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Abstract - Model checking techniques are considered as
promising techniques for verification of information systems
due to their ability of exhaustive checking. Well-known state
explosion, however, might occur in model checking of large
systems. Such explosion severely limits the scalability of
model checking. In order to avoid it, several abstraction tech-
niques have been proposed. Some of them are based on
CounterExample-Guided Abstraction Refinement (CEGAR)
technique proposed by E. Clarkeet al.

This paper proposes a reachability analysis technique for
probabilistic timed automata. In the technique, we abstract
time attributes of probabilistic timed automata by applying
our abstraction refinement technique for timed automata pro-
posed in our previous work. Then, we apply probabilistic
model checking to the generated abstract model which is just
a markov decision process (MDP) with no time attributes.
This paper also provides some experimental results on apply-
ing our method to IEEE 1394, FireWire protocol. Experi-
mental results show our algorithm can reduce the number of
states and total execution time dramatically compared to one
of existing approaches.

Keywords: Probabilistic Timed Automaton, CEGAR,
Model Checking, Real-time System, Formal Verification

1 INTRODUCTION

Model checking[1] techniques are considered as promising
techniques for verification of information systems due to their
ability of exhaustive checking. For verification of real-time
systems such as embedded systems, timed automata are often
used. On the other hand, probabilistic model checking[2]–[4]
can evaluate performance, dependability and stability of in-
formation processing systems with random behaviors. In re-
cent years, probabilistic models with real-time behaviors, called
probabilistic timed automata (PTA) attract attentions. As well
as traditional model checking techniques, however, state ex-
plosion is thought to be a major hurdle for verification of
probabilistic timed automata.

Clarkeet al. proposed an abstraction technique called CE-
GAR (CounterExample-Guided Abstraction Refinement)[5]
shown in Fig. 1. In the CEGAR technique, we use a counter
example (CE) produced by a model checker as a guide to re-
fine abstracted models. A general CEGAR technique consists
of several steps. First, it abstracts the original model (the ob-
tained model is called abstract model) and performs model
checking on the abstract model. Next, if a CE is found, it
checks whether the CE is feasible on the concrete model or
not. If the CE is spurious, it refines the abstract model. The
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Figure 2: OurCEGAR Technique for Reachability Analysis
of a Probabilistic Timed Automaton

last step is repeated until the valid output is obtained. In the
CEGAR loop, an abstract model must satisfy the following
property: if the abstract model satisfies a given specification,
the concrete model also satisfies it.

In Paper[6], we have proposed an abstraction algorithm
for timed automata based on CEGAR. In this algorithm, we
generate finite transition systems as abstract models where
all time attributes are removed. The refinement modifies the
transition relations of the abstract model so that the model
behaves correctly even if we don’t consider the clock con-
straints.

This paper proposes a reachability analysis technique for
probabilistic timed automata. In the technique, we abstract
time attributes of probabilistic timed automata by applying
our abstraction technique for timed automata proposed in Pa-
per[6]. Then, we apply probabilistic model checking to the
generated abstract model which is just a markov decision pro-
cess (MDP) with no time attributes. The probabilistic model
checking algorithm calculates a summation of occurrence prob-
ability of all paths which reach to a target state for reacha-
bility analysis. For probabilistic timed automata, however,
we have to consider required clock constraints for such paths,
and choose the paths whose required constraints are compat-
ible. Since our abstract model does not consider the clock
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constraints, weadd a new flow where we check whether all
paths used for probability calculation are compatible. Also, if
they are not compatible, we transform the model so that we do
not accept such incompatible paths simultaneously. The pro-
posed procedure for the probabilistic timed automata is shown
in Fig. 2.

This paper also provides some experimental results on ap-
plying our method to some examples. Experimental results
show our algorithm can reduce the number of states and to-
tal execution time dramatically compared to one of existing
approaches.

Several papers including Paper[3] have proposed proba-
bilistic model checking algorithms. These algorithms, how-
ever, don’t provide CEs when properties are not satisfied. Our
proposed method provides a CE as a set of paths based on
k-shortest paths search. This is a major contribution of our
method. The proposed method also performs model checking
considering compatibility problem. Few approaches resolve
the compatibility problem. Paper [16] resolves the compati-
bility problem in a similar way to us. It, however, uses another
approach (, which is based on a natural technique called pred-
icate abstraction of clocks constraints) to abstract the models
and the paper doesn’t perform evaluation while our approach
uses a quite simple abstraction technique, which remeves all
of clock attributes, and this paper also shows the efficiency
via performing experiments.

The organization of the rest paper is as follows. Sec.2 pro-
vides some definitions and lemmas as preliminaries. Sec.3 de-
scribes our proposed abstraction technique for the probabilis-
tic timed automaton. Sec.4 gives some experimental results.
Finally, Sec.5 concludes the paper and gives future works.

2 PRELIMINARY

This section gives some definitions about models used in
this paper and also describes a general CEGAR technique.

2.1 Clock and Zone

Let C be a finite set of clock variables which take non-
negative real values (R≥0). A mapν : C → R≥0 is called a
clock assignment. The set of all clock assignments is denoted
by RC

≥0. For anyν ∈ RC
≥0 andd ∈ R≥0 we use(ν + d) to

denote the clock assignment defined as(ν+d)(x) = ν(x)+d
for all x ∈ C. Also, we user(ν) to denote the clock assign-
ment obtained fromν by resetting all of the clocks inr ⊆ C
to zero.

Definition 2.1 (Differential Inequalities onC). Syntax and
semantics of a differential inequalityE on a finite setC of
clocks is given as follows:
E ::= x− y ∼ a | x ∼ a,
wherex, y ∈ C, a is a literal of a real number constant, and
∼∈ {≤,≥, <,>}. Semantics of a differential inequality is
the same as the ordinal inequality.

Definition 2.2 (Clock Constraints onC). Clock constraints
c(C) on a finite setC of clocks is defined as follows:
A differential inequalityin onC is an element ofc(C).
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Figure 4:Examples of Adversaries

Let in1 and in2 be elements ofc(C), in1 ∧ in2 is also an
element ofc(C).

A zoneD ∈ c(C) is described as a product of finite dif-
ferential inequalities on clock setC, which represents a set of
clock assignments that satisfy all the inequalities. In this pa-
per, we treat a zoneD as a set of clock assignmentsν ∈ RC

≥0

(For a zoneD, ν ∈ D means the assignmentν satisfies all the
inequalities inD).

2.2 Probability Distribution

A discrete probability distribution on a finite setQ is given
as the functionµ : Q→ [0, 1] such thatΣq∈Qµ(q) = 1. Also,
support(µ) is a subset ofQ such that∀q ∈ support(µ).µ(q) >
0 holds.

2.3 Markov Decision Process

A Markov Decision Process (MDP)[7] is a markov chain
with non-deterministic choices.

Definition 2.3 (Markov Decision Process).A markov deci-
sion processMDP is 3-tuple(S, s0, Steps), where
S : a finite set of states;
s0 ∈ S : an initial state; and
Steps ⊆ S×A×Dist(S): a probabilistic transition relation
whereDist(S) is a probability distribution overS.

In our reachability analysis procedure, we transform a given
PTA into a finite MDP, and perform probabilistic verification
based on the Value Iteration[8] technique.

Figure 3 shows an example of an MDP. In the figure, prob-
ability distributions are associated with transitions. In the fig-
ure, transitions which belong to the same distribution are con-
nected with a small arc at their source points. The MDP has
several non-deterministic choices at the state 1 and 4. For
example, at the state 1, we have two choices;1) the control
moves to the state 2 with the probability 0.2 and to the state
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3 with the probability 0.8,2) the control moves to the state 4
with the probability 1.0.

2.3.1 Adversary

An MDP has non-deterministic transitions called action. To
resolve the non-determinism, an adversary is used. The adver-
sary requires a finite path on an MDP, and decides a transition
to be chosen at the next step.

Figure 4 shows examples of resolving the non-determinism
of the MDP shown in Fig. 3 by some adversaries. Figure 4.
a) is the case where we choose the action which moves to the
state 2 or state 3 at the initial state 1. On the other hand,b)
andc) are the cases where we choose the action which moves
to the state 4 at the initial state 1. In the case ofb), we choose
the action which moves to the state 7 when we move from the
state 1 to state 4. Also, in the case ofc), we choose the action
which moves to the state 8 in the same trace.

Here, if we want to obtain the reachability probability from
the state 1 to the state 10, under the adversary ofa), we can
obtain the probability 0.08 (= 0.8× 0.2 × 0.5), which is the
minimum reachability probability. On the other hand, under
the adversary ofc), we can obtain the probability 1.0 (= 1.0×
1.0× 1.0), which is the maximum reachability probability.

2.3.2 Value Iteration

A representative technique of model checking for an MDP is
Value Iteration[8]. The Value Iteration technique can obtain
both of maximum and minimum probabilities of reachability
and safety properties, respectively. At each state, Value Itera-
tion can select an appropriate action according to the property
to be checked. Therefore, the technique can produce the ad-
versary as well as the probability.

2.4 Timed Automaton

Definition 2.4 (Timed Automaton). A timed automatonA is
a 6-tuple(A,L, l0, C, I, T ), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L → c(C)): a mapping from locations to clock con-
straints, called a location invariant; and
T ⊂ L×A× c(C)×R × L,
wherec(C) is a clock constraint, called guards;
R = 2C : a set of clocks to reset.

A transitiont = (l1, a, g, r, l2) ∈ T is denoted byl1
a,g,r−→

l2. A mapν : C → R≥0 is called a clock assignment. We
define(ν + d)(x) = ν(x) + d for d ∈ R≥0. r(ν) = ν[x 7→
0], x ∈ r, whereν[x 7→ 0] means the valuation that mapsx
into zero, is also defined forr ∈ 2C .

Definition 2.5 (Semantics of a Timed Automaton).Given a
timed automatonA = (A,L, l0, C, I, T ), let S ⊆ L × RC

≥0

be a set of whole states ofA . The initial state ofA shall be
given as(l0, 0C) ∈ S.
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Figure 5:An Example of a PTA

For a transitionl1
a,g,r−→ l2 (∈ T ), the following two transi-

tions are semantically defined. The former one is called an
action transition, while the latter one is called a delay transi-
tion.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Definition 2.6 (A Semantic Model of a Timed Automaton).
For timed automatonA = (A,L, l0, C, I, T ), an infinite tran-
sition system is defined according to the semantics ofA ,
where the model begins with the initial state.

2.5 Probabilistic Timed Automaton

A PTA is a kind of a timed automaton extended with prob-
abilistic behavior. Therefore, using the PTA, we can evalu-
ate quantitative properties such as performance of information
systems based on the probabilistic model checking technique.
In the PTA, a set of probabilistic distributions is used instead
of a setT of discrete transitions on the timed automaton.

Definition 2.7 (Probabilistic Timed Automaton).A proba-
bilistic timed automatonPTA is a 6-tuple(A,L, l0, C,
I, prov), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L→ c(C)): a location invariant; and
prob ⊆ L×A× c(C)×Dist(2C × L): a finite set of prob-
abilistic transition relations, wherec(C) represents a guard
condition, andDist(2C × L) represents a finite set of proba-
bility distributionsp. The Distributionp(r, l) ∈ Dist(2C×L)
represents the probability of resetting clock variables inr and
also moving to the locationl;

Figure 5 shows an example of a PTA. In the figure, from
the locationa, it moves to the locationb with the probability
0.5 and also moves to the locationc letting the value of the
clock x reset to zero with the probability 0.5. Both of the
arcs starting locationa are connected with a small arc at their
source points, which represents that they belong to the same
probability distribution.

Definition 2.8 (Transitions of a Probabilistic Timed Automa-
ton). ForPTA = (A,L, l0, C, I, prov), 6-tuple(l, a, g, p, r, l′)
represents a transition generated by a probabilistic distribu-
tion (l, a, g, p) ∈ prob such thatp(r, l′) > 0.

Definition 2.9 (Semantics of a Probabilistic Timed Automa-
ton). Semantics of a probabilistic timed automatonPTA =
(A,L, l0, C, I, prob) is given as a timed probabilistic system
TPSPTA = (S, s0, TSteps) where,
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• S ⊆ L× RC ;

• s0 = (l0, 0
C); and

• TSteps ⊆ S × A ∪ R≥0 × Dist(S) is composed of
action transitions and delay transitions.

a) action transition
if a ∈ A and there exists(l, a, g, p) ∈ prob such
thatg(ν) andI(l′)(r(ν)) for all (r, l′) ∈ support(p),
((l, ν), a, µ) ∈ TSteps where for all(l′, ν′) ∈ S

µ(l′, ν′) =
∑

r⊆C∧ν′=r(ν)

p(r, l′).

b) delay transition
if d ∈ R≥0, and for alld′ ≤ d, I(l)(ν + d′),
((l, ν), d, µ) ∈ TSteps whereµ(l, ν + d) = 1.

The concrete delay in the delay transition can be decided
non-deterministically on the semantics of a probabilistic timed
automaton as well as those of a timed automaton.

In this paper, using a locationl and a zoneD, we describe
a set of semantic states as(l,D) = {(l, ν) | ν ∈ D}.

A probabilistic timed automaton is said to be well-formed
if a probabilistic edge can be taken whenever it is enabled[2].
Formally, a probabilistic timed automatonPTA = (A,L, l0,
C, I, prob) is well-formed if

∀(l, g, p) ∈ prob. ∀ν ∈ RC
≥0. (g(ν))

→ ∀(r, l) ∈ support(p). I(l)(r(ν)).

In this paper, we assume that a given PTA is well-formed.

Definition 2.10 (Path on a Timed Probabilistic System).A
pathω with length ofn on a timed probabilistic system
TPSPTA = (S, s0, TSteps) is denoted as follows.

ω = (l0, ν0)
d0,µ0−→ (l1, ν1)

d1,µ1−→ . . .
dn−1,µn−1−→ (ln, νn)

, where(l0, ν0) = s0, (li, νi) ∈ S for 0 ≤ i ≤ n and
((li, νi), di, µ) ∈ TSteps ∧ ((li, νi + di), 0, µi) ∈ TSteps ∧
(li+1, νi+1) ∈ support(µi) for 0 ≤ i ≤ n− 1.

For model checking of a probabilistic timed automaton, we
extract a number of paths and calculate a summation of their
occurrence probabilities in order to check the probability of
satisfying a given property. The important point is that we
have to choose a set of paths which are compatible with re-
spect to time elapsing.

Lemma 2.1(Compatibility of two paths).If two pathsωα =

(lα0 , ν
α
0 )

dα
0 ,µα

0−→ (lα1 , ν
α
1 )

dα
1 ,µα

1−→ . . .
dα
n−1,µ

α
n−1−→ (lαn , ν

α
n ) and

ωβ = (lβ0 , ν
β
0 )

dβ
0 ,µ

β
0−→ (lβ1 , ν

β
1 )

dβ
1 ,µ

β
1−→ . . .

dβ
m−1,µ

β
m−1−→ (lβm, νβm)

on a timed probabilistic systemTPSPTA satisfy the follow-
ing predicateisCompatible, thenωα andωβ are said to be

compatible.

isCompatible(ωα, ωβ) =

true, if ∀i < min(n,m). lαi = lβi ∧ dαi = dβi
or there existsi < min(n,m) such that

lαi ̸= lβi ∧ dαi = dβi ∧
∀j < i. lαj = lβj ∧ dαj = dβj

false, otherwise.

Above predicateisCompatible stands for that two paths
are compatible if and only if one path is a prefix of the other,
or same amount of delay is executed in both paths at the
branching point of them.

Lemma 2.2 (Compatibility of a set of paths). If a setΩ of
paths on a timed probabilistic systemTPSPTA satisfies the
following predicateisCompatible, then all of the paths over
Ω are said to be compatible.

isCompatible(Ω) =

true, if ∀i ≤ min(Ω)
∧

ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi = lβi ∧ dαi = dβi )

or there existsi ≤ min(Ω) such that∧
ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi ̸= lβi ∧ dαi = dβi ∧
∧
j≤i

(lαj= lβj ∧ dαj= dβj )),

and also
∧

Ω′∈2Ω∧
Ω′ ̸=Ω∧|Ω′|≤2

isCompatible(Ω′)

false, otherwise.

In Lemma2.2, we give the predicateisCompatible for a
setΩ of paths on a timed probabilistic system. In the lemma,
we let paths inΩ be compatible if there is no contradiction
with respect to time elapsing at the branching point of all the
paths inΩ, and also if the compatibility is kept for every sub-
set ofΩ which contains more than two paths.

Next, we give a simple example of a pair of paths which
does not satisfy the compatibility. In the Fig. 5, paths from

the locationa to d are given asωα = (a, x = 0∧ y = 0)
0,0.5−→

(b, x = 0 ∧ y = 0)
0,1.0−→ (d, x = 0 ∧ y = 0) which reaches

to d throughb, andωβ = (a, x = 0 ∧ y = 0)
1,0.5−→ (c, x =

0 ∧ y = 1)
0,1.0−→ (d, x = 0 ∧ y = 1) which reaches tod

throughc. In the pathωα, we are required to let delay at the
locationa be less than one unit of time because of the guarded
conditionx < 1 of the transition betweenb andd. On the
other hand, in the pathωβ , we are required to let delay ata be
grater than or equal one unit of time because of the condition
x == 0 ∧ y ≥ 1 of the transition betweenc andd. Like the
pathωα andωβ , if the required conditions of time elapsing at
the branching point are contradict, we cannot use such paths
simultaneously in the probability calculation.

2.6 CounterExample-Guided Abstraction
Refinement

2.6.1 General CEGAR Technique

Since model abstraction sometimes over-approximates an orig-
inal model, we may obtain spurious CEs which are infeasible
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on theoriginal model. Paper [5] gives an abstraction refine-
ment framework called CEGAR (CounterExample-Guided Ab-
straction Refinement) (Fig. 1).

In the algorithm, at the first step (called Initial Abstrac-
tion), it generates an initial abstract model. Next, it performs
model checking on the abstract model. In this step, if the
model checker reports that the model satisfies a given spec-
ification, we can conclude that the original model also satis-
fies the specification, because the abstract model is an over-
approximation of the original model. If the model checker
reports that the model does not satisfy the specification, how-
ever, we have to check whether the CE detected is spurious
or not in the next step (called Simulation). In the Simulation
step, if we find that the CE is valid, we stop the loop. Oth-
erwise, we have to refine the abstract model to eliminate the
spurious CE, and repeat these steps until valid output is ob-
tained.

2.6.2 CEGAR Technique for a Timed Automaton

In Paper[6], we have proposed the abstraction refinement tech-
nique for a timed automaton based on the framework of CE-
GAR. In this approach, we remove all the clock attributes
from a timed automaton. If a spurious CE is detected by
model checking on an abstract model, we transform the tran-
sition relation on the abstract model so that the model behaves
correctly even if we don’t consider the clock constraints. Such
transformation obviously represents the difference of behav-
ior caused by the clock attributes. Therefore, the finite num-
ber of application of the refinement algorithm enables us to
check the given property without the clock attributes. Since
our approach does not restore the clock attributes at the re-
finement step, the abstract model is always a finite transition
system without the clock attributes.

3 PROPOSED APPROACH

In this section, we will present our abstraction refinement
technique for a probabilistic timed automaton. In the tech-
nique, we use the abstraction refinement technique for a timed
automaton proposed in Paper[6]. Though the probability cal-
culated on the abstract model may be spurious because the
abstract model has no time attributes, the finite number of
applications of the refinement algorithm enables us to ob-
tain correct results on the abstract model. In addition, we
resolve the compatibility problem shown in Sec.2.5 by per-
forming a backward simulation technique and generating ad-
ditional location to distinguish the required condition for ev-
ery incompatible path. Figure 2 shows our abstraction refine-
ment framework. As shown in the figure, we add another flow
where we resolve the compatibility problem.

Our abstraction requires a probabilistic timed automaton
PTA and a property to be checked as its inputs. The property
is limited by the PCTL formulaP<p[true U err]. The for-
mula represents a property that the probability of reaching to
states whereerr (which means an error condition in general)
is satisfied, is less thanp.

In model checking techniques, several properties presented
in CTL[9], LTL[10], and others would be checked in gen-

a

b

c

d
0.5

0.5

1

1x:=0

Figure 6:An Initial Abstract Model

eral. The typical properties, however, are safety and progress.
The reachability analysis is the primitive procedure for safety
checking, thus model checking problems on several impor-
tant properties represented in CTL could be reduced into the
reachability analysis problem. Therefore, the reachability anal-
ysis is important problem. On the other hand, the limitation
of the properties that we can check derives from the abstrac-
tion technique proposed in Paper[6]. Since the technique of
Paper[6] focuses on properties of reachability, in this paper
we also focus on reachability properties only.

3.1 Initial Abstraction

The initial abstraction removes all the clock attributes from
a given probabilistic timed automaton as well as the technique
in Paper[6]. The generated abstract model over-approximates
the original probabilistic timed automaton. Also, the abstract
model is just an MDP without time attributes.

Definition 3.1 (Abstract Model). For a given probabilistic
timed automatonPTA = (A,L, l0, C, I, prob), a markov de-
cision process ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) is produced as its
abstract model, where

• Ŝ = L

• ŝ0 = l0

• ˆSteps = { (s, a, p) | (s, a, g, p) ∈ prob }

Figure 6 shows an initial abstract model for the PTA shown
in Fig. 5 As shown in the figure, the abstract model is just an
MDP where all of the clock constraints are removed though
we keep a set of clock reset as a label of transitions.

3.2 Model Checking

In model checking, we apply Value Iteration[8] into the
markov decision process obtained by abstraction and calcu-
late a maximum reachability probability. Also, it decides an
action to be chosen at every state as an adversary. If the ob-
tained probability is less thanp, we can terminate the CEGAR
loop and conclude that the property is satisfied.

Although Value Iteration can calculate a maximum reach-
ability probability, it cannot produce concrete paths used for
the probability calculation. To obtain the concrete paths, we
use an approach proposed in Paper[11] which can produce CE
paths for PCTL formulas. The approach translates a proba-
bilistic automaton into a weighted digraph. And we can ob-
tain at mostk paths by performingk-shortest paths search on
the graph.
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Definition 3.2 (Path on the Abstract Model). A path ω̂ on
an abstract model ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) for PTA =
(A,L, l0, C, I, prob) is given as follows,

ω̂ = ŝ0
a0,p0,r0−→ ŝ1

a1,p1,r1−→ . . .
an−1,pn−1,rn−1−→ ŝn

, whereŝi ∈ Ŝ for 0 ≤ i ≤ n and (ŝi, ai, pi) ∈ ˆSteps ∧
(ri, ŝi+1) ∈ support(pi) for 0 ≤ i ≤ n− 1.

As defined in Def. 3.2, we associate a setr of clock reset
with a path on an abstract model in order to show the differ-
ence ofr over the probabilistic distributionp.

For the abstract model shown in Fig. 6, Value Iteration out-
puts 1.0 as the probability that it reaches to the locationd from
the locationa. On the other hand,k-shortest paths search

(k ≥ 2) detects two pathŝωα = a
τ,0.5,{}−→ b

τ,1.0,{}−→ d and

ω̂β = a
τ,0.5,{x:=0}−→ c

τ,1.0,{}−→ d, whereτ represents a label for
transitions with no label in the figure.

3.3 Simulation

Simulation checks whether all the paths obtained byk-
shortest paths search are feasible or not on the original prob-
abilistic timed automaton. We use the simulation algorithm
proposed in Paper[6] where we use some operations of DBM
(Difference Bound Matrix)[12] to obtain zones which are reach-
able from the initial state. If there is at least one path which is
infeasible on the original PTA, we proceed to the abstraction
refinement step.

Figure 7 shows the simulation results for two pathsω̂α and
ω̂β . Simulation concludes that the two paths are feasible on
the original PTA.

3.4 Abstraction Refinement

In this step, we refine the abstract model so that the given
spurious CE also becomes infeasible on the refined abstract
model. We can use the algorithm proposed in Paper[6]. Since
the algorithm of Paper[6] performs some operations on tran-
sitions of a timed automaton, we replace such operations by
those on probability distributions of a probabilistic timed au-
tomaton.

3.5 Compatibility Checking

When all the paths obtained byk-shortest paths search are
feasible and a summation of occurrence probabilities of them
is greater thanp, we also have to check whether all the paths
are compatible or not. In this compatibility checking step,
at each location of the paths, we have to obtain a condition
(zone) which is reachable from the initial state and also reach-
able to the last state along with the path. Next, we check the
compatibility of such conditions among all paths. To obtain
such conditions, we have to perform both forward simulation
shown in Sec. 3.3 and backward simulation for each path,
and merge the results. For the result of forward simulation,
we can reuse the result obtained in the Simulation step. Then
we check the compatibility based on Lemma 2.2.

Algorithm 1 BackwardSimulation(PTA, ω)
1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: Dω̂
b,n := I(ŝn)

3: for i := n− 1 downto0 do
4: Dω̂

b,i := Dω̂
b,i+1

5: Dω̂
b,i := down(Dω̂

b,i) /* reverse the time elapse */
6: Dω̂

b,i := and(Dω̂
b,i, I(ŝi+1))

7: Dω̂
b,i := free(Dω̂

b,i, ri) /* remove all constraints onri */
8: Dω̂

b,i := and(Dω̂
b,i, gi) /* (ŝi, ai, gi, pi) ∈ prob */

9: Dω̂
b,i := and(Dω̂

b,i, I(ŝi))
10: end for
11: return Dω̂
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3.5.1 Backward Simulation

Algorithm 1 implements the backward simulation. Func-
tions and, free, down used in the algorithm are operation
functions on a zone, and are defined in Paper[12]. Formally,
for a zoneD, a constraintc, and a setr of clock reset, those
functions are defined as follows;and(D, c) = {u | u ∈
D∧u ∈ c}, free(D, r) = {u | r(u) ∈ D}, anddown(D) =
{u | u+ d ∈ D ∧ d ∈ R≥0}

Figure 8 shows results of backward simulation for two paths
ω̂α andω̂β detected in Sec. 3.2.

3.5.2 Determination of Compatibility

In this step, we check compatibility of the setΩ̂ of paths
on the abstract model using the required conditions obtained
by both of forward and backward simulation. Algorithm 2
checks the compatibility of̂Ω using the Algorithm 3.

Algorithm 3 first checks whether the required conditions of
the i-th locations for each path are compatible or not (l2-l8)
using the results of forward and backward simulation. Next,

Algorithm 2 IsCompatible(PTA, Ω̂, Df , Db)

1: /* PTA = (A,L, l0, C, I, prob), Ω̂ is a set of abstract paths,
andDf andDb are sets of forward and backward simulation
results for each patĥω ∈ Ω̂,respectively. */

2: return CompatibleCheck(PTA, Ω̂, Df , Db, 0)
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Algorithm 3 CompatibleCheck(PTA, Ω̂, Df , Db, i)

1: D′ := true
2: foreachω̂ ∈ Ω̂ such thatlength(ω̂) ≥ i do
3: Dω̂

c,i := Dω̂
f,i ∩Dω̂

b,i

4: D′ := D′ ∩Dω̂
c,i

5: if D′ = ∅ then
6: return false
7: end if
8: end for
9: SΩ̂

i+1 := SplitPathSet(Ω̂, i+ 1)

10: /* split Ω̂ into a set of its subsets without overlap with respect to
thei+1-th location and clock reset for each path inΩ̂ */

11: foreach Ω̂′ ∈ SΩ̂
i+1 such that|Ω̂′| ≥ 2 do

12: if CompatibleCheck(PTA, Ω̂′, D, i+1)=false then
13: return false
14: end if
15: end for
16: return true

Algorithm 4 SplitPathSet(̂Ω, i)
1: S := ∅
2: foreachω̂ ∈ Ω̂ do
3: /* ω̂ = ŝ0

a0,p0,r0→ ŝ1
a1,p1,r1→ . . .

an−1,pn−1,rn−1→ ŝn */
4: if Ω̂ri−1,ŝi ̸∈ S then
5: Ω̂ri−1,ŝi := {ω̂}
6: S := S ∪ Ω̂ri−1,ŝi

7: else
8: Ω̂ri−1,ŝi := Ω̂ri−1,ŝi ∪ {ω̂}
9: end if

10: end for
11: return S

the algorithmdividesΩ̂ into some subsets of it based on the
(i+1)-th locations and the set of clock reset for each path (l9).
Then, it checks the compatibility for the following sequences
of paths by applying the algorithm into the divided subsets
recursively (l11-l15). Although the predicateisCompatible
in the Lemma 2.2 checks the compatibility for each subset of
Ω, the algorithm omit redundant checks by dividingΩ based
on the branches of the paths.

For the patĥωα in Sec. 3.2, zones ata which is reachable
from initial state and which can move tod are given asDω̂α

f,0 =

(x == y), andDω̂α

b,0 = (x < 1), respectively. Also, a zone

of the product of them is given asDω̂α

c,0 = (x == y ∧ x <

1). Similarly, for the patĥωβ , the product zone is given as
Dω̂β

c,0 = (x == y ∧ y > 1). SinceDω̂α

c,0 andDω̂β

c,0 contradict
each other, we can conclude that the pathsω̂α and ω̂β are
incompatible each other.

3.6 Model Transformation

When the compatibility check procedure decides a given
setΩ̂ of paths is incompatible ati-th location, our proposed
algorithm resolves the incompatibility by refining behaviors
from the i-th location. Our algorithm usesDω̂

c which is a
product of results of forward and backward simulation for a
pathω̂ ∈ Ω̂. It duplicates locations which are reachable from
the zoneDω̂

c,i by an action associated with thei-th distribution
pi. Also it constructs transition relations so that the trans-

Algorithm 5 TransformPTA(PTA, Dc, Ω̂, i)
1: Dcomplement := true
2: foreachω̂ ∈ Ω̂ do
3: Ldup := DuplicateLocation(PTA, ω̂,Dω̂

c,i, i)
4: L := L ∪ Ldup

5: probdup := DuplicateDistribution(PTA, ω̂, Ldup, i)
6: prob := prob ∪ probdup
7: Dcomplement := Dcomplement ∩Dω

c,i

8: end for
9: Ldup := DuplicateLocation(PTA, ω̂,Dcomplement, i)

10: L := L ∪ Ldup

11: probdup := DuplicateDistribution(PTA, ω̂, Ldup, i)
12: prob := prob ∪ probdup
13: prob := RemoveDistribution(PTA, ŝi, pi)
14: /* for all path ω̂ ∈ Ω̂, thei-th statêsi andi-th probability distri-

bution ispi */
15: return PTA

Algorithm 6 DuplicateLocation(PTA, ω̂,D, i)
1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: Ldup := ∅
3: foreach (l, r) ∈ L× 2C such thatpi(l, r) > 0 do
4: (l,D) := Succ((ŝi, D), e)
5: /* succ returns a successor state set through a given edgee,

ande = (ŝi, ai, g, pi, r, l) */
6: ldup := newLocation()
7: I(ldup) := D
8: Ldup = ldup
9: end for

10: return Ldup

formation becomesequivalent transformation. For example,
transition relations from a duplicated location are duplicated
if the relations are executable from the invariant associated
with the duplicated location.

Algorithm 5 transforms a given PTA with considering its
compatibility. The algorithm callsDuplicateLocation (Al-
gorithm 6) which duplicates locations,DuplicateDistribution
(Algorithm 7) which duplicates probabilistic transitions, and
RemoveDistribution (Algorithm 9) which removes proba-
bilistic transitions. The procedureSucc in Algorithms 6 and
8 calculates a successor state set from a given state setS
through a given edgee = (l, a, g, p, r, l′), i.e. Succ(S, e) =
{(l′, r(ν) + d) | (l, ν) ∈ S ∧ g(ν) ∧ I(l′)(r(ν)) ∧ ∀d′ ≤
d.I(l′)(r(ν) + d′)}
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Figure 9:A Transformed PTA
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Algorithm 7 DuplicateDistribution(PTA, ω̂, Ldup, i)

1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: probdup := ∅
3: pdup := newDistribution()
4: /* generate a new distribution overL× 2C */
5: foreach (l, r) ∈ L× 2C do
6: pdup(ldup, r) := pi(l, r)
7: /* ldup is a duplicate location ofl generated by DuplicateLo-

cation algorithm */
8: end for
9: probdup := Probdup ∪ {(ŝi, ai, g, pdup)}

10: /* (ŝi, ai, g, pi) ∈ prob */
11: foreach ldup ∈ Ldup do
12: probdup := Probdup∪
13: DuplicateDistFromDupLoc(PTA, ldup)
14: end for
15: return pdup

Algorithm 8 DuplicateDistFromDupLoc(PTA, ldup)

1: /* PTA = (A,L, l0, C, I, prob), and letl be an original loca-
tion of ldup */

2: probdup := ∅
3: foreach (l, a, g, p) ∈ Prob do
4: fdup := true,pdup := newDistribution()
5: foreach (l′, r) ∈ L× 2C do
6: if Succ((l, I(ldup)), e) ̸= ∅ then
7: /* e = (l, a, g, p, r, l′) */
8: pdup(l

′, r) = p(l, r)
9: else

10: fdup := false
11: break
12: end if
13: end for
14: if fdup then
15: /* duplicate the distribution if it is executable from the du-

plicate location */
16: Probdup := Probdup ∪ {(l, a, g, pdup)}
17: end if
18: end for

Figure 9shows the transformed PTA by applying the model
transformation procedure for the pathsω̂α andω̂β . The loca-
tionsb1 andc1 are duplicated locations based on the pathω̂α

and the zoneDω̂β

c,0 = (x == y ∧ x < 1) on the locationa.
We associate invariants tob1 andc1 based on zones which are
reachable fromDω̂β

c,0 through transitions froma to b, and from
a to c, respectively. Also, we duplicate a transition fromb to
d as the transition fromb1 to d because the transition is fea-
sible from the invariant ofb1. On the other hand, we do not
duplicate a transition fromc to d because the transition is not
feasible from the invariant ofc1. Similarly, locationsb2 and

Algorithm 9 RemoveDistribution(PTA, l, p)
1: /* PTA = (A,L, l0, C, I, prob), and letl be an original loca-

tion of ldup */
2: foreach (l, a, g, p) do
3: prob := prob \ {(l, a, g, p)}
4: end for
5: return prob

c2 are duplicatedlocations based on the patĥωβ and the zone
Dω̂β

c,0 . Locationsb3 andc3 are generated as complements of
the invariant associated with each duplicated location in order
to preserve the equivalence.

By transforming the original PTA in such a way, if we re-
move all clock constraints from the model in Fig. 9, Value
Iteration on its abstract model outputs 0.5 as the maximum
probability.

4 EXPERIMENTS

We have implemented a prototype of our proposed approach
with Java, and performed some experiments. Though the pro-
totype can check the compatibility of a given set of paths,
currently it cannot deal with the model transformation.

The prototype performsk-shortest paths search and simu-
lation concurrently in order to reduce execution time. By im-
plementing the algorithms concurrently, we have not to wait
until all of k paths are detected, i.e. if a path is detected by the
k-shortest paths search algorithm, we can immediately apply
simulation and (if needed) abstraction refinement procedures.

Also, our prototype continues thek-shortest search algo-
rithm when a spurious CE is detected and the refinement al-
gorithm is applied. If other paths which do not overlap with
the previous spurious CEs, are detected, we can apply sim-
ulation and refinement algorithms to it again. This helps us
reduce the number of CEGAR loop.

4.1 Goals of the Experiments

In this experiment, we evaluated the performance of our
proposed approach with regard to execution time, memory
consumption, and qualities of obtained results. As a target
for comparison, we chose the approach of Digital Clocks[3]
where they approximate clock evaluations of a PTA by integer
values.

4.2 Example

We used a case study of the FireWire Root Contention Pro-
tocol[13] as an example for this experiment. This case study
concerns the Tree Identify Protocol of the IEEE 1394 High
Performance Serial Bus (called “FireWire”) which takes place
when a node is added or removed from the network. In the
experiment, we checked the probability that a leader is not
selected within a given deadline. The probabilistic timed au-
tomaton for the example is composed of two clock variables,
11 locations, and 24 transitions.

4.3 Procedure of the Experiments

In this experiment, we checked the property that “the prob-
ability that a leader cannot be elected within a givendeadline
is less thanp.” We considered three scenarios where the pa-
rameterdeadline is 5, 10, 20µs, respectively. Also, for each
scenario, we conducted two experiments where the value ofp
is 1.5 times as an approximate value of the maximum proba-
bility obtained by the Digital Clocks approach[3] and a half
of it, respectively. In the proposed approach, we searched at
most 5000 paths by letting the parameterk of thek-shortest
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Table1: Experimental Result
Digital Clocks[3] Proposed Approach

D(µs) p Result T ime(s) State MEM(MB) Result T ime(s) Loop State Heap(MB)

5
1.09×10−1 false 20.90 297,232 10.2 false 4.19 10 37 8.0
3.28×10−1 true 20.89 297,232 10.2 true 3.60 9 36 8.0

10
1.26×10−2 false 54.80 685,232 21.7 false 8.16 19 134 8.0
3.79×10−2 true 54.82 685,232 21.7 true 6.57 15 115 8.0

20
1.85×10−4 false 176.93 1,461,232 41.0 false 1186.08 47 477 64.0
5.56×10−4 true 177.46 1,461,232 41.0 true 31.32 32 435 8.0

Table2: Analysis of Counter Example Paths
D(µs) p Path Probability CC(ms)

5 1.0938×10−1 7 1.2500×10−1 0.7
10 1.2635×10−2 43 1.2695×10−2 5.9
20 1.8500×10−4 2534 1.8501×10−4 296.9

pathssearchalgorithm be 5000. For evaluation of existing ap-
proach, we used the probabilistic model checker PRISM[14].

The experiments were performed under Intel Core2 Duo
2.33 GHz, 2GB RAM, and Fedora 12 (64bit).

4.4 Results of the Experiments

The results are shown in Table 1. The column ofD means
the value ofdeadline. For each approach, columns ofResults,
Time, andStates show the results of model checking, exe-
cution time of whole process, and the number of states con-
structed, respectively. The columnMEM in the columns of
the Digital Clocks shows the memory consumption of PRISM.
The columnsLoop andHeap in the columns of the proposed
approach show the number of CEGAR loops executed and the
maximum heap size of the Java Virtual Machine (JVM) which
executes our prototype, respectively.

Table 1 shows that for all cases we can dramatically reduce
the number of states and obtain correct results. Moreover, we
can reduce the execution time more than 80 percent except for
the case whendeadline = 20µs andp = 1.85 × 10−4. In
this case, however, the execution time drastically increases.

Table 2 shows the results of analysis of CE paths obtained
when the results of model checking are false. The columns
of Path, Probability andCC show the number of CE paths,
the summation of occurrence probability of them, and exe-
cution time for compatibility checking, respectively. For this
example, the obtained sets of CE paths are compatible in ev-
ery case.

4.5 Discussion

From the results shown in Table 1, we can see that our pro-
posed approach is efficient with regard to both execution time
and the number of states. Especially, the number of states
decrease dramatically. The execution time is also decreased
even though we perform model checking several times shown
in the column ofLoop.

On the other hand, in the case whendeadline = 20µs and
p = 1.85×10−4, the execution time increases drastically. We
think that as shown in Table 2 we have to search 2534 paths

and this causes the increase of execution time especially fork-
shortest paths search. A more detailed analysis shows that the
execution time fork-shortest paths search accounts for 1123
seconds of total execution time of 1186 seconds. Also, the
results shows that the JVM needs 64MB as its heap size in this
case. This is because compatibility checking for 2534 of paths
needs a large amount of the memory. From the results, we
have to resolve a problem of the scalability when the number
of candidate paths for a CE becomes large.

5 CONCLUSION

This paper proposed the abstraction refinement technique
for a probabilistic timed automaton by extending the existing
abstraction refinement technique for a timed automaton.

Future work includes completion of implementation. Gen-
eral DBM does not supportnot operator[15]; so we have to
investigate efficient algorithms for thenot operator.
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