architectural comparison is done by
examining a model transformation of process to service, and
service to process. The difference of the two types of model
and the implication of the results are discussed.

Keywords: business process; service-oriented architecture;
enterprise architecture; RM-ODP; model transformation.

1 INTRODUCTION

Enterprise architecture is widely used as a way to describe
overall architecture of enterprise systems. There are many
approaches to define enterprise architecture. For instance, to
describe everything from hardware components to business
strategies, a matrix of concerns and perspectives is used in
Zachman Framework[1], or a set of customized
architectures such as application architecture to capture
different aspects is used in Federal Enterprise
Architecture[2] initiatives. There are also requirements to
harmonize businesses and ITs. In this context, the
importance of business specifications, which describes
“what to achieve” at business level, is being recognized.

There are a variety of approaches to define business
specifications: business process oriented approach that uses
“Business Process Model and Notation” (or BPMN[3]),
business rule oriented approach that uses “Semantics of
Business Vocabulary and Business Rules” or (SBVR[4]),
business events based approach such as “Event Driven
Architecture” (or EDA) and “Complex Event Processing”
(or CEP[5]), business service oriented approach such as
“Service Oriented Architecture” (or SOA[10]), and many
more. Among them, two major architecture styles exist,
which are process-oriented and service-oriented
architectures. They are mainly used to define behavioral
aspects of the business specifications.

According to BPMN specification, “business process is a
defined set of business activities that represent the steps
required to achieve a business objective.” This implies,
when top down design approaches are taken, a business
objective is set first, and a process or a set of processes
is/are defined to achieve the objective. The IT system will
be designed to provide necessary functionalities to the
defined steps in the process. In this approach, interested
behaviors or interactions exist between steps and among all
the participants.

According to SOA Reference Model, “A service is a
mechanism to enable access to one or more capabilities,
where the access is provided using a prescribed interface
and is exercised consistent with constraints and policies as
specified by the service description.” In this approach, most
application elements will be implemented as services so that
client software can find and consume necessary services to
achieve its goal. The interactions in this model are between
consumer and provider of the service. Orchestration of the
services is not within the scope of this architecture.

Both styles are used as foundational architectures when
developing enterprise IT systems. It should be noted,
however, that a process can be decomposed into steps, each
of which may consume services. And, a service can be
implemented as a process. This duality applies to business
systems designed based on current technologies such as
“Unified Modeling Language” 1 (or UML[6]), BPMN and
SOA.

The issue we have is “are they really different, or are they
different sides of the same coin?” In other words, are they
only different in architecture styles and equivalent in
capabilities? And if so, how can we measure the
equivalence? In this paper, we will examine this issue using
modeling technique including UML, “Domain Specific
Language” (or DSL[8, 9]), and model transformations. If
they are essentially equivalent, there should be
correspondences between them, that is, a service based
model should be able to be transformed into a process based
model, and a process based model should be able to be
transformed into a service based model.

We will first look at business process oriented approach
and examine how much it can be mapped to SOA approach.
We will then look at service based approach and examine
how much it can be mapped to process oriented models. In
doing this, we will use DSL and model to text
transformation tool.

1 UML is a standard graphical modeling language for
analyzing, designing and implementing software-based
systems. The current version is UML 2.0.

International Journal of Informatics Society, VOL.4, NO.2 (2012) 93-102 93

ISSN1883-4566 © 2012 - Informatics Society and the authors. All rights reserved.

2 BUSINESS PROCESSES

Business specifications are usually the most examined
specification in Enterprise Architectures, since most
business users, in addition to technology providers, would
need to review it to see if it correctly captures the business
requirements. When top down approach is taken, it usually
starts with analysis of business environment, establish a new
goal and strategies, design business processes to achieve the
goals. There are multiple choices in diagramming business
processes. UML Activity Diagram and Business Process
Modeling and Notations (BPMN) are the most used ones. In
this paper, we use ODP ([7] see IV) Process diagrams that is
a slight extension to UML Activity Diagram, since it has
necessary characteristics to do the experiment.

The diagram on the right side of this page (Figure 1)
shows a sample purchasing business process among three
parties, buyer, seller, and shipper in ODP Process Diagram.
Each lane represents role and behavior of the party, and each
step is represented as an Action internal or external to the
lane. In case of external Action, the control flow crosses the
lane with or without artifact passing. Artifact, represented as
ObjectNode, is there to capture necessary business
information to be passed. There are split/merge used to
control, i.e. to create and conclude, parallel activities. This is
almost the basic Activity Diagram except for applied ODP
stereotypes. The dotted lines are there to show logical
grouping of the steps that have certain meaning in the
application, e.g. placing an order. Note that these dotted
lines are not part of standard notation, and they should be
read as additional comment. Although it is possible to group
steps using sub-process, it does not provide improvement in
readability of the process, and therefore we did not take that
approach.

In summary, this process diagram shows participants of
the purchasing process and a collection of necessary steps in
a prescribed manner leading to the objective. IT systems
will be designed to support some portions of the steps. This
style is effective when an IT system is to be built against
pre-defined business processes (i.e. what needs to be done in
what order).

3 SERVICE OR BUSINESS SERVICE

The definition of term “Service” in SOA is still under open
discussion. However, there is one in OASIS’s SOA
Reference Model[10], which is “A service is a mechanism
to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is
exercised consistent with constraints and policies as
specified by the service description.” OMG’s SoaML[11],
which is a UML Profile for Service oriented architecture
Modeling Language, is a standard to describe SOA based
models. A slight modification of above definition was used
there, which says “A service is value delivered to another
through a well-defined interface and available to a
community (which may be the general public). A service
results in work provided to one by another.” In this UML
Profile, various SOA concepts are defined. For instance, a
community is defined as a place for participants

consume/provide services to each other. For each pair of
participants they have service contract that govern the
behavior aspects when consuming/providing services. As for
diagramming, it mainly uses UML Collaboration Diagram,
Class Diagram and Component Diagram.

If compared with the previous process model, participant
can be considered as role. The diagram on the right side of
this page (Figure 2) shows a sample high level Service
Architecture using SoaML to represent Buy-Sell-Ship
collaboration.

Note that there are other kinds of diagrams associated with
this high level description. For instance, Service Contract
Diagram contains two roles, consumer and provider, with a
sequence diagram specifying service message exchanges
when provided services are consumed.

Figure 1: Sample ODP Purchasing Business Process

94 A. Tanaka et al. / Experimental Transformations between Business Process and SOA models

In summary, the service diagram (Figure 2) shows
participants of the collaboration and service contracts, which
includes interface and behavior definition, between service
consumers and service providers. Note that there is no
“steps taking place in a prescribed manner” defined. IT
systems will be designed to support service providers and
consumers. This style is effective when an IT system is to be
built using existing or to be built services, such as newly
developed internal services, wrapped legacy functions, or
external services using web services, with a flexibility of
clients’ choice of the services.

Figure 2: Sample Service Architecture

4 RM-ODP

RM-ODP stands for Reference Model for Open
Distributed Processing, which is a family of international
standards for developing standards for open distributed
processing systems. It is a set of reference models, and it
also has UML Profile standard to represent its concepts
using UML tools. This standard is used as an open
Enterprise Architecture, and we use this standard with
associated UML Profile (e.g. in Fig. 1) to show something
not biased to specific process modeling notations. It defines
five standard viewpoints, but we will use or refer to only
three of them in this paper: Enterprise, Information, and
Computational viewpoints.

5 DOMAIN SPECIFIC LANGUAGE (DSL)

According to Domain-Specific Languages[8], domain –
specific language is defined as “a computer programming
language of limited expressiveness focused on a particular
domain.” DSL could be graphical or textual, could be
internal (designed based on general purpose language) or
external (having no specific host language). In this paper,
textual and external DSLs for process oriented modeling
(ProcessDSL) and service oriented modeling (ServiceDSL)
are described and used.

6 PROCESS TO SERVICE MODEL
TRANSFORMATION

Model transformation achieves one source model
described in one specific language to be converted into
target model described in other specific language, without
violating rules for those languages. Typical example is to
transform UML Class Diagram to Relational Table. Four

layer meta architecture is usually used to explain the
mechanism. As a standard, OMG’s MOF/QVT[12] is the
best known one. As open source projects, widely known
examples are eclipse ATL[13, 14] and QVT.

The next table shows metamodel and main elements of
Process models and Service models related to our sample
process.

Table 1: Metamodel Elements
 Business

process
Service

Metamodel Process
related part
of RM-
ODP
Enterprise
Viewpoint
metamodel

SoaML metamodel

Main
Elements

Object,
Role,
Process,
Step,
Action,
Activity,
Artefact,
Interaction

Participant, Service
Contract, Service
Architecture, Service
Interface, Service
Choreography, Message,
UML
Collaboration/Component

The following is a summary of how service metamodel

element could be created with given process metamodel
elements.

A. Participant/UML Component
A Participant (actually a Type) is equivalent to a Role in

process. Since Participant deals with computation, a
computational object with the same name should be
introduced or assumed in the Process model side.

B. Service Contract
Service Contract can be considered as a concept

representing interaction or behavior between two roles.
ODP’s Interaction is the closest concept, but it is not really a
part of process modeling. Service Contract uses Sequence
Diagram to represent the behavioral aspects.

C. Service Architecture/UML Collaboration
Service Architecture’s closest concept is a collection of

Interactions among all the involved roles.
D. Service Interface

The concepts like Interface, Operation, and Signature
belong to Computational Object in ODP. If we could
assume the existence of Computational Object with the
same name as Participant, they are the corresponding
elements.

E. Service Choreography
Service Choreography defines ordering of service

messages between service consumer and provider. This can
correspond to an ordered sequence of ObjectFlow involving
the corresponding two roles in the process model.

F. Message
Information viewpoint of RM-ODP is the viewpoint

where all the concerns on information within the system are
defined. However, in Enterprise and Computational
viewpoint, there is a need for information model and they
are created based on the one defined in Information

International Journal of Informatics Society, VOL.4, NO.2 (2012) 93-102 95

viewpoint. The Message data types are a collection of data
types and structure of data elements visible in Enterprise
viewpoint, and therefore those should be prepared as a part
of process model.

From above, we can observe that when transforming a
process to a service, the process needs to be decomposed
into an ordered set of two party interactions, and interaction
should be brought into a process model.

Figure 3 is a sample ODP Interaction Diagram showing
Buyer as an initiator of the interaction, Seller as a responder
of the interaction, and the references to various artifacts that
are actually electronic document. The behavior of both sides
is described using UML State Machine, which is different
from the case with Service Contract.

When considering the model transformation, this
Interaction Diagram could act as an intermediate from
process to service, meaning that we can transform a process
model to interaction model, and then transform it to service
model.

Figure 3: ODP Interaction Diagram

7 SERVICE TO PROCESS MODEL
TRANSFORMATION

This section considers the reverse of the previous section,
which is about transformation from service model to process
model. Service model here is a model based on SoaML.

A. Object
SoaML’s instance of Participant can be considered as

Enterprise Object in a limited sense, since it also consumes
and provides services like Computational Object. Message
is a good source for defining Information Object.

B. Role
Participant is almost the equivalent to role. At the same

time, Participant can be understood as Computational Object,
which takes all the interface information from the
Participant.

C. Process/Activity
Service Choreography specifies dynamic binary

relationship of the behavior, and can be used to construct a
portion of a Process. However, constructing whole process
is not possible, since there is no orchestration information is
available for construction of the whole process, including
where to start the process.

D. Step/Action
Step/Action means action execution, which is defined in

Service Contract and Service Choreography. However, it is

not possible to generate Steps/Actions which do not
correspond to interactions such as internal actions.

E. Artefact
Message is the only element to map to Artefact.

F. Interaction
Service Contract corresponds to Interaction where

Consumer side corresponds to Initiator side and Provider
side corresponds to Responder side.

8 MODEL TRANSFORMATION METHOD
USING TEXUAL DSLS

When we refer to “model transformation,” it usually
means transforming models created with UML tools or
some other specific tool such as BPMN tools (graphical
tools). Those models are actually saved as text file, for
instance as a form of XMI[15] or XML, and then
transformation logics are applied to it. However, UML itself
is a complex specification and that is reflected in XMI. A
simpler way to experiment some modeling issues without
involving too much complexity was needed, and that was
the reason we took DSL.

We will now explain a method of model transformation
using textual DSL. With textual DSL such as the one
developed with eclipse/Xtext[16], a grammar is first defined,
and the grammar based model editor is generated so that
user can create his/her own model based on the DSL.

Suppose you have two textual DSLs: ProcessDSL for
process modeling and ServiceDSL for service modeling. If
you define a grammar for ProcessDSL, you get the
ProcessDSL editor. The same is true for ServiceDSL. Once
a process model is defined, a template is applied to the
model to generate output text (e.g. source code or XML file).
Here, it is possible to design a template to generate text,
which has a structure that ServiceDSL editor imposes. This
is not always possible, since the source model may not
contain necessary information to transform to. But, if it did,
this model to text transformation works as a model to model
transformation. This is the basic idea we used for Process to
Service and Service to Process model transformations.

In order to achieve this, we have created above DSLs as
simple textual DSLs to capture core concepts of ODP
Process Diagram (or UML Activity Diagram) and SoaML
Diagram respectively. They are simple, because not all
concepts are used and some complex concepts were
simplified to some extent in the grammar.

The tool used is eclipse/Xtext and its integrated model to
text transformation engine Xpand/Xtend. But, with any
other textual DSL tooling, such as Spoofax[17] or MPS[18],
this can be done in the similar way.

Figure 4 shows a portion of the Process DSL grammar.
Using generated DSL editor, a process model in this

ProcessDSL is created (Figure 5), which is done by typing,
not by applying model to text transformation from the
process model (Figure 1). The last step is to define a
template to generate text, which is explained in the next
page. The Xtext grammar files and sample model are
published on the following web site[19].

We also created InteractionDSL based on ODP concept of
Interaction, and a sample model is shown in Fig. 6. With

96 A. Tanaka et al. / Experimental Transformations between Business Process and SOA models

this InteractionDSL, multiple artifacts are allowed to be
shown, but in our transformation rule, only one artifact per
interaction is generated. This is because ODP interaction
diagram shows aggregation of multiple interactions, but our
process to service transformation is targeted to each crossing
the lane interaction only.

Figure 4: Partial ProceeDSL grammar

Figure 5: Sample Process Model in ProcessDSL

Figure 6: Sample Interaction Model in InteractionDSL

Regarding tools for model transformation, widely used
ones are eclipse/ATL and QVT. They could also be used to
execute model transformations described in this paper.

The Xpand template used is shown in Fig. 7, which
should be considered as a sample. It does the following: a)
import metamodel, b) import helper functions, c) declare
this as a transformation against Process, d) specify output
file, e) define transformation processing for each lane, f)
take only steps passing artifact to other lanes, g) generate
Service Interfaces, h) generate Participants, and i) generate
Service Contracts with model information.

Figure 7: Sample model transformation definitions

International Journal of Informatics Society, VOL.4, NO.2 (2012) 93-102 97

As shown, if the source model contains enough
information with formally defined grammar or metamodel,
it is possible to create text file based on available
information and by navigating the model elements. We have
generated a small number of text files using this method,
and will examine those in the next section.

One question may be asked about how to make sure that
the DSL targeting only core concepts can be used in the
research like this. It is different, but if it contains major
elements with right relationships, it is possible to compare
the grammar or generated EMF ecore file with that of full
modeling language to see if there is any major
inconsistencies or issues in using it in the research.

9 RESULTS OF PROCESS TO SERVICE
TRANSFORMATION

Now let us examine what the transformation produced.
The first is a result around Service Architecture.

A. Participant/Service Contact/Service
Architecture

From the used template above, here is a summary of what
operations were given to the sample process model.

1) Service Architecture name is derived from Process’s
name.
2) Participant name is derived from lane’s name.
3) Service Contract is defined for the step that passes
Artefact across the lanes. Other types of actions will be
discarded. Service Contract name is derived from the
step name that initiates interaction.

If we modify the grammar to include marking to show the
logical boundary of the application, it may become possible
to have coarse grained Service Contract with multiple
Artefact, but that will introduce another requirement on the
dependencies between Artefact.

The generated textual model is shown in Fig. 8. It is
generated from sample process model in ProcessDSL
(Figure 5) by applying the process to service model
transformation (Figure 7). Note that the model data below
has been imported into ServiceDSL editor.

B. Service Interface

Service Interface in SoaML is functional elements, and is
more like interface and signatures in Computational Object.
The best way is to define Computational Object with
process definition, but that will lead to a different world.
Based on the generated Service Contract, it is safe to assume
that Participant on receiving side have capability to process
the Artefact passed from the other side. This implies that
there exists Service Interface on the Service Provider
Component. However there is no information about
signatures in process models in general, it would not be
possible to generate Message elements either. Therefore the
rule applied was Service Interface is derived from the node
(name) that receives Artifact.

C. Service Choreography

Service Choreography is a set of defined sequence of
service interactions between the two Participants, which is
specified using UML Sequence Diagram. This contrasts

with UML Activity Diagram we used to specify process.
Although not included in Figure 8, it is possible to collect
interactions between different lanes in the process diagram.

Although BPMN, Activity Diagram, and SoaML are all
graphical modeling language, we applied our method to
define simplified textual DSL, and were able to transform a
process model to a service model, although in a limited
manner.

Figure 8: Sample Generated Service Architecture

10 SERVICE TO PROCESS
TRANSFORMATION

In this section we will start with service model definition.
The first step is to define the grammar for ServiceDSL that
implements SoaML’s core concepts, which are Service
Architecture, Service Contract, Participant and Service
Interface. Again, here is a portion of the grammar definition
(more than ten elements are not shown in Fig. 9).

This DSL is simple enough to cover the structural aspects
of SoaML model, and we even tried to include behavioral
(sequence diagram) aspect in the grammar.

Next thing is to create a service model based on this DSL,
which is shown in Fig. 10, which is done also by typing

The previous Fig. 2 showed a graphical representation of
a sample Service Architecture at very high level. In the
textual ServiceDSL model of Fig. 10, we included major
elements under Service Architecture, because Service
Architecture works as a root of the model in this language.
Each usage of the typical language element is shown at least
once, but not all the elements are shown by using the folding
option to make the Figures smaller to fit in this paper. Also

98 A. Tanaka et al. / Experimental Transformations between Business Process and SOA models

note that message sequencing is specified in Service
Contract, e.g. with “buyer -> seller RFI optional,”
implementing message flows, or cross-lane object nodes,
described in Fig. 1.

Figure 9: Partial ServiceDSL grammar

The major difference between this service model
description and the previous process model description is in
the style of control flow description, i.e. sequence versus
activity, and the number of parties involved, i.e. only two
parties in service model vs. possibly more than three parties
in process model. In service model, service is the central
concept and therefore major players in service model are
consumer and provider. On the other hand, in process model,
the focus is on control flow, object flow, conditional or
parallel split and merge, covering all the players that could
be more than three players. It is clear that service model is
not able to express e.g. control flow within the same lane in
process model, since they are not exposed as service
interaction and of no interest in service model.

We can still apply model transformation to see what we
can get even though the limitation is clear. Figure 11 shows
a sample Xpand template to transform service model to
process model. Figure 12 shows a transformed sample
process based on the service model (Figure 10). It seems
step portions of the process were successfully generated. But
these are just concatenation of the sequences from Service
Contract’s sequence definitions.

If full control flow needs to be generated from the service
description, process oriented description should be a part of
the service model. In SoaML specification, these process
aspects are treated as requirements specification to services,
and therefore they are outside the scope of SoaML language
itself (no stereotype or reference is defined as mandatory

against Activity). The authors are planning to submit
comments to OMG (or ISO if it is proposed) to clarify and
enhance the standard or specification.

Figure 10: Sample Service Architecture

Figure 11: Sample model transformation definitions

International Journal of Informatics Society, VOL.4, NO.2 (2012) 93-102 99

Figure 12: Sample Transformed Process

11 EVALUATION

For this specific buy-sell-ship example, we counted lines
of text for each models. Manually written ProcessDSL-
based model contained 227 lines, and ServiceDSL-based
model transformed from it contained 88 lines. Manually
written ServiceDSL-based model contained 125 lines, and
ProcessDSL-based model transformed from it contained 40
lines. If both manually written models are semantically
equivalent or very close, each transformed model should be
reasonably compatible with the other manually written
model. The line numbers comparison rates are 70.4% for
Process to Service transformation, and 17.6% for Service to
Process transformation. Although line by line comparison is
better, this gives an implication that Process to Service
transformation works much better than the other way. For
instance, a portion of manually written ServiceDSL-based
model below (Figure 13) is compared by a portion of
generated model from ProcessDSL-based model (Figure 14).

Figure 13: Manually written Service Contract

Figure 14: Transformed/Generated Service Contract

This shows that if there is good semantic relationship, we
can get reasonable transformation result. The result will
depend on how much of such good semantic relations with
direction, e.g. Process to Service, exist between the two
architecture styles.

12 RELATION WITH DISTRIBUTED
COMPUTING

If we look at both process oriented and service oriented
models in the context of distributed computing, they can be
considered as candidate sources of execution on the
platform, which may be internal enterprise systems or
hybrid with cloud computing platform environment or full
public cloud platform.

There is a category of technology called process engines
that interpret and execute process definitions. Workflow
engines are also considered as ones in this category. Their
focus, however, is on controlling and monitoring the given
process flow, and not on the execution of distributed
services. Regarding SOA, Web Services is one of the typical
implementation technologies, and they can be considered as
base technology for distributed computing. With the use of
SoaML, most of the necessary information to map down to
SOA implementations is included in the model, and
therefore it is not surprising to find products to do code
generation based on SoaML model and actually run on the
SOA runtime platform.

Our interest here is how close to implementation we can
get based on process model via service model. We created a
transformation template (not included in this paper) to
generate skeleton interface codes of the service components.
The result is shown in Fig. 15. As expected, there is not
much detailed information included, since some of the
control information is discarded when converting it to
service model. To make this code work, it needs to be
completed with more detailed information with
implementation classes, WSDL files, and frameworks for
SOA such as eclipse SOA Platform etc.

100 A. Tanaka et al. / Experimental Transformations between Business Process and SOA models

Figure 15: Generated Skeleton Code

13 CONCLUSIONS

DSLs are usually used at area close to programming. We
demonstrated that DSLs, which captures only core concepts
of the target modeling language, can be applied to
architecture descriptions that are Process-oriented and
Service-oriented architectures and can be used to examine
the difference between the two styles of modeling presented
in this paper.

Figure 16: Model Transformation using M2T transformation

We created textual DSLs, including ProcessDSL and
ServiceDSL, and showed sample transformations from
process model to service model, and service model to
process model. In doing so, we found a major difference
between process modeling and service modeling. Something
internal in process modeling will be lost when it is
converted into service model, e.g. internal control flow.
Orchestration of all the participants, which is the essential
part of process model, is not possible in most cases when
transforming service model to process model, since services
are only meaningful to consumers and providers, i.e.
between two parties, and normally orchestration aspects are
left to higher level activities.

There is also a fundamental difference between the two,
which is about level of abstraction. In process modeling, the
level of abstraction is at end users or at business analysts
level, but service modeling further includes interface
specifications that are at architects’ or developers’ viewpoint.
This caused transformation loss from service to process, and
also was the reason of insufficient output from process
model.

The possibility of service interface generation from
process model was examined and only skeleton interface
codes were generated because of the semantic gap between
the two models with associated information loss in
transformation. This does not, however, preclude the
possibility of code generations from process model into
process engines’ environment and from service model into
SOA environment.

Based on above, authors believe that they are showing the
different aspects of the business system, and if mixed use is
required, positioning process model as higher than service
model will better work in enterprise architectures than
positioning them in the opposite order or placing them at the
same level.

Now, let us consider cost/performance of this project. The
use case is an enterprise project to integrate its BPM based
system with its SOA based system from multiple vendors or
from multiple departments or by the result of M&A. If we
apply the transformation template to this BPM based system,
which is just automated transformation, we can get a list of
candidate services required to implement the functionality of
the BPM-based system. If this list is compared with existing
SOA based system’s services list, it is very likely to find
similarities and missing pieces necessary for new integrated
system. The merit would become clearer with the system
size grows. Even though initial investment is required, this
type of research will bring actual benefits in this kind of use
cases.

Regarding the tooling, eclipse/Xtext provided necessary
DSL development environment, and integrated model to text
transformation facility Xpand/Xtend worked well to
generate text from the DSL based models.

14 FUTURE WORKS

There are some areas where we need further works.
We will need to investigate a mechanism to verify the

created DSLs, a mechanism to store trace/log information in
transformation, more resources like practical examples
around DSLs and model transformations, and more
specialized tools to achieve specific activities.

We will also need to experiment on minimizing
transformation loss such as internal steps in a process,
possibly by introducing control flow manager in each lane
so that each step could be transformed to internal service etc.
or by introducing service orchestration function to the
service model.

We are planning to use full RM-ODP model as source in
the next experiment to see how component definitions in
computational specification could contribute to process to
service model transformations.

International Journal of Informatics Society, VOL.4, NO.2 (2012) 93-102 101

ACKNOWLEDGEMENTS

The authors thank contributors to eclipse
modeling projects, especially to eclipse/Xtext open source
project, and further thanks OMG and contributors of many
modeling standards including UML, BPMN and SoaML.
The authors also thank many people from various countries
involved in ISO/IEC JTC1/SC21/WG7, SC7/WG19, and
ITU-T SG19’s continuing efforts to standardize and
maintain RM-ODP family of standards.

REFERENCES

[1] J. A. Zachman, ``A Framework for Information
Systems Architecture,’’ IBM Systems Journal, Vol.26,
No.3, p.276 (1987).

[2] FEA Consolidated Reference Model Document Version
2.3,
http://www.whitehouse.gov/sites/default/files/omb/asse
ts/fea_docs/FEA_CRM_v23_Final_Oct_2007_Revised
.pdf (2007).

[3] OMG, ``Business Process Model and Notation
(BPMN) Version 2.0,’’
http://www.omg.org/spec/BPMN/2.0/PDF/ (2011).

[4] OMG, ``Semantics Of Business Vocabulary And
Business Rules (SBVR), Version 1.0,’’
http://www.omg.org/spec/SBVR/1.0/PDF/ (2008).

[5] D. Luckham, ``The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems,’’Addison-Wesley (2002).

[6] OMG, ``Unified Modeling Language
(UML),’’ http://www.omg.org/spec/UML/ (2011).

[7] ISO/IEC 10746-2:2009, Information technology -
- Open distributed processing -- Reference model:
Foundations
ISO/IEC 10746-3:2009, Information technology -
- Open distributed processing -- Reference model:
Architecture
ISO/IEC 15414:2006, Information technology -- Open
distributed processing -- Reference model -- Enterprise
language
ISO/IEC 19793:2008, Information technology -- Open
Distributed Processing -- Use of UML for ODP system
specifications.

[8] M. Fowler, ``Domain-Specific Languages,’’ Addison-
Wesley (2011).

[9] A. Kleppe, ``Software Language Engineering, ’’
Addison- Wesley (2009).

[10] OASIS, ``Reference Model for Service
Oriented Architecture 1.0,’’ http://docs.oasis-
open.org/soa- rm/v1.0/soa-rm.pdf (2006).

[11] OMG, ``Service oriented architecture Modeling
Language (SoaML) Specification,’’
http://www.omg.org/spec/SoaML/1.0/ (2012).

[12] OMG, ``Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification,’’
http://www.omg.org/spec/QVT/1.1/PDF/ (2011).

[13] F. Jouault, F. Allilaire, J. Bezivin and I. Kurtev, ``ATL:
A model transformation tool,’’ Science of Computer
Programming, Vol.72, No.1-2, Special Issue on Second
issue of experimental software and toolkits (EST),
pp.31-39 (2008).

[14] Eclipse, ``ATL Transformations,’’
http://projects.eclipse.org/projects/modeling.mmt.atl.

[15] OMG, ``MOF 2 XMI Mapping Specification,’’
http://www.omg.org/spec/XMI/ (2011).

[16] Eclipse Foundation, Xtext - Language Development
Made Easy!, http://www.eclipse.org/Xtext/.

[17] The Spoofax Language Workbench,
http://strategoxt.org/Spoofax.

[18] JetBrains : Meta Programming System - Language
Oriented Programming environment and DSL creation
tool, http://www.jetbrains.com/mps/.

[19] Xtext Users Japan,
http://sites.google.com/site/xtextusersjapan/files.

(Received February 27, 2012)
(Revised February 28, 2013)

Akira Tanaka received M.E. from
University of Tokyo, Japan in 1978.
From 1978 to 2008, he was with
Hitachi Ltd. His current research area
includes model-based software
development. He is a member of
ACM, IEEE Computer Society and
IPSJ.

Osamu Takahashi received
master’s degree from Hokkaido
University in 1975. He is currently a
professor at the Department of
System Information Science at
Future University Hakodate, Japan.
His research interest includes ad-hoc
net-work, network security, and
mobile computing. He is a member

of IEEE, IEICE, and IPSJ.

102 A. Tanaka et al. / Experimental Transformations between Business Process and SOA models

http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/SBVR/1.0/PDF/
http://www.omg.org/spec/SBVR/1.0/PDF/
http://www.omg.org/spec/UML/
http://docs.oasis-open.org/soa-
http://docs.oasis-open.org/soa-
http://www.omg.org/spec/QVT/1.1/PDF/
http://www.eclipse.org/Xtext/
http://strategoxt.org/Spoofax
http://strategoxt.org/Spoofax
http://www.jetbrains.com/mps/

