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Abstract - Model checking techniques are considered as
promising techniques for verification of information systems
due to their ability of exhaustive checking. Well-known state
explosion, however, might occur in model checking of large
systems. Such explosion severely limits the scalability of
model checking. In order to avoid it, several abstraction tech-
niques have been proposed. Some of them are based on
CounterExample-Guided Abstraction Refinement (CEGAR)
technique proposed by E. Clarkeal.

This paper proposes a reachability analysis technique for
probabilistic timed automata. In the technique, we abstract
time attributes of probabilistic timed automata by applying
our abstraction refinement technique for timed automata pro-
posed in our previous work. Then, we apply probabilistic
model checking to the generated abstract model which is just
a markov decision process (MDP) with no time attributes.
This paper also provides some experimental results on apply-
ing our method to IEEE 1394, FireWire protocol. Experi-
mental results show our algorithm can reduce the number of
states and total execution time dramatically compared to one
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1 INTRODUCTION last step is repeated until the valid output is obtained. In the
CEGAR loop, an abstract model must satisfy the following
Model checking[1] technigues are considered as promisingproperty: if the abstract model satisfies a given specification,
techniques for verification of information systems due to their the concrete model also satisfies it.
ability of exhaustive checking. For verification of real-time In Paper[6], we have proposed an abstraction algorithm
systems such as embedded systems, timed automata are oftéor timed automata based on CEGAR. In this algorithm, we
used. On the other hand, probabilistic model checking[2]-[4] generate finite transition systems as abstract models where
can evaluate performance, dependability and stability of in- all time attributes are removed. The refinement modifies the
formation processing systems with random behaviors. In re-transition relations of the abstract model so that the model
cent years, probabilistic models with real-time behaviors, calleblehaves correctly even if we don't consider the clock con-
probabilistic timed automata (PTA) attract attentions. As well straints.
as traditional model checking techniques, however, state ex- This paper proposes a reachability analysis technique for
plosion is thought to be a major hurdle for verification of probabilistic timed automata. In the technique, we abstract
probabilistic timed automata. time attributes of probabilistic timed automata by applying
Clarkeet al. proposed an abstraction technique called CE- our abstraction technigque for timed automata proposed in Pa-
GAR (CounterExample-Guided Abstraction Refinement)[5] per[6]. Then, we apply probabilistic model checking to the
shown in Fig. 1. In the CEGAR technique, we use a counter generated abstract model which is just a markov decision pro-
example (CE) produced by a model checker as a guide to recess (MDP) with no time attributes. The probabilistic model
fine abstracted models. A general CEGAR technique consistghecking algorithm calculates a summation of occurrence prob-
of several steps. First, it abstracts the original model (the ob-ability of all paths which reach to a target state for reacha-
tained model is called abstract model) and performs modelbility analysis. For probabilistic timed automata, however,
checking on the abstract model. Next, if a CE is found, it we have to consider required clock constraints for such paths,
checks whether the CE is feasible on the concrete model orand choose the paths whose required constraints are compat-
not. If the CE is spurious, it refines the abstract model. Theible. Since our abstract model does not consider the clock
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constraints, weadd a new flow where we check whether all
paths used for probability calculation are compatible. Also, if
they are not compatible, we transform the model so that we do
not accept such incompatible paths simultaneously. The pro-
posed procedure for the probabilistic timed automata is shown
in Fig. 2.

This paper also provides some experimental results on ap-
plying our method to some examples. Experimental results
show our algorithm can reduce the number of states and to-
tal execution time dramatically compared to one of existing
approaches.

Several papers including Paper[3] have proposed proba-
bilistic model checking algorithms. These algorithms, how-
ever, don't provide CEs when properties are not satisfied. Our
proposed method provides a CE as a set of paths based on
k-shortest paths search. This is a major contribution of our
method. The proposed method also performs model checking
considering compatibility problem. Few approaches resolve
the compatibility problem. Paper [16] resolves the compati-
bility problem in a similar way to us. It, however, uses another
approach (, which is based on a natural technique called pred-
icate abstraction of clocks constraints). to abs:tract the modelg gt in, andin, be elements of(C), iny A ins is also an
and the pgper_doesn't perform evaluatl|on whllg our approachgjement of(C)
uses a quite simple abstraction technique, which remeves all
of clock attributes, and this paper also shows the efficiency A zoneD € ¢(C) is described as a product of finite dif-
via performing experiments. ferential inequalities on clock sét, which represents a set of

The organization of the rest paper is as follows. Sec.2 pro-clock assignments that satisfy all the inequalities. In this pa-
vides some definitions and lemmas as preliminaries. Sec.3 deper, we treat a zon® as a set of clock assignmemts= RS,
scribes our proposed abstraction technique for the probabilis{For a zoneD, v € D means the assignmensatisfies all the
tic timed automaton. Sec.4 gives some experimental resultsinequalities inD).

Finally, Sec.5 concludes the paper and gives future works. N o
2.2 Probability Distribution

2 PRELIMINARY A discrete probability distribution on a finite s@tis given
as the function : @ — [0, 1] such that,cqu(g) = 1. Also,

This section gives some definitions about models used in :
. . . t(w) isasubset of) suchthat/q € t(w). >
this paper and also describes a general CEGAR technique. Surf(ﬁg;(u) or q € support(p).i(q)

Figure 4:Examples of Adversaries

2.1 Clock and Zone 2.3 Markov Decision Process

Let C be a finite set of clock variables which take non- A Markov Decision Process (MDP)[7] is a markov chain
negative real valueR:o). Amapr : C — Rxpiscalleda  with non-deterministic choices.
clock assignment. The set of all clock assignments is denoted_ . o )
by RS,. For anyv € RS, andd € Rs, we use(v + d) to D_ef|n|t|on 2.3 (Mar_kov Decision Process)A markov deci-
denote the clock assignment definedas d)(z) = v(z)+d  SION Process/DP is 3-tuple(S, so, Steps), where
for all = € C. Also, we user(v) to denote the clock assign- - & finite set of states;

ment obtained frony by resetting all of the clocks in C C so € 5t aninitial st{:\te; and _ . .
to zero. Steps C S x A x Dist(S): a probabilistic transition relation

whereDist(S) is a probability distribution oves.
Definition 2.1 (Differential Inequalities o). Syntax and
semantics of a differential inequalit} on a finite setC' of
clocks is given as follows:
E:=xz—y~al|zx~a,
wherex,y € C, a is a literal of a real number constant, and
~e {<,>,<,>}. Semantics of a differential inequality is
the same as the ordinal inequality.

In our reachability analysis procedure, we transform a given
PTA into a finite MDP, and perform probabilistic verification
based on the Value Iteration[8] technique.

Figure 3 shows an example of an MDP. In the figure, prob-
ability distributions are associated with transitions. In the fig-
ure, transitions which belong to the same distribution are con-
nected with a small arc at their source points. The MDP has
Definition 2.2 (Clock Constraints or?). Clock constraints several non-deterministic choices at the state 1 and 4. For

¢(C) on a finite setC of clocks is defined as follows: example, at the state 1, we have two choidgsthe control
A differential inequalityin on C' is an element o(C). moves to the state 2 with the probability 0.2 and to the state
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3 with the probability 0.82) the control moves to the state 4
with the probability 1.0.

2.3.1 Adversary

An MDP has non-deterministic transitions called action. To

15

Figure 5:An Example of a PTA

resolve the non-determinism, an adversary is used. The adver-

sary requires a finite path on an MDP, and decides a transitio
to be chosen at the next step.

Figure 4 shows examples of resolving the non-determinism

of the MDP shown in Fig. 3 by some adversaries. Figure 4.

nFor a transition;

a,g,r

- Iy (e T), the following two transi-
tions are semantically defined. The former one is called an
action transition, while the latter one is called a delay transi-

tion

a) is the case where we choose the action which moves to the ™

state 2 or state 3 at the initial state 1. On the other hand,

andc) are the cases where we choose the action which moves

to the state 4 at the initial state 1. In the casé)ofve choose

a,g,r

lh == 1o, g(), 1(I2)(r(v))
(I, v) = (I2,r(v))

Vd <d I(l)(v+d)
(1,v) 2 (I, v+d)

the action which moves to the state 7 when we move from the Definition 2.6 (A Semantic Model of a Timed Automaton).

state 1 to state 4. Also, in the casecpfwe choose the action
which moves to the state 8 in the same trace.

Here, if we want to obtain the reachability probability from
the state 1 to the state 10, under the adversany)ofve can
obtain the probability 0.08 (= 0.& 0.2 x 0.5), which is the
minimum reachability probability. On the other hand, under
the adversary of), we can obtain the probability 1.0 (=0Lx
1.0 x 1.0), which is the maximum reachability probability.

2.3.2 Value lteration

A representative technique of model checking for an MDP is
Value Iteration[8]. The Value lIteration technique can obtain
both of maximum and minimum probabilities of reachability

For timed automatowy = (A, L, ly, C, I, T), an infinite tran-
sition system is defined according to the semanticsqf
where the model begins with the initial state.

2.5 Probabilistic Timed Automaton

A PTAis a kind of a timed automaton extended with prob-
abilistic behavior. Therefore, using the PTA, we can evalu-
ate quantitative properties such as performance of information
systems based on the probabilistic model checking technique.
In the PTA, a set of probabilistic distributions is used instead
of a setl” of discrete transitions on the timed automaton.

Definition 2.7 (Probabilistic Timed Automaton)A proba-
bilistic timed automatorPT A is a 6-tuple(A, L, ly, C,

and safety properties, respectively. At each state, Value Itera-J, prov), where
tion can select an appropriate action according to the propertyA: a finite set of actions;
to be checked. Therefore, the technique can produce the adf.: a finite set of locations;

versary as well as the probability.

2.4 Timed Automaton

Definition 2.4 (Timed Automaton) A timed automatony’ is
a 6-tuple(A, L, ), C,I,T), where

A: afinite set of actions;

L: afinite set of locations;

lp € L: aninitial location;

C' afinite set of clocks;

I C (L — ¢(C)): a mapping from locations to clock con-
straints, called a location invariant; and
TCLxAxc(C)xZxL,

wherec(C) is a clock constraint, called guards;

Z = 2¢: a set of clocks to reset.

A transitiont = (I1,a,g,r,l3) € T is denoted by, %
lo. Amapr : C — Ry is called a clock assignment. We
define(v + d)(z) = v(z) + dford € R>g. r(v) = vz —
0], € r, wherev[z — 0] means the valuation that maps
into zero, is also defined forc 2¢.

Definition 2.5 (Semantics of a Timed Automatonsiven a
timed automaton’ = (A, L, ly,C,1,T), letS C L x RS,
be a set of whole states of. The initial state ofe7 shall be
given as(lp, 0¢) € S.

lp € L: an initial location;

C': afinite set of clocks;

I C (L — ¢(C)): alocation invariant; and

prob C L x A x ¢(C) x Dist(2¢ x L): afinite set of prob-
abilistic transition relations, whergC) represents a guard
condition, andDist(2¢ x L) represents a finite set of proba-
bility distributionsp. The Distributionp(r, 1) € Dist(2¢ x L)
represents the probability of resetting clock variablesamd
also moving to the locatioh

Figure 5 shows an example of a PTA. In the figure, from
the locationa, it moves to the locatioh with the probability
0.5 and also moves to the locatioretting the value of the
clock x reset to zero with the probability 0.5. Both of the
arcs starting location are connected with a small arc at their
source points, which represents that they belong to the same
probability distribution.

Definition 2.8 (Transitions of a Probabilistic Timed Automa-
ton). ForPTA = (A, L,ly,C, I, prov), 6-tuple(l, a, g,p,r,1")
represents a transition generated by a probabilistic distribu-
tion (1, a, g, p) € prob such thap(r,l’) > 0.

Definition 2.9 (Semantics of a Probabilistic Timed Automa-
ton). Semantics of a probabilistic timed automatBi’ A =
(A, L,ly,C,1,prob) is given as a timed probabilistic system
TPSpra = (S, so, T Steps) where,
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e SCL xR
e 59 = (lp,0%); and

e T'Steps C S x AUR>( x Dist(S) is composed of
action transitions and delay transitions.

a) action transition
if « € A and there exist§l, a, g, p) € prob such
thatg(v) andI(I")(r(v)) forall (r,1") € support(p),
((l,v),a, 1) € TSteps where for all(’,v') € S

>

rCCAv'=r(v)

p(l',v") p(r,1').

b) delay transition
if d € Rxp, and for alld’ < d, I()(v + d'),
((l,v),d, n) € TSteps wherep(l,v +d) = 1.

The concrete delay in the delay transition can be decided
non-deterministically on the semantics of a probabilistic timed
automaton as well as those of a timed automaton.

In this paper, using a locatidrand a zoneD, we describe
a set of semantic states@sD) = {(l,v) | v € D}.

A probabilistic timed automaton is said to be well-formed
if a probabilistic edge can be taken whenever it is enabled[2].
Formally, a probabilistic timed automatdtil" A = (A4, L, I,

C, I, prob) is well-formed if

Y(l,g,p) € prob. Vv € Rgo. (9(v))
— Y(r,1) € support(p). I(1)(r(v)).

In this paper, we assume that a given PTA is well-formed.

Definition 2.10 (Path on a Timed Probabilistic Systemj.
pathw with length ofn on a timed probabilistic system
TPSpra = (S, s, TSteps) is denoted as follows.

di,p1

1, on—
EL e

do,
W = (l07’/0) O—MQ (l1,V1) 7L7V’rb)

((lm Vi)? d“M) € TSteps A ((l“ v; + d2)707M1) € TSteps A
(liy1, vip1) € support(p;) for0 <i<n—1.

, where (lp, ) = so, (li,v;)) € Sfor0 < i < n and

For model checking of a probabilistic timed automaton, we
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compatible.

isCompatible(w®,w?) =
10 Ady =d]
,m) such that

true, if Vi < min(n,m). 3
or there exists < min
1 #10nde = dP A

: - B a _ gB
Vi <ilf =10 Nd} =d;
false otherwise.

(n

Above predicatesCompatible stands for that two paths
are compatible if and only if one path is a prefix of the other,
or same amount of delay is executed in both paths at the
branching point of them.

Lemma 2.2 (Compatibility of a set of paths)If a set(2 of
paths on a timed probabilistic systéfiPSpr4 satisfies the
following predicateisCompatible, then all of the paths over
Q) are said to be compatible.

isCompatible(Q)) =

true, if Vi <min(Q) J\ (¢ =1 AdY=d))

w® wheq
Aw#wB

or there exists < min(2) such that
N\ A de=dl AN\15= 15 A ds'= df)),

wewBen <t
Aw®#whB
and also /\ isCompatible(Q')
Q€292
Q' £QA|Q)| <2

false otherwise

In Lemma2.2, we give the predicateCompatible for a
set() of paths on a timed probabilistic system. In the lemma,
we let paths i) be compatible if there is no contradiction
with respect to time elapsing at the branching point of all the
paths in2, and also if the compatibility is kept for every sub-
set of(2 which contains more than two paths.

Next, we give a simple example of a pair of paths which
does not satisfy the compatibility. In the Fig. 5, paths from
the locatioru to d are given a&s® = (a,z =0Ay = 0) %08
(byx =0Ay =0) ey (d,x = 0 Ay = 0) which reaches
to d throughb, andw® = (a,z = 0 Ay = 0) 225 (c,z =
0Ny = 1) 219 (d,x = 0 Ay = 1) which reaches tal
throughc. In the pathw®, we are required to let delay at the
locationa be less than one unit of time because of the guarded
conditionz < 1 of the transition betweeh andd. On the
other hand, in the path®, we are required to let delay abe

extract a number of paths and calculate a summation of theifdrater than or equal one unit of time because of the condition

occurrence probabilities in order to check the probability of

satisfying a given property. The important point is that we

have to choose a set of paths which are compatible with re-
spect to time elapsing.

Lemma 2.1 (Compatibility of two paths).If two pathsw® =

d ,mg

a ..o a oy ATHT Ay 11 a
b b
(g, v§) = (I¢8,vp) — ... — (1%, v) and
dg.uf FLT LTI
wh = (lg,l/g) == (lfvylﬁ) = — (lrﬁnayrﬁn)

on a timed probabilistic systeffiPSpr 4 satisfy the follow-
ing predicateisCompatible, thenw® andw” are said to be

x == 0 Ay > 1 of the transition betweenandd. Like the
pathw® andw?, if the required conditions of time elapsing at
the branching point are contradict, we cannot use such paths
simultaneously in the probability calculation.

2.6 CounterExample-Guided Abstraction
Refinement
2.6.1 General CEGAR Technique

Since model abstraction sometimes over-approximates an orig-
inal model, we may obtain spurious CEs which are infeasible
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on theoriginal model. Paper [5] gives an abstraction refine-
ment framework called CEGAR (CounterExample-Guided Ab-
straction Refinement) (Fig. 1).

In the algorithm, at the first step (called Initial Abstrac-
tion), it generates an initial abstract model. Next, it performs
model checking on the abstract model. In this step, if the Figure 6:An Initial Abstract Model
model checker reports that the model satisfies a given spec-

ification, we can conclude that the original model also satis- ral. The tvoical broperties. however. are safety and broar
fies the specification, because the abstract model is an overErdl- Thetypical properties, NOWEVer, are salety and progress.

approximation of the original model. If the model checker The reachability analysis is the primitive procedure for safety

reports that the model does not satisfy the specification, how-CheCk'ng’ thus model checking problems on several impor-

ever, we have to check whether the CE detected is spuriou§ant prop(_arties rep_resented in CTL could be reduced_i_nto the
or not in the next step (called Simulation). In the Simulation reachability analysis problem. Therefore, the reachability anal-

step, if we find that the CE is valid, we stop the loop. Oth- ysis is importgnt problem. On the other hand, the limitation

erwise, we have to refine the abstract model to eliminate theo.f the propertles that we f:an check deny es from the apstrac-

spurious CE, and repeat these steps until valid output is ob-tIon technique proposed in P_aper[6]. Slnce_ _the_tech_nlque of

tained. Paper[6] focuses on properties of reachability, in this paper
we also focus on reachability properties only.

2.6.2 CEGAR Technique for a Timed Automaton 3.1 |Initial Abstraction

In Paper[6], we have proposed the abstraction refinement tech- The initial abstraction removes all the clock attributes from
nique for a timed automaton based on the framework of CE- 5 given probabilistic timed automaton as well as the technique
GAR. In this approach, we remove all the clock attributes jn paper(6]. The generated abstract model over-approximates

from a timed automaton. If a spurious CE is detected by the original probabilistic timed automaton. Also, the abstract
model checking on an abstract model, we transform the tran-model is just an MDP without time attributes.

sition relation on the abstract model so that the model behaves
correctly even if we don’t consider the clock constraints. Such Definition 3.1 (Abstract Model). For a given probabilistic
transformation obviously represents the difference of behav-timed automatod®T'A = (4, L, ly, C, I, prob), a markov de-
ior caused by the clock attributes. Therefore, the finite num- cision proces3/ DPpra = (S, 39, Steps) is produced as its
ber of application of the refinement algorithm enables us to abstract model, where
check the given property without the clock attributes. Since N
our approach does not restore the clock attributes at the re- o 5=L
finement step, the abstract model is always a finite transition o 5, =
system without the clock attributes. .

e Steps = { (s,a,p) | (s,a,g,p) € prob}

3 PROPOSED APPROACH Figure 6 shows an initial abstract model for the PTA shown

In this section, we will present our abstraction refinement IN Fig- 5 As shown in the figure, the abstract model is just an
technique for a probabilistic timed automaton. In the tech- MDP where all of the clock constraints are removed though
nique, we use the abstraction refinement technique for a timedVe keep a set of clock reset as a label of transitions.
automaton proposed in Paper[6]. Though the probability cal- .
culated on the abstract model may be spurious because thg"2 Model Checking

applications of the refinement algorithm enables us to ob-markoy decision process obtained by abstraction and calcu-
tain correct results on the abstract model. In addition, we |ate a maximum reachability probability. Also, it decides an
resolve the compatibility problem shown in Sec.2.5 by per- action to be chosen at every state as an adversary. If the ob-
forming a backward simulation technique and generating ad-t3ined probability is less than we can terminate the CEGAR
ditional location to distinguish the required condition for ev- loop and conclude that the property is satisfied.
ery incompatible path. Figure 2 shows our abstraction refine-  ajthough Value Iteration can calculate a maximum reach-
ment framework. As shown in the figure, we add another flow zpjlity probability, it cannot produce concrete paths used for
where we resolve the compatibility problem. the probability calculation. To obtain the concrete paths, we
Our abstraction requires a probabilistic timed automaton \;se an approach proposed in Paper[11] which can produce CE
PT A and a property to be checked as its inputs. The propertypaths for PCTL formulas. The approach translates a proba-
is limited by the PCTL formulaP.,[true U err]. The for-  pjjistic automaton into a weighted digraph. And we can ob-

mula represents a property that the probability of reaching totain at most: paths by performing-shortest paths search on
states whererr (which means an error condition in general) ' the graph.

is satisfied, is less than
In model checking techniques, several properties presented
in CTL[9], LTL[10], and others would be checked in gen-
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Definition 3.2 (Path on the Abstract Model)A path & on Algorithm 1 BackwardSimulationPT' A, w)

an abstract model/ DPpry = (S, 50, Steps) for PTA = 1 /* PTA = (A, L,l,C,I,prob)
(A, L,ly,C,I,prob) is given as follows, G = g MRG0 g LPLTL  OnbPrel el oy
2: Dy, = 1(3,)
G = §o 1Ry g LRI Gnmb P g 3: for i :=n — 1 downto0 do
4: DlL;i =Dy i1 )
, wheres; € Sfor0 < i < nand(3;,a,p;) € Steps A 5 Dy, = down(Dy) I* reverse the time elapse */
(ri,8i11) € support(p;) for0 <i<n—1. 6. Dy = and(Dy;, (3i41))
7. Dy, := free(Dy;,ri)  [*remove all constraints on; */
As defined in Def. 3.2, we associate a self clock reset 8: Dy, :=and(D{;,9:) * (8, ai, gi, pi) € prob*/
with a path on an abstract model in order to show the differ- 9: Dy, := and(Dy;, 1(3:))

ence ofr over the probabilistic distributiop. 10: end for
For the abstract model shown in Fig. 6, Value Iteration out- 11: return Dy
puts 1.0 as the probability that it reaches to the locafiyrom

the locationa. On the other handi-shortest paths search Apath!f’sn the “tfajct!mde Apathoosn theastralcgmode
9) a :O - a
(/{ > 2) detects two path@a = a T’ﬁ){} b T’ﬂ} d and Acorrgsg)onding pat? on the PTA Acor)lf(e)tsgonding patf(c))n the PTA
-5 _ 05 {m=0} 7.10,{} @—=>—0— 70
wf=a == ¢ > d,wherer represents alabel for y>=1
transitions with no label in the figure Reachable zones from the initial state Reachable zones from the initial state
’ a 05_ b 10_ d a 05 ¢ 10_d
X==y X==y > x==y & x<1  x==y y>=X y-x>=1

3.3 Simulation _ _ _
Figure 7:Simulation Results for a Set of Paths

Simulation checks whether all the paths obtainedkby

shortest paths search are feasible or not on the original prob- "% "¢ B2f{mo% o A.patho(.’sn the;a.StrameOdf.

abilistic timed automaton. We use the simulation algorithm A corresponding path on the PTA Acorxr(‘e)égonding path on the PTA

proposed in Paper[6] where we use some operations of DBM ~ @—2>—0—13—0 == >O5=020
i Bound Matrix)[12] to obtai hich h i

(DI erence boun a I’IX)[ ] 0 obtain zones which are reach- Zones which are reachable to d Zones which are reachable to d

able from the initial state. If there is at least one path which is a 05 b _10 d a 05 ¢ 10 d
infeasible on the original PTA, we proceed to the abstraction ~ ** x< true y>=1 ;:2& true
refinement step.

Figure 7 shows the simulation results for two patfisand  Figyre 8:Results of Backward Simulation for a Set of Paths
&P, Simulation concludes that the two paths are feasible on
the original PTA. 3.5.1 Backward Simulation

. . Algorithm 1 implements the backward simulation. Func-
3.4 Abstraction Refinement tions and, free, down used in the algorithm are operation

In this step, we refine the abstract model so that the given Unctions on a zone, and are defined in Paper[12]. Formally,

spurious CE also becomes infeasible on the refined abstraci?" & ZoneD), a constraint, and a set- of clock reset, those
model. We can use the algorithm proposed in Paper{6]. Sincglunctions are defined as followsind(D.c) = {u | u €

the algorithm of Paper[6] performs some operations on tran-2 /A % € c}, free(D,r) = {u|r(u) € D}, anddown(D) =
{U|’U/+dED/\dER20}

sitions of a timed automaton, we replace such operations by'™ | h its of back imulation f h
those on probability distributions of a probabilistic timed au- F|gur? 8 shows resu ts of backward simulation for two paths
& andw” detected in Sec. 3.2.

tomaton.

3.5 Compatibility Checking 3.5.2 Determination of Compatibility

. In this step, we check compatibility of the setof paths
When all the paths obtained tyshortest paths search are ,, yhe apstract model using the required conditions obtained
feasible and a summation of occurrence probabilities of themby both of forward and backward simulation. Algorithm 2

is greater tham, we also have to check whether all the paths checks the compatibility of? using the Algorithm 3.

are compatible or not. In this compatibility checking step, — ajqorithm 3 first checks whether the required conditions of
at each location of the paths, we have to obtain a conditiony,e ; +h |ocations for each path are compatible or Hatig)
(zone) which is reachable from the initial state and also reach—using the results of forward and backward simulation. Next,
able to the last state along with the path. Next, we check the

compatibility of such conditions among all paths. To obtain Algorithm 2 IsCompatiblePT 4, Dy, Dy)

such conditions, we have to perform both forward simulation ok
shown in Sec. 3.3 and backward simulation for each path, 1 /* PTA = (A, L, b, C, I, prob), {2 is a set of abstract paths,
and merge the results. For the result of forward simulation, ?:sdullt)sf f;‘r”: £’F] ;;hsz%or‘(e;%z\(’:?iye;”f/ backward simulation
we can reuse the result obtained in the Simulation step. Then _ ; ' AT

we check the compatibility based on Lemma 2.2. 2: reum CompatibleCheck(PT4, €, Dy, D, 0)
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Algorithm 3 CompatibleCheck¢T A, ), Dy, Dy, i)

1. D' :=true
. foreach® €  such thatength(w) > i do
D¢, = DY, N Dg,
D' :=D'NnDZ,
if D' = () then
return false
end if
: end for
© S, = SplitPathSet ()i + 1)
- I* split Q2 into a set of its subsets without overlap with respect to
thei+1-th location and clock reset for each patt(irt/
foreach Y’ € S such thalQ’| > 2 do
it CompatibleCheck(PTA,SY, D,i+1)=false then
return false
end if
end for
return true

2
3
4:
5:
6
7
8
9

10

11:
12:
13:
14:
15:
16:

Algorithm 4 SplitPathSet(, i)
1. S:=0 R
2: foreachw € Q2 do

3 o = G (U0 gy GVRLTL L Anh Pl oy
4: ifQ, s & Sthen

5: QTFI,% = {(1}}

6: S:=SU anlﬁi

7: elsg A

8: Q5 1=y 5, U{0}

9: endif

10: end for

11: return S

the algorithmdivides( into some subsets of it based on the
(i+1)-th locations and the set of clock reset for each paih (I
Then, it checks the compatibility for the following sequences
of paths by applying the algorithm into the divided subsets
recursively (11-/15). Although the predicatésCompatible
in the Lemma 2.2 checks the compatibility for each subset of
Q, the algorithm omit redundant checks by dividifigbased
on the branches of the paths.

For the pathu® in Sec. 3.2, zones atwhich is reachable
from initial state and which can move dare given as?)j?:) =
(x ==vy), andngS = (x < 1), respectively. Also, a zone
of the product of them is given al§‘g’3 =(z==yAzx<
1). Similarly, for the patho?, the product zone is given as
Dgg = (z ==y Ay > 1). SinceD% ande’g contradict
each other, we can conclude that the patfisand &” are
incompatible each other.

3.6 Model Transformation

When the compatibility check procedure decides a given
set(} of paths is incompatible atth location, our proposed
algorithm resolves the incompatibility by refining behaviors
from the i-th location. Our algorithm use®* which is a
product of results of forward and backward simulation for a
pathe € Q. It duplicates locations which are reachable from
the zoneD¥, by an action associated with th¢h distribution
p;. Also it constructs transition relations so that the trans-

Algorithm 5 TransformPTAPT A, D, €, 7)

1: Dcomplement = true
: foreachw € Q) do
' Lagup := DuplicateLocation(PT A, &, Dii, 1)
L:=LU Lauy
probaup := Duplicate Distribution(PT A, O, Layp, 1)
prob := prob U probguy

. Dcomplement = Dcomplement N D((ﬁz

. end for

i Laup := DuplicateLocation(PT A, &, Deompiement, ©)

L := LU Lgyp

probaup := Duplicate Distribution(PT A, &, Laup, 1)

prob := prob U probguy

prob := RemoveDistribution(PT A, 3;, p;)

/*for all path & € €2, thei-th states; andi-th probability distri-
bution isp; */

return PTA

2
3
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:

15:

Algorithm 6 DuplicateLocationPT A, &, D, 1)
1. /* PTA=(A,L,ly,C,I,prob)

=35 OB s HT

An—1Pn-1>Tn—1 . 4
= Sn ¥l

2: Laup :=0

3: foreach (I,7) € L x 2° such thap;(I,r) > 0 do

4:  (I,D) := Succ((8i, D), e)

5. I* succ returns a successor state set through a given edge
ande = (8;,a, g, pi, 1, 1) */

6:  lgup := newLocation()

70 I(lgup) := D

8: Ldup = ldup

9: end for

10: return  Lgup

formation becomesgquivalent transformation. For example,
transition relations from a duplicated location are duplicated
if the relations are executable from the invariant associated
with the duplicated location.

Algorithm 5 transforms a given PTA with considering its
compatibility. The algorithm call®uplicate Location (Al-
gorithm 6) which duplicates locationBuplicate Distribution
(Algorithm 7) which duplicates probabilistic transitions, and
RemoveDistribution (Algorithm 9) which removes proba-
bilistic transitions. The procedutgucc in Algorithms 6 and
8 calculates a successor state set from a given stat§ set
through a given edge = (I, a,g,p,r,1'), i.e. Succ(S,e)
{U;r(v) +d) | (Lv) € SAgw) AN (r(v)) AV
d.I(U)(r(v) + d')}

A

T(x==y)&(x>=18&x==y)
0.5

x:=0 —(0<=y-x<1)&(y-x>=1)

Figure 9:A Transformed PTA



20

Algorithm 7 DuplicateDistrilution(PT A, &, Lup, ©)
1. /* PTA=(A,L,ly,C,I,prob)
G = IO 5 EYTE
: probaup = 1]
Pdup := newDistribution()
I* generate a new distribution ovér x 2¢ */
. foreach (1,7) € L x 29 do
Paup (ldup,T) = pi(l,7)
I* l4up is a duplicate location dfgenerated by DuplicateLo-
cation algorithm */
8: end for
9: probaup := Probaupy U {(8i, i, g, Pdup) }

An—1,Pn1>Tn-1 ,
- Sn */

Noahrwd

10: * (3i,a:,9,p:) € prob*/
11: foreachlgup € Lgup dO

12:  probgup := Probgu,U

13: DuplicateDist FromDupLoc(PT A, lqup)
14: end for

15: return pau,

Algorithm 8 DuplicateDistFromDupLod?T' A, l4.p)

1. /* PTA = (A, L,lo,C,I,prob), and letl be an original loca-
tion of lgup */

2. probaup =0
3: foreach (1, a, g,p) € Probdo
4 faup = true,paup := newDistribution()
5. foreach(l',r) € L x 2° do
6: if Suce((l,I(laup)),e) # 0 then
7: *e=(,a,g,p,r,1')*
8: pdup(l/7r) :p(l,r)
9: else
10: faup = false
11: break
12: end if
13:  endfor
14:  if fqup then
15: /* duplicate the distribution if it is executable from the du-
plicate location */
16: Probaup := Probauy U{(l,a, g, Daup)}
17:  endif
18: end for

Figure 9shows the transformed PTA by applying the model
transformation procedure for the path and”. The loca-
tionsb! andc! are duplicated locations based on the path
and the zoneDgfg = (z == y Az < 1) on the location.
We associate invariants é andc! based on zones which are
reachable fronD;?f) through transitions from to b, and from
a 1o ¢, respectively. Also, we duplicate a transition fréno
d as the transition fromd! to d because the transition is fea-
sible from the invariant ob'. On the other hand, we do not
duplicate a transition fromto d because the transition is not
feasible from the invariant of'. Similarly, locationsh? and

Algorithm 9 RemaweDistributionPT A, [, p)
1. /* PTA = (A, L,lo,C,I,prob), and letl be an original loca-
tion of lgup */
: foreach (1, a, g,p) do
prob := prob \ {(l7 a, gvp)}
end for
: return prob

T. Nagaoka et al. / A Model Abstraction Technique for Probabilistic Real-Time Systems Based on CEGAR for Timed Automata

¢? are duplicatedocations based on the pat#f and the zone
D%. Locationsh® and¢® are generated as complements of
the invariant associated with each duplicated location in order
to preserve the equivalence.

By transforming the original PTA in such a way, if we re-
move all clock constraints from the model in Fig. 9, Value
Iteration on its abstract model outputs 0.5 as the maximum
probability.

4 EXPERIMENTS

We have implemented a prototype of our proposed approach
with Java, and performed some experiments. Though the pro-
totype can check the compatibility of a given set of paths,
currently it cannot deal with the model transformation.

The prototype performs-shortest paths search and simu-
lation concurrently in order to reduce execution time. By im-
plementing the algorithms concurrently, we have not to wait
until all of k£ paths are detected, i.e. if a path is detected by the
k-shortest paths search algorithm, we can immediately apply
simulation and (if needed) abstraction refinement procedures.

Also, our prototype continues thieshortest search algo-
rithm when a spurious CE is detected and the refinement al-
gorithm is applied. If other paths which do not overlap with
the previous spurious CEs, are detected, we can apply sim-
ulation and refinement algorithms to it again. This helps us
reduce the number of CEGAR loop.

4.1 Goals of the Experiments

In this experiment, we evaluated the performance of our
proposed approach with regard to execution time, memory
consumption, and qualities of obtained results. As a target
for comparison, we chose the approach of Digital Clocks[3]
where they approximate clock evaluations of a PTA by integer
values.

4.2 Example

We used a case study of the FireWire Root Contention Pro-
tocol[13] as an example for this experiment. This case study
concerns the Tree Identify Protocol of the IEEE 1394 High
Performance Serial Bus (called “FireWire”) which takes place
when a node is added or removed from the network. In the
experiment, we checked the probability that a leader is not
selected within a given deadline. The probabilistic timed au-
tomaton for the example is composed of two clock variables,
11 locations, and 24 transitions.

4.3 Procedure of the Experiments

In this experiment, we checked the property that “the prob-
ability that a leader cannot be elected within a gideadline
is less tharp.” We considered three scenarios where the pa-
rameterdeadline is 5, 10, 20us, respectively. Also, for each
scenario, we conducted two experiments where the valpe of
is 1.5 times as an approximate value of the maximum proba-
bility obtained by the Digital Clocks approach[3] and a half
of it, respectively. In the proposed approach, we searched at
most 5000 paths by letting the parametenf the k-shortest
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Tablel: Experimental Result

Digital Clocks[3] Proposed Approach

D(us) P Result  Time(s) State MEM(MB) | Result Time(s) Loop State Heap(MB)
5 1.09x107 1 false 20.90 297,232 10.2| false 4.19 10 37 8.0
3.28x1071 true 20.89 297,232 10.2| true 3.60 9 36 8.0
10 1.26x1072 false 54.80 685,232 21.7| false 8.16 19 134 8.0
3.79x102 true 54.82 685,232 21.7| true 6.57 15 115 8.0

20 1.85x10~% false 176.93 1,461,232 41.0| false 1186.08 47 477 64.0
5.56x10~4 true 177.46 1,461,232 41.0| true 31.32 32 435 8.0

and this causes the increase of execution time especialty for

Table2: Analysis of Counter Example Paths shortest paths search. A more detailed analysis shows that the

D(us) D Path  Probability CC(ms)

5 1.0938x<10-T 7 12500101 0.7 execution time folk-shortest paths search accounts for 1123
10 1.2635x1072 43 1.2695x10~2 5.9 seconds of total execution time of 1186 seconds. Also, the
20 1.8500x10~* || 2534 1.8501x10~* 296.9 results shows that the JVM needs 64MB as its heap size in this

case. This is because compatibility checking for 2534 of paths

h ralaorithm b luati  oxisti needs a large amount of the memory. From the results, we
pathssearcfalgorithm be 5009' Eor evaluation of existing ap- 5 g resolve a problem of the scalability when the number
proach, we used the probabilistic model checker PRISM[14]. ¢ .- didate paths for a CE becomes large

The experiments were performed under Intel Core2 Duo

2.33 GHz, 2GB RAM, and Fedora 12 (64bit). 5 CONCLUSION

4.4 Results of the Experiments This paper proposed the abstraction refinement technique
for a probabilistic timed automaton by extending the existing

the value ofieadline. For each approach, columnsiésults, abstraction refl_nement techmqug for a_t|med autorr_1aton.
Future work includes completion of implementation. Gen-

Time, and States show the results of model checking, exe- | DBM d ‘ riot tor[15] h ¢
cution time of whole process, and the number of states con-c'@ oes not supportot operator[15]; so we have to

structed, respectively. The colunid EM in the columns of investigate efficient algorithms for thest operator.

the Digital Clocks shows the memory consumption of PRISM.

The cglumnsLoop andHeap in the cglumns ofF:he proposed ACKNOWLEDGMENTS

approach show the number of CEGAR loops executed and the  Thjs work is being conducted as a part of Stage Project,

maximum heap size of the Java Virtual Machine (JVM) which {he pevelopment of Next Generation IT Infrastructure, sup-

executes our prototype, respectively. _ ported by Ministry of Education, Culture, Sports, Science and
Table 1 shows that for all cases we can dramatically reduceTgchnology, as well as Grant-in-Aid for Scientific Research
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