
[Practical Paper] LASP — a Learning Assistant System for Formal Proofs —
and Its Application to Education

Kiyoyuki Miyazawa†, Kozo Okano†, and Shinji Kusumoto†

†Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita City, Osaka 565-0871, Japan

Abstract - The basis of formal techniques is mathemati-
cal logic. Especially, it is important to understand the con-
cept of formal proofs. It is, however, difficult for novices to
study formal proofs because of the rigorousness of the opera-
tions involved. To solve this problem, we propose and imple-
ment a prototype of a learning assistant tool for formal proofs
called LASP. The purpose of LASP is to prevent the difficul-
ties which occur when normal learners perform exercises by
hand. The advantages of the proposed method are the follow-
ing: 1. input support for long logical expressions; 2. the users
are not required to perform copy and paste operations when
they construct proofs; 3. hint features facilitate the construc-
tion of proofs; and 4. the proofs can be output as LATEX files.
Experimental results show that LASP avoids the drawbacks
of conventional exercises.

Keywords: Logics, Formal Proof, Computer Aided Edu-
cation

1 Introduction

The formal approach is a core technique of modern soft-
ware development. There are mainly two approaches referred
to as the formal approach: interactive theorem proof and the
model-based approach, which includes model checking[2].
Well-known interactive theorem proof systems include Coq[6],
Agda[7], and Isable/HOL, among other. These systems re-
quire the user to understand the logic of formal proofs. Model
checking also requires the user to apply logic in order to rep-
resent properties on the target system. Other model-based ap-
proaches also require logic to describe constraints on models
representing the target systems and software.

On the other hand, it is said that “Mathematical reasoning
is intrinsic to both traditional engineering and software en-
gineering, . . . Software engineers usually use discrete math-
ematics and logic in a declarative mode for specifying and
verifying system behaviours and for analysing system fea-
tures”[11]. This statement illustrates how it is important to
understand mathematical logic in software engineering. Sup-
porting the learning of mathematical logic can promote the
learning of basic techniques of the formal approach. We can
promote productivity in software development by teaching
the formal approach.

A learning assistant system which we developed in this re-
search supports learning formal proofs based on Hilbert’s ax-
iom system. As related works, Jon Barwise et al. have de-
veloped Turing’s World[4] and Tarski’s World[3], [5]. One
can learn graphically Turing machine using Turing’s World,
and we can learn graphically the semantics of mathematical

logic using Tarski’s World. Tarski’s World shows simple 3D
computer graphic worlds in which geometric blocks of vari-
ous kinds and sizes are distributed. Tarski’s World gives you
a first-order predicate sentence and a 3D figure and lets you
decide whether the sentence is true or false for the provided
figure. For example, a sentence “there exists a cube among the
objects” is given and a user has to decide whether the sentence
is true by looking at the figure. Three-dimensional views are
sometimes used in computer-aided education. For example,
paper[12] provides a 3D geometric construction tool specifi-
cally designed for mathematics, especially geometry, educa-
tion. The tool is based on a mobile augmented reality (AR)
system.

Another approach for computer-aided education is using
a collaborative web-based environment, such as Moodle or
WEB-CT. Several other approaches have been proposed, in-
cluding paper [10], which provides a flexible learning scheme
for selected pilot courses in engineering education. In such
schemes, traditional lectures and written exercises are com-
bined with separate Web-based learning resources.

In the case of logic-oriented education, MacLogic[9] sup-
ports the learning of Gentzen’s natural deduction. Logic-
Tutor[1] supports students as they are learning logic. It has a
feature for analysing and reasoning a student’s mistakes dur-
ing the solving of logic exercises. It has been used in logic
classes in the Department of Computer Science of the Uni-
versity of Sydney.

In this research, we target novices in logic and provide
tools for them. Therefore, we do not consider that simply
applying tools such as conventional theorem provers [6], [7]
to education is suitable, although others have used a similar
approach. For example, “Bringing Research Tools into the
Classroom”[14] helps move computational tools used for re-
search into the classroom. It successfully brings high- perfor-
mance computing into modelling courses, builds software for
both protein structure visualization and hydrological analysis
of watersheds, and so on. A project of Buchberger [8] aims at
supporting the entire process of mathematical theory explo-
ration within one coherent logic and software system. This
project uses formal logic and a computer-aided approach to
help a learner to understand the core of mathematics.

While other related research mainly focuses on understand-
ing semantics, here we focus on understanding formal proofs.
For understanding the semantics of logic, an approach like
Tarski’s World, which utilizes 3D graphics, is useful. We,
however, focus on formal proofs, in which 3D graphics may
be of little help. In addition, our tool deals with Hilbert’s
axiom system because the class on mathematical logic held

International Journal of Informatics Society, VOL.4, NO.2 (2012) 85-92 85

ISSN1883-4566 © 2012 - Informatics Society and the authors. All rights reserved.



Table 1: Axioms forFirst-order Logic
A1 P → (Q → P )
A2 (P → (Q → R)) → ((P → Q) → (P → R))
A3 (¬P → ¬Q) → ((¬P → Q) → P )
A4 ∀x T (x) → T (t),

where termt is free from variablex of T (x).
B1 P, P → Q ⊢ Q (MP, modusponens)
B2 P → Q ⊢ P → ∀x Q,

where termP is free from a free variablex

in the Department of Informaticsand Mathematical Science
of Osaka University deals only with this system. As far as
we know, no tools for learning Hilbert’s formal proof exist.
Therefore, we developed our tool and evaluated its effective-
ness.

The paper is organised as follows. Section 2 presents a
brief introduction of formal proofs. Sections 3 and 4 describe
our tool and an experimental evaluation, respectively. Sec-
tion 5 presents a discussion. Finally, Section 6 concludes our
paper.

2 Formal Proof

A formal proof is a process which proves theorems by ax-
ioms and inference rules. An axiom is a major premise to de-
rive a concrete logical expression instance without contradic-
tions, while an inference rule is used to derive a new logical
expression from proved ones. For example, modus ponens is
an inference rule which derivesQ fromP → Q andP (where
P andQ are arbitrary logical expressions).

An axiom system consists of axioms and inference rules,
and the logical expressions proved by an axiom system are
called theorems. Figure 1 shows an example of the formal
proof which proves a theorem of⊢ X → X.

Table 1 shows Hilbert’s axioms and inference rules for first-
order logic.

3 LASP, a Learning Assistant System for
Formal Proofs

In this section, we will present our tool “Learning Assistant
System for Proofs, (LASP).”

3.1 System Overview

We developed LASP to reduce problem practice time rela-
tive to writing proofs by hand. This tool is based on Hilbert’s
axiom system.

The drawbacks of practicing formal proof by hand are the
following.

1. We may make a mistake in the writing of a long ex-
pression corresponding to an axiom, especially the cor-
respondence between terms and variables.

2. We are often required to perform operations similar to
copy and paste when constructing a formal proof.

To resolve the above problems, we define the goal as fol-
lows.

Figure 1: Substitution

1. LASP shouldhave an interface to minimise the input of
logical expressions.

2. We should not be required to perform operations like
copy and paste.

LASP is implemented in Java with 8660 LOC. The system
is available on the WEB[13].

We will next describe the specific features and interfaces of
LASP.

3.2 Substitution Assistant

We implemented a substitution assistant feature in order to
reduce time wasted during the proof; this feature also allows
users to avoid careless written mistakes, such as inconsisten-
cies between variables and terms, sentence structures, and
variable name. Such mistakes also often occur when hand-
writing long and complex logical expressions. These mis-
takaes are unrelated to learning essential proofs. Instead, it is
important to learn the thinking process of problem resolution
in mathematical logic.

Let us consider the following example. Substitution of vari-
ablesP,Q, andR of axiom A2 in Table 1 with the terms
X → Y , Z, and((Y → Z) → X), respectively, yields the
logical expression (1), which is obviously long and complex.
This expression is also hard to read and write correctly.

((X → Y ) → (Z → ((Y → Z) → X)))

→ (((X → Y ) → Z) → ((X → Y )

→ ((Y → Z) → X))) (1)

Substitution Assistant automatically generates new logical
expressions when a user selects an arbitrary axiom and inputs
arbitrary logical expressions as the substitution terms for that
axiom.

Figure 1 shows a substitution flow on LASP.
Axioms are managed using a table as shown at the top of

Fig. 1. When a user clicks on the axiom in the table which

86 K.Miyazawa et al. / LASP —a Learning Assistant System for Formal Proofs—and Its Application to Education



he wants to use, the Substitute Panelopens. If he inputs log-
ical expressions for every propositional variable in Substitute
Panel and clicks the OK button, then the result expression is
added at the end of the proof list.

Such a feature has already been built into many interactive
theorem proof systems. However, these systems are not easy
to use in undergraduate classes.

3.3 Support for First-order Logic

LASP supports not only propositional logic but also first-
order logic.

We have to consider whether the variable is free or bound
when we want to perform substitution for a variable of an
expression in first-order logic. For example, variabley of a
logical expression (2) is bound by∃y. Therefore, this variable
cannot be substituted.

∀x∃yf(y, z) (2)

Furthermore, any term including variablex or y cannot be
also substituted into variablez of expression (2), because such
substitution resulted bound by the quantifier. If expression
g(x) was substituted intoz, the result would be the logical
expression (3).

∀x∃yf(y, g(x)) (3)

In the expression, variablex is bound by∀x and the seman-
tic of the expression (3) is different from the expression (2).
LASP generates an exception if an illegal substitution like the
above occurs by using a substitution inhibition list.

3.4 Inference Assistant

Inference Assistant is implemented to reduce the practice
time by reducing the time for operations such as copy and
paste that take considerable time when performing by hand.

When a user selects an inference rule that he wants to apply
and proven logical expressions that conform with inference
rule, a new logical expression that corresponds to the rule is
generated. The reason for the new logical expression is also
generated, which reduces the amount of time needed to hand-
write reasons.

Figure 2 shows the flow of the application of an inference
rule on LASP. Inference rules and proven theorems are dis-
played in a table. First, a user clicks to select the inference
rule which he wants to apply from the inference rule table.
Second, he clicks to select the proven theorems matching the
inference rule. Finally, he clicks the inference button. If he
selects the proven theorems correctly, then a new logical ex-
pression is added at the end of the proven theorem table.

Figure 3 shows the screen-shot of LASP.

3.5 Deduction Theorem Assistant

The deduction theorem is a useful theorem for proving the-
orems efficiently. Therefore, LASP also supports the deduc-
tion theorem, which is the following.

From the fact thatΓ, P ⊢ Q, we obtainΓ ⊢ P → Q.

Figure 2: Flow of constructing a proof withLASP

Figure 3: Screenshot of LASP

International Journal of Informatics Society, VOL.4, NO.2 (2012) 85-92 87



Table 2: Fill-in-the-blank hints
1 Hypothesis
2 “?” is substituted in axiom“?”
3 “A” and “?” are substitutedfor “P ” and “Q,” respectively, in axiom “1”
4 (¬A → A) Applying the inference rule “?”
5 “?” and “?” are substitutedfor “?” and “?” in axiom “?”
6 ((¬A → ¬A) → ¬¬A) Applying the inference rule “?”
7 Applying the inference rule “?”
8 (A → ¬¬A) Deducing “?” from proven theorem “?”

Table 3: Milestone hints
1
2
3
4 (¬A →> A) Applying the inference rule “1”to proven theorems “1” and “3”
5
6 ((¬A → ¬A) → ¬¬A) Applying the inference rule “1”to proven theorems “4” and “5”
7 ¬¬A Applying the inference rule “1”to proven theorems “2” and “6”
8

First, a user selects aproven theorem to which he wants to
apply the deduction theorem. Second, he clicks the deduction
button. Then, the deduction panel opens. He clicks a radio
button to select a theorem to which to apply the deduction
theorem and then clicks the OK button. Finally, the result
of applying the deduction theorem is added at the end of the
proven theorem table.

3.6 Hint Features

The hint features provide three levels of hints for users who
are unfamiliar with formal proofs. These features were imple-
mented after obtaining feedback from Experiment 1, which is
described in Section 4. The specific feedback is that it is diffi-
cult to solve exercises which have many steps by oneself. The
type of hints prepared by LASP are as follows.

1. fill-in-the-blank hint

2. milestone hint

3. next step hint

Table 2 shows examples of fill-in-the-blank hints for a proof
of A → ¬¬A under the assumption thatP → P has already
been proved. This hint is generated randomly when LASP
reads the data of an exercise.

Table 3 shows examples of milestone hints for the same
proof. The hint feature shows expressions that can be proved
by applying the inference rule.

We assume that a theoremP → P is given as axiom A4.
Table 4 shows a typical solution.

3.7 Undo/Redo Features

LASP supports undo/redo features. Learners can revise
their proofs using these features.

It would be better if LASP supported a feature in which
a user can edit his/her proof after he/she has completed it.
However, such a feature might destroy the reasoning chain of
the proof. Thus, the current version of LASP only supports
Undo/Redo features. Undo/Redo works for as many steps as
the length of the proof users have made.

3.8 Input/Output Features

Logical expressions are often long and deeply nested. There-
fore, the string representation of a logical expression is some-
times difficult to understand. This feature visualises the parse
tree of a logical expression (see the example in Fig. 4). Click-
ing a node, the subtree is expanded or collapsed (Fig. 5).

Table 4: Solution
1 A Hypothesis
2 ¬A → ¬A P is substituted into axiom A4
3 A → (¬A → A) “A” and ¬A are substituted for“P ” and “Q,” respectively, in axiom “1”
4 (¬A → A) Applying the inference rule “1”to proven theorems “1” and “3”
5 ((¬A → A) → (¬A → ¬A) → ¬¬A) “¬A” andA are substituted for “P ” and “Q,” respectively, in axiom “3”
6 ((¬A → ¬A) → ¬¬A) Applying the inference rule “1”to proven theorems “4” and “5”
7 ¬¬A Applying the inference rule “1”to proven theorems “2” and “6”
8 A → ¬¬A Applying the deduction theorem

88 K.Miyazawa et al. / LASP —a Learning Assistant System for Formal Proofs—and Its Application to Education



Figure 4: Parse tree representation

Figure 5: Parse tree representation (collapsed)

LASP also supportsthe LATEX format for the output of con-
structed proofs. LATEX supportof LASP also helps users, es-
pecially for producing reports or homework.

The exercises of LASP are input as XML files (Fig 6).
Therefore, a teacher can easily prepare new sets of exercises
with hints.

4 Evaluation

This section describes an evaluation of LASP. We performed
two experiments. Experiment 1 was conducted in a mathe-
matical logic class. The subjects were 50 undergraduate stu-
dents. Experiment 2 was conducted after reflecting on the
feedback received from Experiment 1. In this experiment, the
number of subjects was 16. The subjects in Experiment 2
were a doctoral student, ten master course students, and four
undergraduate students.

4.1 Goals of the Evaluation

The objective in these experiments was as follows: to mea-
sure the degree of effectiveness for users, and to collect feed-

Figure 6: The output XML file

back to makeLASP more useful.

4.2 Items of the Evaluation

In Experiment 1, we mainly investigated how effectively
a user can solve an exercise and the usability of LASP. The
degree of efficiency was measured as the time it took subjects
to finish solving the given problems.

As the evaluation of usability, we prepared questionnaires
to research how subjects can become familiar with LASP and
what kind of interface is needed to enhance usability. The
items of the questionnaires are summarised as follows.

Q1 The degree of user-friendliness of Substitute Assist.

Q2 The degree of user-friendliness of Inference Assist.

Q3 The degree of user-friendliness of LASP as a whole.

Q4 The degree of efficiency improvement using LASP.

Q5 The degree of reduction of trouble in proving from using
LASP.

Q6 The degree of effects of learning formal proof.

The items are on a scale of one to five, where a five means a
high degree. A free comment space to collect opinions about
LASP or the experiment is also included.

4.3 Procedure of Experiments

The procedure of Experiment 1 is as follows.

1. We divide all subjects into six groups.

2. Subjects solve two practice problem by hand.

3. Two weeks later, subjects solve two practice problems
by using LASP.

(a) We distribute tool manuals to all subjects.

(b) We let subjects use LASP to solve sample exer-
cises for 20 minutes.

(c) Subjects solve the exercises.

4. Subjects answer the questionnaire.

There are four exercises in all. The order of the exercises is
randomly chosen for each group. The time limit that a subject
has to solve an exercise is 15 minutes.

The procedure of Experiment 2 is as follows.

1. We distribute tool manuals and textbooks about mathe-
matical logic to all subjects.

2. We give all subjects one hour to solve four sample ex-
ercises and familiarise them with LASP.

3. Subjects alternate between solving exercises by hand
and using LASP.

4. Subjects answer the questionnaires.

International Journal of Informatics Society, VOL.4, NO.2 (2012) 85-92 89



Table 5: Results ofthe questionnaires in Experiments 1 and 2
item Exp.1 Exp.2
Q1 3.70 4.69
Q2 3.28 4.56
Q3 2.84 4.13
Q4 2.88 3.63
Q5 3.28 3.75
Q6 2.84 3.63

Table 6: Problems inExperiment 1
problem

Q1 A → ¬¬A
Q2 A → B ⊢ ¬B → ¬A
Q4 ∀x(P (x) → Q(x)) → (∀xP (x) → ∀xQ(x))

The time for subjects tofamiliarise themselves with LASP
is one hour in Experiment 2 because twenty minutes was not
enough in Experiment 1. There are four exercises in all, the
same as in Experiment 1. The order of exercises differs by
group. The way of measuring the solving time is the same as
in Experiment 1.

4.4 Results of the Experiments

4.4.1 Results of the Questionnaires

Table 5 shows the average scores of the questionnaire items
for Experiments 1 and 2.

The following feedback was obtained from the free com-
ment space of Experiment 1.

• It would be better if the nested logical expressions were shown
clearly by using a colour-coded fonts.

• It is troublesome that users have to use a mouse.

• Users want to adjust the window size freely.

• Panel alignment should be improved.

• Shortcut keys should be provided.

• A hint feature should be provided.

• It should show the answer.

• Users seem to be able to become familiarised with it, given
enough time.

The following feedback was obtained from the free com-
ment space of Experiment 2.

• LASP should notify the user clearly when the proof is cor-
rectly constructed.

• It is troublesome for users to write expressions including quan-
tifiers because users have to input “forall” to display∀.

• Users are not allowed to delete logical expressions except the
latest one.

• Users are not allowed to add logical expressions except at the
end of their list.

• It would be better if there was a memo panel for planning
proof tactics.

• It would be better if there were a feature for users to make
their own exercises.

Table 7: Number of subjects who correctly solved an exercise
in Experiment 1 (/total number of subjects)

handwriting LASP
Q1 5/23 7/23
Q2 6/24 7/23
Q4 0/27 1/22

Table 8: Average solving time in Experiment 1
handwriting LASP

Q1 9m13s 10m04s
Q2 6m56s 8m15s
Q4 No one solves 8m18s

• Shortcut keys shouldbe implemented.

• Panel alignment should be improved.

• It is hard to see the nested expressions.

• Hints should be improved.

From the comments, we conclude that the following are the
advantages of LASP relative to doing proofs by hand.

• Users can reduce their amount of effort.

• Users can reduce the number of careless mistakes they make.

• It is easier to solve exercises because users can try many tac-
tics within a short time.

• Amount of time which users can use to learn by making mis-
takes is increased because less time and effort is required to
make substitutions and do inference.

4.4.2 Results for Solving Time

Table 6 shows the problems used in Experiment 1. Every
problem assumes that theoremP → P has already been
proved.

Tables 7 and 8 show the results of Experiment 1. We omit
the results of Exercise 3 because it involves a mistake. Table
7 shows the number of subjects who solve exercises correctly
(Sc) and all subjects (Sall). Table 8 shows the average solving
time of subjects who correctly solved the exercise.

Table 9 shows the problems used in Experiment 2. Every
problem assumes that the theoremP → P has already been
proved.

Tables 10 and 11 show the results of Experiment 2. Table
10 showsSc/Sall and Table 11 shows the average solving
time for subjects who correctly solved the exercise.

5 Discussion

First, we consider the usability which is evaluated in Ex-
periment 1. We can see that users are unsatisfied with LASP’s
usability from the results ofQ1, Q2, andQ3 in Experiment 1,
shown in Table 5. This is also shown by the results forQ6
in Experiment 2. Therefore, LASP’s user interface should be
improved. In order to improve the interface, we have to con-
sider the free comments. We think that implementing shortcut

90 K.Miyazawa et al. / LASP —a Learning Assistant System for Formal Proofs—and Its Application to Education



Table 9: Problems in Experiment 2
problem

Q1 ¬A → B ⊢ ¬B → A
Q2 ¬X → (X → ¬Y )
Q3 (¬Y → ¬X) → ((¬Y → X) → Y )
Q4 ∀x(A → B(x)) → (A → ∀xB(x))

Table 10: Number of subjects who correctly solved an exer-
cise in Experiment 2 (/total number of subjects)

handwriting LASP
Q1 5/8 2/8
Q2 4/8 4/8
Q3 4/8 2/8
Q4 2/8 2/8

keys and a feature which showsthe users that they have fin-
ished correctly proving a proof are easy tasks.

Second, we consider the efficiency of proving, which was
mainly evaluated by Experiment 2. From the results ofQ1, Q2,
andQ3 shown in Table 5, we can see that the substitution
assistant feature and the inference assistant feature have con-
tributed sufficiently to the efficiency of proving. Users also
feel that. In addition, twelve out of sixteen subjects in Exper-
iment 2 comment that LASP can reduce the required effort
relative to doing problems by hand. Therefore, the goal of
LASP’s development seems to have been sufficiently achieved.
The reason that the average score forQ3 is less than those of
Q1 andQ2 seems to come from dissatisfaction with LASP’s
usability. Therefore, we should implement shortcut keys and
other features.

From the results of Tables 8 and 11, we can see that whereas
proving by LASP is slower than by hand in Experiment 1, the
opposite result was obtained in Experiment 2. The reason for
this seems to be that, while the time during which subjects
could familiarise themselves with LASP was twenty minutes
in Experiment 1, it was an hour in Experiment 2. Therefore,
we conclude that if users are familiar with LASP, then they
can solve practice problems more effectively.

The sample size of Experiment 2 was insufficient; we should
perform experiments on a larger scale to prove the correctness
of this hypothesis.

From the results shown in Tables 7 and 10, we can see
that the number of subjects who can correctly solve exer-
cises using LASP is the same as the number who can cor-
rectly solve exercises by hand. Thus the results suggest that
the increased efficiency may not influence the correctness of
answering questions. We cannot simply say that LASP helps

Table 11: Average solving time Experiment 2
handwriting LASP

Q1 10m35s 5m57s
Q2 7m19s 6m04s
Q3 8m48s 5m54s
Q4 12m56s 5m19s

students to easily solve exercises onlogic, because fewer sub-
jects could solve exercises Q1 and Q3 using LASP than by
hand. However, in the handwritten answers, there were a
mistake in applying inference rules and also two substitution
mistakes. Using LASP, users can avoid careless mistakes be-
cause it shows an error message when users wrongly apply
inference rules.

In general, a learner needs trial and error to obtain a cor-
rect answer. LASP can store every step (trial) of a proof that
the learner produces. From such a set of steps of a proof,
the learner can select the essential sequence of the proof. For
a simple proof task, the learner easily finds the essential se-
quence of the proof; however, it is difficult for users in the
case of a complex proof task. Therefore, a feature giving
assistance in the rewriting of the proof is being considered.
Such a feature can be implemented by an automatic choice of
directly relating steps of a focusing step. We want to add such
a feature to LASP.

In conclusion, LASP is effective for learning formal proofs.

6 Conclusion

This paper describes our learning assistant system for for-
mal proof, LASP. LASP has features such as inputting exer-
cise data, a substitution assistant, an inference rule assistant,
and so on. From two experiments, we obtained results imply-
ing that LASP is effective, although the user interface should
be improved. Future work includes the improvement of the
user interface and actual application in a class.

We strongly believe that the hint feature is useful for a
learner to reach the correct answer. However, the design of
hints requires as much care as the design of exercises because
too much information can let a learner obtain the correct an-
swer too easily; on the other hand, a little information sel-
dom helps a learner obtain the correct answer. Therefore, the
teacher has to construct hints manually. Of course, the system
can help the teacher to design hints. To develop such an as-
sistance feature for designing hints and to evaluate the power
of the hint feature is part of our future work.

Acknowledgments

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure, sup-
ported by the Ministry of Education, Culture, Sports, Science
and Technology, Japan, as well as a Grant-in-Aid for Scien-
tific Research C (21500036). We also thank all subjects who
participated in the experiments.

REFERENCES

[1] D. Abraham, L. Crawford and et al, “A tool to practice
formal proofs,” Proceedings of World Conference on
Educational Multimedia, Hypermedia and Telecommu-
nications, pp.7–8 (2001).

[2] C. Baier and J. Katoen, “Principles of model checking,”
MIT Press (2008).

[3] D. Barker-Plummer, J. Barwise, and J. Etchemendy
in collaboration with A. Liu, “Tarski’s World: Revised

International Journal of Informatics Society, VOL.4, NO.2 (2012) 85-92 91



and Expanded,” Center forthe Study of Language and
Inf (2007).

[4] J. Barwise and J. Etchemendy, “Turing’s World 3.0: An
Introduction to Computability Theory,” University of
Chicago Press (1993).

[5] J. Barwise and J. Etchemendy, “Computers, visualiza-
tion, and the nature of reasoning,” The digital phoenix:
How computers are changing philosophy, pp.93–116
(1998).

[6] Y. Bertot and P. Castéran, “Interactive theorem proving
and program development: Coq’Art: the calculus of in-
ductive constructions,” Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag (2004).

[7] A. Bove, P. Dybjer and U. Norell, “A brief overview of
agda — a functional language with dependent typess,”
In Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics (TPHOLs
’09), pp.73–78, (2009).

[8] B. Buchberger, A. Cr̆aciun and et al, “Theorema:
Towards computer-aided mathematical theory explo-
ration,” Journal of Applied Logic, Vol.4, No.4, pp.470–
504 (2006).

[9] R. Dyckho, “MacLogic: A Proof Assistant for First Or-
der Logic on the Macintosh,” Computational Science
Division, University of St. Andrews (1989).

[10] D. Gillet, A. Vu Nguyen Ngoc and Y. Rekik, “Col-
laborative web-based experimentation in flexible engi-
neering education,” IEEE Transactions on Education,
Vol.48, No.4, pp.696–704 (2005).

[11] P. Henderson, “Mathematical reasoning in software en-
gineering education,” Communications of the ACM,
Vol.46, No.9, pp.45–50 (2003).

[12] H. Kaufmann and D. Schmalstieg, “Mathematics and
geometry education with collaborative augmented real-
ity,” Journal of Computer and Graphics, Vol.27, No.3,
pp.339–345 (2007).

[13] K. Miyazawa, “LASP” (2010).
http://sdl.ist.osaka-u.ac.jp/˜k-miyazw/ .

[14] C. Shubert, I. Ceraj and J. Riley, “Bringing re-
search tools into the classroom,” Journal of Comput-
ers in Mathematics and Science Teaching, Vol.28, No.4,
pp.405–421 (2009).

(Received February 27, 2012)
(Revised March 1, 2013)

Kiy oyuki Miyazama receivedthe BE and MI de-
grees in computer science from Osaka University
in 2009 and 2011, respectively. His research inter-
ests include model driven architecture and educa-
tion of formal approach.

Kozo Okano received the BE, ME, and PhD de-
grees in information and computer sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. Since 2002 he has been an associate pro-
fessor in the Graduate School of Information Sci-
ence and Technology, Osaka University. In 2002,
he was a visiting researcher of the Department of
Computer Science, University of Kent at Canter-
bury. In 2003, he was a visiting lecturer at the
School of Computer Science, University of Birm-
ingham. His current research interests include for-

mal methods for software and information system design. He is a member of
IEEE, IEICE of Japan, and IPS of Japan.

Shinji Kusumoto received the BE, ME, and DE
degrees in information and computer sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a professor in the Graduate
School of Information Science and Technology at
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

92 K.Miyazawa et al. / LASP —a Learning Assistant System for Formal Proofs—and Its Application to Education




