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Abstract - A context-aware service that uses sensing data
has attracted attention, along with the development of wire-
less technology and sensor technology. To provide these ser-
vices, the sensing data sharing system in P2P networks needs
to cope with a vast amount of data. However, existing algo-
rithms do not respond to varying the number of sensing data
types. In addition, most existing algorithms cannot execute
reverse key resolutions because their search algorithms need
to include specific data as the key in the query. To address
these issues, we propose a multi-dimensional range search al-
gorithm in P2P networks that uses a B+tree for an efficient
search with an arbitrary number of sensing data types.

Keywords: P2P, B+tree, range search, multi-dimensional
search, wireless sensor network

1 INTRODUCTION

Peer-to-Peer (P2P) networks are emerging as a new paradigm
for structuring large-scale distributed systems. In these sys-
tems, resources are associated with keys, and each peer is re-
sponsible for a subset of the key to guarantee scalability per-
formance, fault-tolerance, and robustness. P2P network have
been developed to have a more suitable and practical design
for applications, such as those in Building Monitoring [1] and
Sewer Snort [2].

One of the systems that is suitable for using P2P is a sens-
ing data sharing system, such as WSN with P2P [3]. A context-
aware service has attracted attention, along with the devel-
opment of wireless technology and sensor technology. This
service can offer a remarkable transformation that considers
user location and conditions using sensor data. To provide
these services, the system needs to manage data from wire-
less sensor networks (WSNs). P2P networks are thought to be
the answer to cope with the vast amount of data from WSNs
because of their potential.

WSNs have some dynamic properties such as varying the
data values, the total number of data, and the number of data
property (such as Temperature and Humidity). In other words,
P2P must deal with these properties to perform as general
middle-ware for a WSN data sharing system because what
it takes to provide service differs depending on the service.
In particular, we are sure that considering the varying num-
bers of data property can improve the search performance be-
cause the sensor types will likely rapidly increase as the fun-
damental technology is developed. However, other works in
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Figure 1: SensingData Sharing System

P2P networks cannot deal with the varying number of data
properties. These algorithms must include specific data, such
as location information, as a key in the query. Therefore,
they cannot execute a reverse resolution of keys and can only
use a limited number from a vast number of sensor types
in the query condition. To solve this problem, we need a
multi-dimensional algorithm without a special property on the
data store. “Multi-dimensional” denotes the tabular form in
data storage, and the query condition number dynamically in-
creases or decreases on demand. In this paper, we extend our
previous work [4] and show simulation results to demonstrate
the potential of our algorithm as a WSN data sharing system.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work; Section 3 presents our previous work and
the problem of bottleneck; Section 4 shows the experimental
results and discussion; finally, Section 5 concludes the paper.

2 RELATED WORK

Many architectures have been developed on sensing data
sharing systems using P2P. These architectures arrange Gate-
ways (GWs) in WSNs to manage data transfers at each WSN
and to automatically construct structuring P2P networks at
each GW, an drown in Fig. 1. In general, structuring P2P net-
works are constructed using distributed hash tables (DHTs),
but they have a major limitation in that they can only support
an exact-match search. P2P networks need to have the exact
key of a data item to store that item in the responsible node.
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Table1: NoSQL Categorization

Name Data Model CAP Theorem DistributeModel Persistence Model
Cassandra Column-oriented AP Consistent Hash Memtable/SSTable

HBase Column-oriented CP Sharding Memtable/SSTableon HDFS
CouchDB Document-oriented AP Consitent Hash Append-only B-tree

Riak Document-oriented AP Consistent Hash ?
MongoDB Document-oriented CP Sharding B-tree

Tokyo Cabinet Key-value AP Consistent Hash Hash orB-tree
Voldemort Key-value AP Consistent Hash Pluggable

Redis Key-value CP Consistent Hash In-memory withbackground snapshots
Scalaris Key-value CP Consistent Hash In-memory only

Because theexact key is given by a hash function, the key has
no order relation, and the user cannot search flexibly such as
when processing a range query or a multi-dimensional query.

In P2P networks, the additional idea of flexible search-
ing must be applied and must often use location information.
Znet [5] uses Z-ordering of space-filling curves [6] to parti-
tion the 2-dimensional ID space of the location and map space
ID onto corresponding nodes, and it uses a Skipgraph [7] to
manage the network topology. Mill [8] uses the same parti-
tioning and mapping technique, but it uses Chord to manage
the network topology. LL-Net [9] partitions a space into 4
blocks recursively, and the quad tree is used to manage the
network topology. These architectures can process a range
query by using location information and also process a multi-
dimensional query by adding other properties to the location
ID space as an additional dimension. These P2P architectures
have a limitation that involves including the location proper-
ties as a key in the query. In other words, they cannot exe-
cute a reverse resolution of the location information and also
cannot deal with the varying number of properties without
a reboot of the entire system because it is assumed that the
number of dimensions, which represents properties, is static.

On the other hand, Skipgraph can process a flexibly search
without location information. Skipgraph constructs a doubly-
linked list of inserted keys at each layer according to the mem-
bership vector. The membership vector is an identifier like
NodeID, and is allocated to all nodes. A certain key of the
doubly-linked list in the i-layer has links between the closest
key, which is defined by not only numerical distance but also
i-length prefix matching of the membership vector. Skipgraph
can process a range query by the sorted doubly-linked list and
also process a multi-dimensional query by constructing mul-
tiple P2P networks. However, the link of Skipgraph depends
on the value of key. It is difficult to maintain robustness when
we use real-time and high-density data, such as sensor data.

NoSQL, which means “Not Only SQL”, is another efficient
way to store and search data. NoSQL behaves as database,
and the major example is key-value store, column-oriented
database, and document-oriented database. Key-value store
is often implemented on P2P networks. They are great hopes
becoming the solution about the problem of relational database
(RDB), such as scalability and availability. Today, we can se-
lect one of what can serve our purpose from a lot of NoSQL;

however, we often think “What should I use?”. Table 1 shows
a part of NoSQL categorization list. In the table, CAP the-
orem says it is impossible for a distributed computer system
to simultaneously provide all of the three guarantees (Consis-
tency, Availability, and Partition Tolerance) and a distributed
system can satisfy any two of these guarantees at the same
time.

There are many work for categorization and comparing NoSQL,
such as [10]. Cassandra [11] and HBase [12] are the most
famous systems of NoSQL. Cassandra is the Apache [13]
project and has a goal: develops a highly scalable second-
generation distributed database, bringing together Dynamo [14]
distributed design and Bigtable [15] column-oriented data model.
We can insert the data which contained key space, column
family, key, column, and value in Cassandra like RDB’s record.
HBase is also Apache project and behaves as the database of
Hadoop [16]. This goal is the hosting of very large tables,
such as X billions of rows and Y millions of columns, atop
clusters of commodity hardware. We can insert the text, such
as log file, in the Hadoop Distributed File System which par-
tition the file and distribute the part of file in multiple server.
It is said that Cassandra and HBase have higher availability
and scalability than RDB. However, they need to construct
the distributed system on static network, such as data center.
Thus, they are not good way to construct the distributed sys-
tem includes the home GW.

3 THE DESIGN OF
MULTI-DIMENSIONAL ALGORITHM

3.1 Overview

We are designed multi-dimensional algorithm in our previ-
ous works, and this algorithm uses a B+tree [17] for an ef-
ficient search with an arbitrary number of sensing data type.
Our algorithm introduces the idea of building as many tree
structures as there are properties to process a dynamic multi-
dimensional range search, and these tree nodes (tree-nodes)
are mapped to the node on P2P networks (P2P-nodes). The
user can select an arbitrary number of trees to process a multi-
dimensional search, and a conclusive result is obtained by
merging all the results. Therefore, the reverse resolution of
certain properties, such as location, can be done by using the
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Table2: Node Information

Node (NodeID) temp
N0 (5) 21
N1 (3) 30
N2 (1) 15
N3 (0) 27
N4 (4) NULL
N5 (2) 29
N6 (7) 18
N7 (6) 24

10 2 436 57

21 2715 18 21 24 27 29 30N2 N0 N3N7 N1N6 N5

Hash(temperature) = 5random
Figure 2:Mapping to P2P Networks

composition query, and the system can deal with increasing
and decreasing properties while maintaining the running state.

To build a strong tree structure for frequently varying data
values, such as sensor data, our algorithm uses a B+tree, which
is a balanced tree, and the serch and insert order provides
O(logtN) search cost, where N is the number of peers in
the system and t is the constant number depending on list
size of tree-nodes. The B+tree acts as a logic structure to
make a comparison across property values. A network topol-
ogy uses a P2P network to store the tree-nodes. Mapping
from the tree-node to the P2P-node is necessary. In our al-
gorithm, this mapping uses a hash function. Mapping is ran-
dom in most tree-nodes, but the root of the tree should be
uniquely known to all nodes because the search for the B+tree
should obtain the root in the beginning. Therefore, the root
has a mapping rule wherein the map from the tree-node to
the P2P-node ofNodeID = Hash(PropertyName) acts
as the manager node, and other node map to the P2P-node
of NodeID = Hash(Random). Based on this analysis,
when the nodes listed in Table 2 showing a set of nodes and
their properties join the P2P networks, mapping is done as in
Fig. 2. Of course, this algorithm can deal with more proper-
ties by building a new tree structure.

3.2 Algorithm

If a new node join a P2P network, it should join the P2P
network and insert its shared resource information, such as

Algorithm 1 Put(targetHash, propertyValue, timeStamp)
Require: targetHash is closest to myNodeID
storedV alue← SearchLocal(targetHash)
if storedV alue = null then
PutLocal(targetHash, propertyV alue, timeStamp)

else
if !storedV alue.isLeaf() then

for all c such thatstoredV alue.getChild() do
if (c.min ≤ propertyV alue)&&(propertyV alue <
c.next.min) then
Put(c.getNodeID(), propertyV alue, timeStamp)

end if
end for

else
if storedV alue.isFull() then

Separate(storedV alue)
end if
PutLocal(targetHash, propertyV alue, timeStamp)

end if
end if

Algorithm 2 Remove(targetHash, propertyValue)
Require: targetHash is closest to myNodeID
storedV alue← SearchLocal(targetHash)
if storedV alue! = null then

if !storedV alue.isLeaf() then
for all c such thatstoredV alue.getChild() do

if (c.min ≤ propertyV alue)&&(propertyV alue <
c.next.min) then
Remove(c.getNodeID(), propertyV alue)

end if
end for

else
if storedV alue.contain(propertyV alue) then

RemoveLocal(targetHash, propertyV alue)
end if

end if
end if

properties andits own NodeID, into a tree-node on the P2P-
node. Join and leave algorithm is used according to the P2P
algorithm. For example, the join algorithm of Chord is used
when we use the Chord algorithm to construct a base P2P net-
work. This put process shown as Algorithm 1. The node ob-
tains a hash value based on property name and sends an insert
request to the manager node that has the same hash value. The
received node relays the request to the child tree-node that in-
cludes the request key between the tree ranges. On the other
hand, the node creates a root for the corresponding tree if the
tree-node does not exist. By repeating this recursive opera-
tion, the node in the target tree finally finds the destination
leaf and inserts the data into the appropriate place.

The remove algorithm is shown as Algorithm 2, and a large
part of it is constructed similarly to the put algorithm.

The get algorithm is shown as Algorithm 3. The algorithm
also searches tree-nodes like the put and remove algorithms,
but this algorithm uses a range key and an iterative search.
There are two cases of supporting range key search in com-
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Algorithm 3 Get(targetHash, min, max)

treeNode← dht.get(targetHash)
result← {}
for all e such thattreeNode.getElements() do

if treeNode.isLeaf() then
if (min ≤ e.key)&&(e.key ≤ max) then
result← result ∪ e

end if
else

if (min ≤ e.max)&&(e.min ≤ max) then
r ← Get(e.hash,min,max)
result← result ∪ r

end if
end if

end for
return result

paring thesearch request with its own tree-node’s informa-
tion. Case 1 is a comparison of the leaf; this selects the data
included between the request ranges. Case 2 is a compari-
son of the other place; this selects the node that includes the
request range between its own tree ranges as the next can-
didate. The get algorithm repeats case 2 to find destination
leaf-nodes, and it executes case 1 to obtain the result. We
used an iterative search to repeat case 2 because a recursive
search risks a fatal decrease in performance in the target en-
vironment, such as the general middle-ware for a WSN data
sharing system. The tree-node needs to split the request into
the same number of branches if two or more candidates are
found, and then the tree-node must wait for the under-layer
processing to finish or timeout in accordance with the recur-
sive search. An iterative search can prevent this risk because
it forces the node that sent the search request to wait.

3.3 The Problem of Previous Work

Actual sensor data occurs with great frequency because a
sensor is generally used to obtain real-time and high-density
data. The first thing to do in the these algorithms is to ac-
cess the root of the tree structure, and the root tends to have
a heavier workload than other nodes. Therefore, the root of
the tree structure may become a bottleneck in the system. A
bottleneck arises from insufficient disk space and memory,
insufficient CPU capacity, and an exclusive control method.

• Insufficient disk space and memory
When number of inserted data is over allowable num-
ber, the node frequently causes the Swapping and per-
formance decreases. In addition, the node which too
much data is concentrated greatly decreases performance
in searching stored data. This is problem in a gen-
eral relational database (RDB), but the Key-Value store
(KVS) on P2P networks is not actually considered as
problem. The KVS can easily deal with the increas-
ing data by distributing the data to many nodes. This is
called scale-out technology, therefore, it is not consid-
ered in this paper.

• Insufficient CPU capacity
When the node receives requests, CPU use and process-

Process A& Lock
Process B& Lock

Send Response B
Relay Request BSend Request B

Send Response A
Relay Request ASend Request ANode X Node X Node X 12 12

3
Figure 3:PutRequestSequence

ing time increases according to the request type and the
current state, and it becomes a problem when the num-
ber of requests increases up to a certain number. A typ-
ical KVS can resolve this problem because it can dis-
tribute not only data but also the load of the processing
request. However, the multi-dimensional algorithm on
a KVS cannot resolve the problem well because it con-
structs a large tree structure. This structure can support
the tabular form on KVS and is guaranteed to reach the
target, but it limits the route to certain data and concen-
trates a local load. In particular, the nodes included in
the route, such as the root, has a larger workload than
other nodes.

• Exclusive control method
This factor is an endemic problem of distributed sys-
tems and fatal problem of this architecture. The KVS is
used by many users, and operation demand may occur
around the same time. The structure breaks if operation
is executed in parallel because it constructs a tree struc-
ture, as previously mentioned. To address this problem,
an exclusive control method, such as lock, is needed.
However, this method has a bad affects the processing
time of the request. In other words, it is important to
reduce the maximum number of concurrent connection
to maintain throughput.

Based on the above analysis, it is necessary to evaluate the
process time and the lock before being applied to the WSN
data sharing system. In addition, we pay attention to the ex-
clusive control method problem that is the biggest weakness.

4 PERFORMANCE EVALUATION

In this section, we describe the evaluation of our algorithm
in delay time. There are three types of communication, lock,
and processing delay time. Fig. 3 shows the sequence of pro-
cessing the put request. The put request is sent fromNodeX
to NodeZ . WhenNodeX sends request A,NodeY receives
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Figure 4: The Result Varying Number of Node

Table 3: Simulation Environment
Varying Node Data

Num Nodes 1 –1000 100
Num Request 1000 1 –10000

Data Distribution Normal Normal

the requestonce and relays it toNodeZ . The communication
and processing time occur in this sequence. Communication
time is the time between sending and receiving of the request
No.1 in the figure. Processing time is the time between pro-
cessing of the request No.3. Lock time occurs in processing
of request B. Request B is sent like request A, and lock time
occurs by waiting for the processing of the request B. Lock
time is the time between receiving and the start of processing
No.2.

We evaluated the lock and processing times when a request
is sent to one root node just around the same time. We did not
evaluate the communication time because we wanted to con-
sider only root performance. The evaluation was conducted
with simulations using Overlay Weaver [18] in the conditions
listed in Table 3. The list size of the tree-node in our algorithm
was adjusted in the experiment to 25, and this algorithm used
Chord to construct the base P2P networks.

Fig. 4(a), 4(b) show the history of processing each request
that has a sequential unique ID, where Node is the number of
node in a P2P network. Fig. 4(c), 4(d) show the total time
for processing the last request at each node. Fig. 5(a), 5(b)
also show the history of processing each request that has a
sequential unique ID, where Request is the number of simul-
taneously inserted requests. Fig. 5(c), 5(d) show the total time
for processing the last request at each node.

Fig. 4(a) has place where processing time suddenly increases.
The reason is that the B+tree structure must divide a full leaf,
create new a leaf to store the leaf information, and increase
the number of layers on the tree structure in addition to nor-
mal operation. These additional operations occur when the
number of leaves becomes more than25i in an ideal envi-
ronment, where 25 is adjusted as the leaf size. These addi-
tional operations also affect Fig. 4(b). The part near the ori-
gin point in Fig. 4(b) has a very low delay time, and the time
suddenly increases when requests ID exceede 25 because the
root can process the up to 25 request in only oneself. When
the Fig. 4(c), 4(d) is considered, the effect of node number is
small because the order isO(logN), where N is the number
of nodes. The reason of this order is that we constructed the
tree structure on a P2P networks with Chord algorithm. The
Chord algorithm search cost isO(logN), and we used Chord
search method to find the appropriate child node on the tree
structure, and the effect of the Chord search order appeared
in the result. We are certain that our idea, building a large
structure on P2P networks to handle a multi-dimensional as
our work, have enough scalability.

Fig. 5(a) shows a similar change as in Fig. 4(a), and the
change in Fig. 5(c) is flat because rapid change occurs by di-
viding and creating leaves when the leaf is full. In Fig. 5(b),
the total number of varying requests does not affect the lock
time, and the result linearly increases, as shown in Fig. 5(d).
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Figure 5: The Result Varying Number of Request

Because the request goes into a queue once, even if the sys-
tem receives any number of request at any time. On the other
hand, Fig. 5(d) shows throughput that can processx request
by y msec from point of view of the system side. We can
obtain the throughput that guarantees to process as soon as
receiving request from the intersection which figure with ex-
pressiony = 1000, and throughput is about 500 requests per
second. This throughput is not too few because the traditional
RDB’s default number of concurrent connections is from 100
to 500 on demand and the some systems often remain at the
default number.

5 CONCLUSION

We designed a multi-dimensional search algorithm for P2P
networks using a B+tree. Our novel P2P index structure is
well suited for applications, such as a sensing data sharing
systems by supporting range and multi-dimensional queries.
This structure is in accordance with the basic key idea that a
tree structure, such as a temperature-tree, builds on P2P net-
works for each property.

We evaluated the performance of the proposed algorithm
using simulations. From the simulation results, we found
that the proposed algorithm has scalability because the pro-
cessing and lock times are orderO(logN). In addition, the
throughput that guarantees to immediately process the request
is about 500 requests per second.

In the future, we will aim at the performance gain of the
algorithm. We can improve the performance using the repli-
cation or cache algorithm. The replication may distribute the
workload of the root and decrease the lock time. Cache al-
gorithm may dramatically improve the performance because
the number of request relays becomes 1 when the node has
visited by search algorithm in the past. Additionally, both al-
gorithm can become churn tolerant improvement techniques.
Churn will cause a serious problem for the P2P put algorithm:
The data of node is removed due to the continuous process of
node arrival and departure. To use replication and cache algo-
rithm, at least one node can hold inserted data and the system
can recover from churn damage by using the data.
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