
Proposal and Implementation of Pseudo Push 
Using Network Subsystem and Task Execution for PC 

Kazuaki Nimura†, Hidenobu Ito†, Yousuke Nakamura†, Akira Shiba†,  and Nobutsugu Fujino† 
 

†Fujitsu Laboratories Ltd. 
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, Japan 

{kazuaki.nimura, itou.hidenobu, nkmr, shiba.akira, fujino}@ jp.fujitsu.com 

 
Abstract -For the progress of Cloud computing, receiving a 
service from the Cloud 24/7 will improve the experience of 
PCs (personal computers) like that of smartphones today. At 
the same time, an issue of electric power comes to attention 
widely and increasingly. By putting a PC in lower power 
mode more actively, it can increase the sleep mode timing 
and can improve the electrical issue. However, this should 
not bring any degradation of the usability; otherwise, it can-
not be accustomed user to the policy. In this paper, we pro-
pose a system that can send a task from the Cloud and exe-
cute the task at a PC whenever it is necessary, even though 
the PC is in sleep mode. Therefore, it is easy to live with the 
sleep state of PC because it will open up the task automati-
cally, if needed. Hence, we prototypes the system that use a 
web application as a task and a pseudo push as a notification. 
Then, we evaluate it in a real field. As a result, the proposed 
system is found to be capable of executing the task in a 
timely manner. In addition, we confirm that the pseudo push 
can maintain the communication using little additional pow-
er consumption. 
 
Keywords: PC, Push, HTML5, Application cache, Power 
consumption.  

1 INTRODUCTION 

Like a smartphone, it is desirable that PC remains con-
nected to the network and receive services at all times. To 
receive network services, the PC needs to be powered on 
even when a user  does not use it, such as during a meeting 
or at nighttime [1]. To reduce the power consumption more 
actively, a tool is provided by PC companies, which can set 
the power policy easily and put the PC in sleep mode for a 
short period when there is no activity. However, actively 
putting the PC in sleep mode may have an impact on busi-
ness performance because it cannot access network among 
them. In addition to put the PC in sleep mode more actively, 
any degradation of user experience is not desired. 

In this paper, we propose an architecture that can receive 
and execute a task whenever needed. The architecture con-
sists of four functions: task provision, task notification, task 
preparation, and task execution. Task provision and task 
notification are functions included in the Cloud side. Task 
notification is realized with pseudo push by introducing a 
subsystem that works even while the PC is in sleep mode. It 
can help in informing a user regarding the incoming task 
from the Cloud. 

We then prototype the system as the basis of the usage that 
smartphone sends a task which consists of a photo viewer 

programmed as a Web application and photo data. Here, we 
focus on the Web application because the Cloud technology 
has been widely used recently and many applications are 
provided as Web applications, such as HTML5 (HyperText 
Markup Language version 5) [2]. By using HTML5 as an 
application, it can provide a highly functional web applica-
tion that is comparable with the native application and can 
provide the functionality of a locally executable task. As the 
execution environment, we use the Google Chrome browser 
[3] and Chrome OS [4] because of its improved compatibil-
ity with HTML5.  

Moreover, we evaluate it in real field environment. The re-
sult shows that the PC subsystem can deal with pseudo push, 
even when the PC host is in sleep mode, by using an incom-
ing message. In addition, it can provide low-power down-
loading and execute the application without user access. 
Although we introduced an additional dedicated hardware to 
receive services, it proves that it is effective in power con-
sumption. 

The remainder of this paper is organized as follows. In sec-
tion 2, we summarize related works. In section 3, we present 
our architecture. In section 4, we show the details on the 
prototype implementation. In section 5, we show the results 
from the system evaluation, and finally in section 6, we state 
our conclusions.  

2 RELATED WORKS 

In this section, we summarize the related works from the 
aspect of wake function as described in Table 1. 

To wake through a LAN (Local Area Network), a magic 
packet needs to be issued as an awakener, like Local server. 
The controllable area is basically the local area. 
 An architecture that can wake PC and continue network 

services for PC is described in [5]. This work copies the 
host system’s properties to the subsystem in Sleep mode. 

To wake through a WLAN (Wireless LAN), the PC needs 
to ask a proxy or an AP (Access Point) to issue a magic 
packet. The controllable area is basically limited in the local 
area. 
 Apple Inc. has implemented proxying as a wake-on-

demand feature on their wireless network-attached stor-
age devices and computers [6]. 

To wake through a WWAN (Wireless Wide Area Net-
work), an SMS (Short Message Service) gateway or a push 
gateway is used. It is needed to deal AT-command to re-
ceive the message. 
 About notification service, Intel Anti-Theft uses SMS as 

the notification message [7]. 

International Journal of Informatics Society, VOL.4, NO.1 (2012) 31-40 31

ISSN1883-4566 © 2012 - Informatics Society and the authors. All rights reserved.



 Android Cloud to Device Messaging Framework [8] 
for Android phones and tablets use persistent connec-
tion by TCP (Transmission Control Protocol) and 
wake through the push gateway. 
 How to establish a WWAN connection from a host 

system even when the subsystem has a network con-
nection is described in [9]. 

 
Table 1: Types of network and wake for PC 

 
Network 
type 

Controllable 
area 

Awakener 

LAN Local Local server 

WLAN Local Independent proxy, 
Access Point 

WWAN Wide area SMS gateway 

 
As far as we know, no feasibility study has been made on 

PC wake using the push gateway. The concept is briefly 
explained in this paper; however, the main focus of our re-
search is dealing with the tasks.  

3 PROPOSED ARCHITECTURE 

In this section, first we will explain the issue, and then 
show the requirement to solve the issue, in addition propose 
architecture to meet the requirements.  

3.1 Problem 

The problem we are focusing on in this study is there is no 
mechanism that can send a task whenever needed while 
keeping PC in a low-power state as long as possible. The 
term of “task” in this paper means small job such as registra-
tion to an event through a network. 

3.2 Requirements 

The requirements to solve the problem statement are as 
follows. 

(i) To have a function that can accept and send a task 
from the Cloud whenever necessary. 
This corresponds to the phrase of “send a task when-
ever needed” in the problem statement. 

(ii) To have a function that can notify a task to PC re-
gardless of the power state of the PC. 
This corresponds to the phrase of “while keeping PC 
in a low-power state as long as possible” in the prob-
lem statement because if there is notifying capability, 
PC can be in sleep mode. 

(iii) To have a function that can prepare the task without 
waking up the PC. 
Usually a powered on PC consumes much power and 
if the task can be prepared without waking up the PC, 
it will contribute to reducing power consumption. 
This requirement corresponds to the same statement 
described in (ii). 

(iv) To have a function to execute a task without user in-
teraction and show the task to user.  

This corresponds to the same statement described in 
(i) because if a task does not execute in PC, the cloud 
cannot receive the acknowledgement of “send a task”. 

By complying with these, a task can be transferred to PC 
anytime and the problem can be solved.  

3.3 Architecture 

To meet each requirement, we propose an architecture that 
consists of following functions, which are also shown in Fig. 
1. 

(I) Task provision: To fulfill requirement (i), a function 
that can provision a task, which will be transmitted to 
the PC, is introduced. As described later, a requester 
registers a task to this function. 

(II) Task notification: To fulfill requirement (ii), a func-
tion that can notify task existence by messaging even 
if the PC is in sleep mode is introduced. For this, a 
network connection needs to be available anytime. 
The adequate communication technology changes 
depending on the usage of PC. If a PC is required on-
ly local network connection, for example, because of 
the large size, a communication technology that co-
vers the local area can be used. On the other hand, if 
we expect mobility to PC, wide coverage of the 
communication needs to be hired. 

(III) Task preparation: To fulfill requirement (iii), a func-
tion that can do background preparation even if the 
PC is in sleep mode to contribute to reduction in 
power consumption is introduced. There are two 
types of background service. One is a task that is 
needed to wake PC, and consumed the task by PC. 
Another is a task that is not needed to wake PC, and 
it can transact all in the background. 

(IV) Task execution: To fulfill requirement (iv), a func-
tion that can provide and execute a task that is re-
ceived even if the PC is in sleep mode is introduced. 
To translate the incoming task to an executable task 
takes an important role. Once PC turns on, a task is 
executed automatically or showed the existence to 
display. 

By using those, PC can receive a task whenever from the 
Cloud. Therefore, even persons that are inexperienced in 
PC can receive a service easily. Then, it can contribute to 
improve the user experience of PC. 

 

Figure 1: Proposed architecture. 
 
 
 

32 K. Nimura et al. / Proposal and Implementation of Pseudo Push Using Network Subsystem and Task Execution for PC



4 PROTOTYPE IMPLEMENTATION 

In this section, we will explain the prototype that realizes 
the proposed architecture and the task.  

4.1 Prototype 

Figure 2 shows the system structure of the prototype. The 
proposed system consists of the following hardware compo-
nents: a requestor, task server, push gateway, host PC, and 
subsystem. 
Requester: 

There are two requesters. One is a requester that registers a 
task to the task server. Another is a requester that requests a 
push to the push gateway to send the task to the PC with the 
subsystem. It might be the requester is a corporate IT, for 
example. This component corresponds to the function (I) in 
the architecture. 

The task server carries out (I) task provision. It receives a 
task from the requestor, adds it to the repository, and expos-
es the repository included tasks to the Cloud. 

Task server: 

The push gateway carries out (II) task notification. It is de-
signed that it can provide the service not only PC but also 
other devices such as smartphone and smart tablet. It con-
sists of the following three elements that asynchronously 
work with each other. 

Push gateway: 

 Push reception:

 

 A push message request is received from 
a pre-defined device such as smartphone, PC, or server. 
Push sender:

 

 It is responsible for sending a push message 
to the PC. It manages a persistent connection with the 
PC to deal pseudo push. If there is no connection be-
tween the push gateway and PC, for some reason, then it 
will resend the push message later. 
DB:

DB is checked whether the requester is preregistered and 
the PC identification is preregistered. If there are, it will 
serve. 

 It has information of PC identifications and re-
quester identifications. When it receives a push request 
with a PC identification and requestor identification, the 

The host PC cares the (IV) task execution, and it has the 
following elements: 

Host PC: 

 Browser synchronizer: It checks whether the web appli-
cation or data exist in the SD memory and if there, cor-
rect through the memory. The timing of check is at the 
return from sleep or polling from the host system while it 
is in the power on state. A packaged application or data 
are reconstructed by this function. In addition, it injects 
the application or data to the browser cache. By doing 
this, the Web application or data can be used after the 
browser is initiated or reloaded. 

The PC subsystem carries out the counterpart of the (II) 
task notification and the (III) task preparation and it consists 
of the following elements: 

Subsystem: 

 Push handler:

 

 It establishes a network connection with 
the push gateway. In addition, it receives a task notifica-
tion. Besides,  on, it analyzes an incoming push message. 
If it downloads or PC control requests, then the follow-
ing functions are called. 
Downloader: 

 

If a push message has a download request, 
then it will download the Web application or data from 
the task server through the network to SD memory. 
PC control:

As mentioned above, these components can suffice the 
four pillars of the architecture. Therefore, by realizing the 
prototype, it can put the architecture into shape. 

 If a push message has a PC control request, 
then it will issue a wake command to the PC with a con-
dition. A condition might be nothing or wait until some-
thing happens. The example of a condition is whether the 
user is in front of the PC or not. If not, the request of 
wake will be pending, and if the user comes to the PC, 
then it will issue a wake to PC. 

 

Figure 2: Prototype system. 

International Journal of Informatics Society, VOL.4, NO.1 (2012) 31-40 33



4.2 Task and functions to deal task 

To express a task, we use a HTML5 application and/or 
data. We will not exclude the local application though in 
accordance with the momentum of the Cloud computing, we 
focus on an HTML5 web application here. A HTML5-based 
Web application can be comparable with a native applica-
tion because of its higher functionality than ever before. One 
of the curious features of HTML5 is the application cache. 
The application cache provides a capability to run the Web 
application in the local environment, i.e., even if the net-
work is not available, you can still use the Web application. 
This is good for a person or corporate that needs to work in 
a restricted area, where the network connection is limited, 
for some reason, such as in a hospital. In this case, just be-
fore you get into that area, if you could receive the latest 
data from the Cloud service, you can use the application or 
data like a local application later. 

Figure 3 shows an example of an HTML5 application. To 
use a locally accessible web application by HTML5, a list of 
resources needs to be specified below the line of “CACHE:” 
in a manifest file. By specifying it, you can use the applica-
tion in a local situation. 

When an application runs, basically, it first confirms the 
network connection at the runtime, and if there is a network 
connection, then it can act as conventional web application 
and access to the network as usual. However, if there is no 
network connection, it shall access to local application cache. 
Therefore, you can use the application anytime. 

Figure 3: Web application with application cache 
 
The detail of the four functions expressed in the architec-

ture will be explained below. 

Task provision provides a repository, which can store ap-
plication and data for download. 

Task provision: 

Regarding the task notification for access to computing 
device anytime anywhere, there are two types of notification 
methods: polling and pushing.  

Task notification: 

 Polling:

tion to the server is established, it consumes 5 to 8 mA. 
In addition, when the data are read, it consumes 115 mA, 
and when the data are written, it consumes 180 to200 
mA. Then, a short polling consumes 0.5 mAh. If the in-
formation device polls every five minutes, it consumes 
144 mAh. A typical battery for a smartphone gives 1500 
mAh; therefore, about 10 % of the battery power will be 
consumed only by polling. Polling less frequently im-
proves the efficiency, leading to less energy consump-
tion. However, it loses the freshness. 

 Polling is a method by which the client device 
accesses the server periodically. The disadvantage of 
polling is power consumption. An example of power 
consumption by a polling method has been shown in 
[10]. According to the explanation, when a TCP connec-

 Push:

- True push: SMS or the type of messaging in Blackber-
ry is categorized in this type [11]. SMS is a popular 
method for not only communicating between users but 
also initiating device management such as OMA DM 
(Open Mobile Alliance Device Management) [12]. 
OMA DM has a DM Server and a DM Client for the 
services. The DM Server can use a notification, and it 
is allowed to use an SMS-like message as a trigger to 
cause the DM Client to initiate a connection back to 
the DM Server. The problem of using SMS is that it 
can only accommodate a short size of information. 
For example, if you want to put a certificate in the 
SMS, it cannot accommodate that much information. 
E-mail notification is another method even though it 
has more than enough capability to control those 
computing devices. 

 Push is a way by which the server accesses the cli-
ent when it wants to deliver some data. There are two 
types of push: true push and pseudo push. 

- Pseudo push: Pseudo push notification using persis-
tent connection has been used to control smartphones 
or tablets. Basically, there is no limitation on the mes-
sage size. Therefore, it can resolve the shortcomings 
of SMS.  

We decided to use Pseudo push utilizing a TCP connection 
to notify a task. However, it has not been established for 
PCs yet. Then, we accommodated necessary capability 
needed for the client side in the subsystem, which works 
independently with the PC. 

Task preparation is a background function of introducing 
the subsystem, which means that it works independently 
with the PC. 

Task preparation: 

Figure 4 shows the flow diagram for task preparation. First, 
the subsystem checks the attached network device and tries 
to connect through a valid network device. After it estab-
lishes a connection with the push gateway, it waits for the 
incoming push message. When a message comes, it analyzes 
the message whether it is valid message or not. If it is valid 
and the message is requested for download, then it will start 
downloading by accessing the given http address from the 
task server. If the message has a wake request, PC control 
function issues wake to the PC after the download is com-
pleted. It can be put an additional check before issuing a 
wake. For example, keep the wake request until the user 
approaches the PC, and if it detected by a sensor; it will is-
sue wake to the PC. 

Task execution works when PC is in on state. An added 
software function is the browser synchronizer. As shown in 

Task execution: 

34 K. Nimura et al. / Proposal and Implementation of Pseudo Push Using Network Subsystem and Task Execution for PC



Fig. 5, it checks the SD memory whether a valid application 
or data exist or not. If it exists, then it will reconstruct and 
inject the application or data to the browser cache and af 
terwards initiate the browser. Depending on the request in 
the push message, it initiates the browser. There are two 
types of view on the browser. One is displaying the applica-
tion icons, and the user initiates an application implicitly. 
Another is running the application without user interaction. 

 

Figure 5: Flow of data collection and cache 
 
 
 

5 SYSTEM EVALUATION 

In this section, first, we show the hardware and software 
environments that are used for the evaluation, the result of 
the basic operation, and the measured power consumption.  

5.1 Environment for  System evaluation 

Followings are the hardware and software configurations, 
which are used to evaluate the system. 

 
Task Server: 

Hardware:

 

 A laptop computer is used as the task server 
and push gateway. It is a Fujitsu LIFEBOOK E780/A 
with an Intel Core i7 Processor 620M 2.66 GHz, 4 GB of 
main memory, and160-GByte hard drive. 
Software: A Web server is used as the task server. The 
public area of the server is used for placing an applica-
tion and/or data. The requestor will place an application 
and/or data. 

 
Push gateway: 

Hardware:

 

 One computer is used as the push gateway 
and task server. See above. 
Software: Linux is used as the OS. For the push recep-
tion, apache and Java Application Server (tomcat) are 
used. On the top of the Java Application Server, push re-
ception is placed as a servlet. For the push sender, C-
based program handles the communication with the PC. 
Between the two functions, those are communicating 
with a socket. 

 
PC: 

Hardware:

 

 A laptop computer is used as the host system. 
It is a Fujitsu FMV-BIBLO NF/C80N, which had an In-
tel Core 2 Duo Processor P8600 2.4 GHz, 4 GB of main 
memory, and 80-GByte hard drive. 
Software:

- Microsoft Windows 7 as the OS and Google Chrome 
as the browser are used. 

 Three combinations are used as software envi-
ronment as follows. 

- Linux as the OS and Google Chrome as the browser 
are used. 

- Google Chrome OS is used as the OS and the browser. 
Chrome disk cache [13] is used as a place to put the Web 

application at all above. 

 
Subsystem: 

Hardware: 

 

A Keil MCB2388 Evaluation Board is used 
as the subsystem. This has an ARM7 family-based pro-
cessor. It also has a USB interface supporting USB de-
vices and USB OTG/Host, SD/MMC memory card inter-
face, and 10/100 Ethernet interface. The subsystem is 
connected to the host system through the USB device in-
terface and to the network device through the USB host 
interface. In terms of electrical hardware specifications, 
the supply voltage of the board is 5.0 V and the typical 
current is 65 mA with the maximum current being 120 
[mA] based on the specification sheet. 
Software: The board comes with RTX Real-Time Oper-
ating System, which allows programs that simultaneous-
ly perform multiple functions to be created. MDK-ARM 
Microcontroller Development Kit is a software-
development environment that has a TCP Networking 

Figure 4: Flow of subsystem 

International Journal of Informatics Society, VOL.4, NO.1 (2012) 31-40 35



Suite, USB device, USB host stacks, and other pro-
gramming libraries. 

Network devices: 
 Hardware: 

- A 3G communication device FOMA A2502 HIGH-
SPEED is used as the network device. In terms of 
hardware specifications, the maximum downlink data 
rate is 7.2 Mbps and the maximum uplink data rate is 
384 Kbps. It is bus powered through the USB port. 
The voltage is 5.0 V. The maximum current is 650 
mA, the average current is 440.6 mA with the maxi-
mum standby current being 60 mA. The average 
standby current is 54.7 mA. 

Three network devices are used as follows. 

- A LAN chip on the subsystem is used. 
- A WLAN device LANTRONIX WiPort, which sup-

ports IEEE802.11b/g, is used by connecting to the 
above LAN interface. 

-  

5.2 Confirmation of basic action 

We evaluated the system using the Google Chrome brows-
er on Windows and Linux and Google Chrome OS. As a 
task, a Web application-based photo viewer and pictures are 
used. In the communication device, 3G, LAN, and WLAN 
devices are used. 

Then, the following basic action is confirmed, as depicted 
in Fig. 6, based on the flow shown in Fig. 2. 

Figure 6: Task send and execution. 
 
 (a) User takes picture using a smartphone. (b) User sends 

the data to the task server by e-mail. (c) The task server 
makes a package of data and an HTML5 photo viewer. In 
addition, the push gateway receives a push request from the 
phone, and pushes a message to the PC. (d) The subsystem 
receives the push message and downloads the application 
and data. Then, wake command is issued to the PC. (e) 

When the PC wakes, the application and data are injected to 
the application cache of the Google Chrome browser; finally, 
the web application and data are executed. At this moment, 
there is no network connection with host PC but subsystem. 
Therefore, it could confirm that the application is locally 
executed. Another simple basic action is confirmed as de-
picted in Fig. 7 and as follows. 

(a’) User put a URL which shows a link to a HTML5 
game application of a tool on PC and the tool register the 
app to the task server. Then it asks a push to push gateway 
with a message for execute the application. (b’) PC is in 
sleep. The subsystem receives the push message and down-
loads the application. (c’) PC wakes. The application is un-
packaged. Then it is injected to application cache of the 
browser. Finally, a user can play.  

Figure 7: Task send and execution. 
 

5.3 Measurement of power  consumption 

We will show the results of measurements of power con-
sumption using the 3G module. First, we examine the persis-
tent connection. Then, we compare the conventional PC and  
the PC in the proposed method. In addition, we will show 
the line of balance, which expresses how long the system 
should remain in sleep mode for reduced energy consump-
tion. 

How to put the PC in sleep mode is easy; the most used 
way might be timeout. It can be set in the operating system. 
If you specify a limitation time, and no activity has taken 
place at that time, the PC goes to sleep without any interac-
tion. We have used this method to put the PC in sleep. 

To express the power state, we refer the ACPI (Advanced 
Configuration & Power Interface) [14] that defines system 
and device power states. Some of them are as follows: S0 is 
in the system working state. S3 is a state in which the pro-
cessors are not executing instructions and Dynamic RAM 
context is maintained. S4 is a state where the DRAM con-
text is not maintained and all devices are in off state. S5 
does not save any context. D0 is a state in which a device is 
in the operating state. D1 is an intermediate power state 
whose definition varies by the device. D3 is a state in which 

36 K. Nimura et al. / Proposal and Implementation of Pseudo Push Using Network Subsystem and Task Execution for PC



the device is powered off. If we use the term of “sleep” in 
this paper, then it implies that the PC is mainly in S3 but not 
exclude S4 or S5. If we express network device in D1, then 
it means that the network is connected but there is no com-
munication. 

5.3.1. Persistent connection. 

We discuss the power consumption of a persistent connec-
tion in this subsection. We use a TCP connection to notify a 
task. Therefore, the power consumption of the persistent 
connection is a curious factor in terms of feasibility. It is 
expected that by using an open TCP connection without any 
transmitting or receiving of data, the power consumption 
will be low based on the standard hardware capability. 

First, we measured the current of the subsystem that is in 
D0 (On), as listed in Table 2. Somehow, it does not match 
with the specification described in 5.1, and the result of ac-
tual measurement is more than that of the specification. For 
reference, the voltage is taken as 5 V. The evaluation board 
used as the subsystem has an unwanted device for the evalu-
ation, such as an LCD; therefore, it can be a small value if 
we use the embedded CPU alone. 
 

Table 2: Subsystem 
 

Subsystem status Current [A] 
D0 (On) 0.152 

 
Then, we measured the current of the subsystem with the 

network device as shown in Fig. 8, and the average current 
values are listed in Table 3. 

Figure 8: Measured current of subsystem with 3G. 
 
The current changes until 60 sec and at 60 sec or later. As 

the device automatically transits to a low state when no ex-
plicit data are sent or received, the communication is main-
tained. The difference of current between the first row 
“plugged but not used for communication” and the third-row 
D1 in Table 3 is trivial. Even if the network is in communi-
cation ready, it does not consume a large amount of energy. 
This shows that a persistent connection can be fairly effi-
cient in terms of power consumption. Comparing with the 
Table 2, difference between results given in Table 2 and the 
third-row D1 in Table 3 is 0.07 A, and it is found that the 
current is slightly high somehow when compared with the 
average standby current that is described in section 5.1. For 

reference, the voltage is taken as 5 V. This time, we use a 
product of a communication module for the PC, which start-
ed to sell in 2007. However, if we could use average type of 
communication device used in a cellular phone or M2M 
(Machine to Machine), the consumption will be around 1/8. 

 
Table 3: Measured average current of subsystem with 3G 

 
3G status Subsystem 

status 
Average 
current [A] 

Plugged but not used for 
communication 

D0 0.221…(α) 

D0: Connected and idle 
(until 60 sec) 

D0 0.296…(β) 

D1: Connected and idle 
(60 sec or later) 

D0 0.222…(γ) 

 

5.3.2. Comparison of the conventional PC and pro-
posed one. 

We measured and compared the conventional PC and the 
PC used in the proposed method. Table 4 shows measure-
ment result of average power consumption using the con-
ventional PC with 3G. While the system is in S3, the ab-
sence of a network can considerably reduce the power con-
sumption, which is well known. 
 

Table 4: Without a subsystem: PC with 3G 
 

PC status 3G status Power [W] 
S0: Idle D0 26.45 
S0: Http communication D0 26.71 
S3: Sleep w/o network D3 2.030 

 
Figure 9 shows the measurement results, and Table 5 lists 

the average power using the proposed PC with subsystem 
and 3G.  

Figure 9: Measured current of proposed system. 
 

The power consumption in S0 is almost the same. How-
ever, in S3, power consumption is slightly increased because 
of the communication capability. Figure 10 shows a border 
line derived using equation (10) in Appendix when T =
24 and based on the data given in Table 4 and Table 5. It 
shows whether the proposed system can provide the merit 
regarding the power consumption. The horizontal axis in the 

International Journal of Informatics Society, VOL.4, NO.1 (2012) 31-40 37



figure indicates the utilization time of the conventional PC, 
and vertical axis shows the bifurcation point, which indi-
cates whether the proposed system is paid off. The left-hand 
side of the dotted line shows the invalid area. If it could in-
crease the sleep time by reducing the time to go to sleep, 
then it can be reached to the line. For example, suppose you 
to use 12 hours per day currently, reducing 0.85 hour is the 
point matches to the current power consumption. If we 
could use a power-efficient subsystem and network device 
as described in the previous subsection, the borderline will 
move to much easier portion. 
 

Table 5: With a subsystem: PC with a subsystem and 3G 
 

PC Status Subsystem 
status 

3G 
status 

Power 
[W] 

S0: Idle D0 D0 25.8…(A) 
S0: Http com-
munication 

D0 D0 26.8…(B) 

S3: Sleep w/ 
network 

D0: Idle D0 2.41…(C) 
D0: Http 
receive 

3.55…(D) 

 
 This is strict and may not be so adequate to evaluate the 

merit because a computing device that is not networked 
cannot receive any crucial and valid service. Therefore, it 
might be accepted without any concern by the consumer 
even when additional power consumption is involved. 

Figure 10: Line of balance of the proposed method. 
 

6 CONCLUSION 

We proposed an architecture where the system allows 
sending and executing of a task at any time in a PC. In our 
prototype implementation, we use a subsystem to keep net-
work for dealing the pseudo push. In addition, we imple-
mented a push gateway in the Cloud and a push handler and 
a browser synchronizer in PC. 

The system could provide value that was not provided in 
current PC that: 

- When a user wants to use the PC, the preparation is 
already completed. 

- Task is presented to the user without user interaction. 
- The power consumption can be reduced because dur-

ing preparation, the PC can be in the sleep state. 

In addition, we evaluated in real field using Google 
Chrome as the browser, Linux and Windows as the OS, and 
Google Chrome OS as the browser and the OS. For the net-
work devices, we use LAN, WLAN, and 3G as the network 
devices. 

Then, we confirmed that the system can send and execute 
tasks without user interaction even the PC is in sleep and 
pseudo push works efficiently in the power consumption 
point of view. From the measurements’ data, the only small 
amount of additional power 0.001 [A] was required to de-
ploy a connection for push. 

With regard to the energy, as the subsystem is always 
powered, the lower the power consumption of the subsystem, 
more efficient is the system. The total power consumption 
per day would be comparable with conventional PC when if 
we could reduce the use of proposed PC 0.85 hour (suppose 
you to use 12 hours per day currently). However, the sub-
system used in this study was not so efficient because of 
some glue logic. If we could use devices that eliminated 
wasteful logic or a new one, then the power consumption 
will be decreased. 

In this study, we only focus on the PC. However, the same 
architecture can be used for embedded systems without any 
modification. In addition, the push gateway is designed to be 
an information device agnostic. Therefore, it can provide the 
push service to smartphone, smart tablet and other device as 
well. 

As for the future research, remaining challenge might be 
how the system identifies the necessary task and the timing 
to push based on the activity of the users. 

 

REFERENCES 

[1] PC ENERGY REPORT 2009 UNITED STATES, 
UNITED KINGDOM, GERMANY, 
http://www.1e.com/energycampaign/downloads/PC_Ene
rgyReport2009-US.pdf 

[2] HTML5, http://dev.w3.org/html5/spec/Overview.html. 
[3] Chromium an open-source browser project, 

sites.google.com/a/chromium.org/dev/Home. 
[4] Chromium OS, http://www.chromium.org/chromium-os 
[5] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James 

Scott, Paramvir Bahl, and Rajesh Gupta, Somniloquy: 
Augmenting Network Interfaces to Reduce PC Energy. 

[6] Apple Wake on demand, 
http://support.apple.com/kb/HT3774 

[7] Introducing Intel Anti-Theft Technology version 3.0, 
http://antitheft.intel.com/Anti-Theft-30.aspx 

[8] Android Cloud to Device Messaging Framework, 
code.google.com/android/c2dm/index.html. 

[9] K. Nimura, H. Ito, Y. Nakamura, Z. Guo, K. Yasaki, and 
T. Miura, ``An Implementation of Transparent Network 
Subsystem for  PC Manageability,’’ RTCSA 2011, 17th 
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (2011). 

[10] D. Ghosh, ``Building Push Applications for Android,’’ 
Google I/O (2010). 

38 K. Nimura et al. / Proposal and Implementation of Pseudo Push Using Network Subsystem and Task Execution for PC



[11] Simon Judge, What is Push?, 
http://www.mobilephonedevelopment.com/archives/832 

[12] OMA Device Management Notification Initiated Ses-
sion, 
www.openmobilealliance.com/Technical/release_progra
m/docs/DM/V1_3-20101207-C/OMA-TS-
DM_Notification-V1_3-20101207-C.pdf. 

[13] Chromium disk cache, 
www.chromium.org/developers/design-
documents/network-stack/disk-cache. 

[14] Advanced Configuration & Power Interface, 
http://www.acpi.info/spec.htm 

 

APPENDIX: FORMULATION OF POWER 
CONSUMPTION 

In this section, we formulate the amount of electric power 
consumed by a conventional PC and the proposed PC, and 
then derive the equation of the line of balance. As described 
in Fig. 11, the proposed PC has an additional component 
called “subsystem,” which is not present in the conventional 
PC. “Host system” is a main part of the PC. The subsystem 
affects the host system and the “network device.” The net-
work device is used for the communication. Each part con-

sumes electric power. 
Figure 11: Proposed PC architecture. 

 
Then, we formulate the power consumption as follows. 

𝑥𝑜𝑛𝑎𝑣𝑒 =
∑ �𝑣𝑐 ∙ 𝑖𝑐(𝑡) + 𝑣ℎ ∙ 𝑖ℎ(𝑡)�𝑛1
𝑡=1

𝑛1
 

(1) 
Here, 𝑥𝑜𝑛𝑎𝑣𝑒 denotes the average electric power of a pow-

ered-on PC without a subsystem. 𝑛1 denotes the number of 
measured points. 𝑡 means the time at which the measure-
ment is made. v𝑐 denotes the voltage of the communication 
device. 𝑖𝑐 denotes the measured current of the communica-
tion device at time 𝑡. vℎ denotes the voltage of the host PC. 
iℎ denotes the measured current of host PC at time 𝑡. 

𝑥𝑠𝑙𝑝𝑎𝑣𝑒 =
∑ �𝑣ℎ𝑠𝑙𝑝(𝑡) ∙ 𝑖ℎ𝑠𝑙𝑝(𝑡)�𝑛2
𝑡=1

𝑛2
 

(2) 
Where, 𝑥𝑠𝑙𝑝𝑎𝑣𝑒 denotes the average electric power of the 

sleeping PC without the subsystem. 𝑛1 denotes the number 
of measured points. 𝑣ℎ𝑠𝑙𝑝  denotes the voltage of the host PC 
in sleep mode. 𝑖ℎ𝑠𝑙𝑝 denotes the measured current of host PC 
in sleep mode at time 𝑡. 
𝑟𝑚1 + 𝑠𝑚1 = T [hours] 

(3) 
Where, r𝑚1denotes the time of on state of the convention-

al PC in one day. s𝑚1 denotes the time of sleep state in the 

one day of conventional PC. T denotes the total amount of 
time in a certain period, such as a day. 
𝑋𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑥𝑜𝑛𝑎𝑣𝑒 × 𝑟𝑚1 + 𝑥𝑠𝑙𝑝𝑎𝑣𝑒 × 𝑠𝑚1 

(4) 
𝑋𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙  denotes the total electric energy of the con-

ventional PC at certain time T. 

𝑊𝑜𝑛𝑎𝑣𝑒 =
∑ �𝑣𝑐 ∙ 𝑖𝑐(𝑡) + 𝑣𝑠 ∙ 𝑖𝑠(𝑡) + 𝑣ℎ ∙ 𝑖ℎ(𝑡)�𝑛3
𝑡=1

𝑛3
 

(5) 
Where, 𝑊𝑜𝑛𝑎𝑣𝑒  denotes the average electric power of a 

powered-on PC with a subsystem. v𝑠 denotes the voltage of 
the subsystem. i𝑠 denotes the measured current of subsystem 
at time 𝑡. 

𝑊𝑛𝑒𝑡𝑎𝑣𝑒 =
∑ �𝑣𝑐 ∙ 𝑖𝑐(𝑡) + 𝑣𝑠 ∙ 𝑖𝑠(𝑡)�𝑛4
𝑡=1

𝑛4
 

(6) 
Where, 𝑊𝑛𝑒𝑡𝑎𝑣𝑒 denotes the average electric power of the 

sleeping PC with a subsystem that is connected to the net-
work. 
𝑟𝑚2 + 𝑠𝑚2 = T [hours] 

(7) 
Here, r𝑚2 denotes the time of on state of the proposed PC 

in one day. 𝑠𝑚2 denotes the time of sleep state of one day of 
proposed PC. 

𝑊𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑊𝑜𝑛𝑎𝑣𝑒 × 𝑟𝑚2 + 𝑊𝑛𝑒𝑡𝑎𝑣𝑒 × 𝑠𝑚2 
(8) 

Where, 𝑊𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  denotes the total electric energy of the 
proposed PC in certain time T. 

Obviously, adding the networked subsystem increases 
power consumption. Therefore, it is important to understand 
when it turns out to have merit. If we can put the PC in sleep 
mode for more time, then it can be paid. 
𝑟∆ = 𝑟𝑚1 − 𝑟𝑚2 = 𝑠𝑚2 − 𝑠𝑚1 

(9) 
r∆ denotes the time difference between how much spend 

the PC on at conventional PC and proposed method. 
Consequently, the following formula can identify what 

time should the proposed system be kept in sleep mode than 
the conventional one if we wish to see the merit of the pro-
pose method. 
𝑟∆ ≤ �𝑥𝑜𝑛𝑎𝑣𝑒 × 𝑟𝑚1 + 𝑥𝑠𝑙𝑝𝑎𝑣𝑒 × (T − 𝑟𝑚1) −𝑊𝑜𝑛𝑎𝑣𝑒 × 𝑟𝑚1

−𝑊𝑛𝑒𝑡𝑎𝑣𝑒(𝑇 − 𝑟𝑚1)}/�𝑊𝑜𝑛𝑎𝑣𝑒 − 𝑊𝑛𝑒𝑡𝑎𝑣𝑒� 
(10) 

 
(Received February 27, 2012) 
(Revised June 1, 2012) 
 
 
 
 

 
Kazuaki Nimura received the BE and ME de-
grees in Graduate School of  Information and 
Communication Engineering, Tokyo Denki Uni-
versity, Japan, in 1992 and 1994, respectively. 
He joined Fujitsu Limited in 1994 and transferred 
to Fujitsu Laboratories Ltd, in 1997. His current 
research includes advanced technology of smart 
device and human centric computing. 
 

 

International Journal of Informatics Society, VOL.4, NO.1 (2012) 31-40 39



 
Hidenobu Ito received the BE and ME degrees in 
Mathematical Sciences from University of Osaka 
Prefecture, Japan, in 1991 and 1993, respectively. 
He joined Fujitsu Laboratories Ltd in 1993. His 
current research includes mobile computing and 
human centric computing. 
 
 
 

 
 
Yosuke Nakamura received the BE and ME 
degrees in Graduate School of Engineering, 
Yokohama National University, Japan, in 2000 
and 2002, respectively. He joined Fujitsu Labora-
tories Ltd in 2002. His current research includes 
advanced technology of personal computer and 
human centric computing. 
 
 

 
 
Akira Shiba received the B.S. and M.S. degrees 
in electronics engineering from Sophia University 
in 1980 and 1982, respectively.  He joined Fujitsu 
Laboratories Ltd. in 1982.  Since then he has been 
engaged medical electronics and mobile 
computing, and is currently a Research Manager 
of human centric computing technology. 
 
 

 
 
Nobutsugu Fujino received the B.S. and M.E. 
degrees in electronics engineering from Universi-
ty of Osaka Prefecture in 1984 and 1986, respec-
tively. He joined Fujitsu Laboratories Ltd. in 
1986. Since then he has been engaged radio 
communication systems and mobile computing, 
and is currently a research manager of human 
centric computing and multi device interaction 
technology. His research interests include mobile 

and ubiquitous computing and network applications. He received IPSJ 
Industrial Achievement Award in 2003. He received Ph.D. degree in in-
formatics from Shizuoka University in 2008. 
 

40 K. Nimura et al. / Proposal and Implementation of Pseudo Push Using Network Subsystem and Task Execution for PC




