
A Correction Reflected Query Method of Database during Online Entry

Tsukasa Kudo†, Yui Takeda‡, Masahiko Ishino*, Kenji Saotome**, Kazuo Mutou***,
and Nobuhiro Kataoka****

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
‡Mitsubishi Electric Information Systems Corporation, Japan

* Department of Management Information Science, Fukui University of Technology, Japan
** Hosei Business School of Innovation Management, Japan

*** Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Japan
**** Department of Information Technology, Tokai University, Japan

kudo@cs.sist.ac.jp

Abstract - The database of the mission-critical systems is
updated with entry data by transaction processing, and are
queried to make statistics and so on by batch processing gen-
erally. Such a batch processing had been executed at the over-
time to avoid the data entry service time, because it occupied
the database for hours. On the other hand, in recent years, the
entry service time is being rapidly extended with the devel-
opment of the Internet business. So, the methods to execute
the both concurrently have been put to practical use. How-
ever, there are some cases that cannot be supported by only
the conventional methods, because there are various kinds of
database query and operation in the actual mission-critical
system. In this paper, to support such the case, we propose
a query method to query the database as of designated time
reflecting the correction entered after the time. Moreover, we
implemented this method into a mission-critical system, and
confirmed the effect to reduce the overtime batch processing
in the actual operation.

Keywords: temporal database, transaction time database,
mission-critical system, query, integrity, batch processing

1 INTRODUCTION

In the mission-critical system such as the retail, the finance,
the manufacture, because data are entered by many online ter-
minals concurrently (hereinafter “online entry”), concurrency
controls are executed by the transaction processing [5]. On
the other hand, a great deal of data processing, such as peri-
odic sum of entered data, is processed by the batch process-
ing [5]. For example, in the retail system, sales information at
stores is reflected into its database immediately by the trans-
action processing; on the other hand, the settlement of ac-
counts is calculated by the batch processing. Here, the batch
processing had been executed in night to avoid the time zone
of the online entry, because it occupy the database for hours
to process a great deal of data. However, in recent years, this
time zone was expanded by the development of the internet
business and so on. As a result, it often caused a problem that
the batch processing didn’t complete in the given time.

So, the method to maintain the integrity of query result of
database even during the online entry had been implemented.
For example, the multiversion concurrency control of database
[2], by which the integrity of query result is maintained dur-

ing the online entry, is used widely. Here, in the batch pro-
cessing, because the restriction of the execution time is looser
than the online entry, strict examinations of the entry data are
executed. Therefore, error data is often found. If the batch
processing is executed while online entry isn’t executed, it
can be executed again after the correction of error data. How-
ever, if batch processing is executed concurrently with online
entry, the newly entered data is also reflected into the batch
processing result. That is, the corrected result of designated
time, the cash total sum of the day and so on for example,
can’t be provided.

For this problem, authors showed that the integrity of the
snapshot of the bitemporal database can be maintained during
the online entry in the actual mission-critical system, even in
the case that error data were detected, by reflecting its correc-
tion into the query result [9]. Here, the bitemporal database is
a kind of temporal database [7], [13], which manages both of
the transaction time and the valid time. The former is the time
that data is valid in the database; the latter is the time that data
is valid in real world [4], [6], [11], [13]. And, its query target
was the data at the designated valid time.

However, in the case of the settlement of accounts and so
on, the processing target is the data that was online entered
by the deadline time, which is the database status as of this
time. And, if error data are detected, they have to be cor-
rected while the processing. In this case, the multiversion
concurrency control has the problem that does not support
the reflection of data correction after the deadline time; the
bitemporal database also has the problem not being suitable
for such the system that the status of real world was not en-
tered instantly.

Our goal in this paper is to provide the query method that
maintains the integrity of query result with reflecting the data
correction, even in the above-mentioned case. We summa-
rized this and showed it in the title as “A Correction Reflected
Query Method”. For this purpose, we propose the correction
query method, which uses the transaction time. We show that
the corrected data is queried without influences of the online
entry by this method. Moreover, we implemented this method
into an actual mission-critical system, and confirmed the ef-
fect to reduce the overtime batch processing.

The reminder of this paper is organized as follows. In sec-
tion 2, we show the problem to intend for, and in section 3,

3

ISSN1883-4566 © 2011 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL. 3, NO. 1 (2011) 3-11

Figure 1:An example of batch processing constitution.

we propose the query method to solve this problem. In sec-
tion 4, we show an implementation case of this method in
a mission-critical system, and in section 5, we evaluate the
method based on the implementation result. Finally, we con-
sider this method in section 6.

2 PROBLEM WITH BATCH PROCESSING

2.1 Constitution of Batch Processing

In the mission-critical system, a certain level integrity of
online entered data is maintained by the integrity control of
the database management system and the transaction process-
ing, and by the checking function of the business application
program. In this paper, we define the integrity as what the
state of the real world is reflected in the database with validity
and completeness [10]. By the way, the integrity confirmation
with querying a large quantity of data needs to be executed
by batch processing. For example, the calculations of total
for the collation with the actual cash or the actual articles, or
the consistency check among some tables and so on. So, in
the batch processing, the first process is usually the integrity
confirmation of its target data.

Figure 1 shows the example of the batch processing about
the accounting system. Accounting data is accumulated in the
database by the online entry, and the settlement of accounts
processing is executed regularly. In this processing, tempo-
rary processing is executed first to prevent errors of the pro-
cessing, in which various kinds of data check is done. And,
when error data is detected, it is corrected by the online entry.
In this way, after all confirmation is complete, final process-
ing is executed to make the financial statements.

Here, the query processing in the batch processing (here-
inafter “batch query processing”) of Figure 1 has to be exe-
cuted without undergoing influence of the online entry, though
it is executed concurrently with the online entry. So, even if
the correction data is entered by the online entry, it must be
distinguished from the normal business entry data entered af-
ter the deadline time. Figure 2 shows the state of data of the
settlement of accounts processing of Figure 1 by the time se-
ries. In figure 2, “▼” shows both of the online entry before
the deadline time, and its correction entry; “●” shows the data

Deadline of online entry

Online entry

Data
correction

Time

Database

Batch
processing

Settlement

of accounts

(temporary)

Settlement
of accounts

(final)

Figure 2:Settlement of accounts data by time series

corresponding to them. Also, “▽” shows the new online en-
try after the deadline time; “⃝” shows the data corresponding
to this. In the settlement of accounts processing, the tempo-
rary processing is executed for the confirmation about the data
entered by the deadline time of Figure 2. And, the final set-
tlement of accounts processing is executed after correction of
the data error. Therefore, the target data of the settlement of
accounts processing is the query result as of the the deadline
time, in which only the correction entered after the time is re-
flected. That is, in Figure 2, only the data shown by “●” is
the target for the final processing.

2.2 Problem about Conventional Database
Query Method

We show the problem about the conventional database query
method in the case of batch query processing accompanied by
the data correction. In the multiversion concurrency control,
the version of the database is managed with the time series.
That is, the data entered after the deadline time for the correc-
tion cannot be distinguished from the normal business entry.
Therefore, in the case shown in Figure 2, there is the prob-
lem that even the normal business entry data shown by “⃝”
become the processing target, too.

For this problem, we showed a solution utilizing the bitem-
poral database and confirmed that we could execute the batch
processing even while the online entry in the actual mission-
critical system [9]. In the bitemporal database, both histories
of the valid time and the transaction time are managed, and
the state of data, which once existed in the database, is ac-
cumulated as the records. That is, the both records of the
state of the database and the real world are accumulated [4],
[8]. For example, in the personnel management system of the
company, the period that a person was in office for one duty
position is shown with the valid time; on the other side, the
period that its data was valid in the database is shown with
the transaction time. Incidentally, the database that manages
none of these times is called the snapshot database [12].

Figure 3 shows the application example of the bitemporal
database to the travel expense checkout of the accounting sys-
tem, in which correction data is queried on the condition that
the deadline time is April 20th. In Figure 3, “[Va, Vd)” shows

4 T. Kudo et al. / A Correction Reflected Query Method of Database during Online Entry

(1) Case of normal queryID Va Vd Ta Td Amount Result001 4/19 4/20 4/20 4/21 1,000001 4/19 4/20 4/21 now 1,500 ●002 4/20 4/21 4/21 now 3,000(2) Case of wrong queryID Va Vd Ta Td Amount Result001 4/19 4/20 4/20 4/21 1,000001 4/19 4/20 4/21 now 1,500 ●002 4/19 4/20 4/21 now 3,000 ●
Figure 3:Query of correction data by bitemporal database

the period of the valid time, i.e. one business trip period, and
“[Ta, Td)” shows the period of the transaction time, i.e. the
period that its slip data was valid in the database of the sys-
tem. Incidentally, the time is expressed by the unit of a day.
And, “●” of the column ” Result” shows the queried data
for the query condition explained below. On April 20th, the
dataID = 001 was entered, and on April 21st, the correction
entry of the dataID = 001 and the new entry of the data
ID = 002 was done. Here, when making a travel expense
checkout data aggregateD = {d} and designating the valid
time tv and the transactiontt, the following data is queried as
the snapshot as of the above-mentioned time.

D1 = {d|d ∈ D, tv ∈ [d[Va], d[Vd])∧
tt ∈ [d[Ta], d[Td])} (1)

Here,d[Va] shows the instance of the attributeVa in d, and
the others are same, too.

Therefore, as shown in (1) of Figure 3, when time were
designated astv = April 19th and tt = April 21st, the
dataID = 001 after correction is queried; the dataID =
002 is not queried. Here, the time “now” of Td shows the
corresponding data is valid at the time to query [1], [14].

However, in the actual business, the state of the real world
isn’t always reflected into the database immediately. (2) of
Figure 3 shows the case that the entry of the travel expense
checkout has been late. Though the valid time period of the
trip is [4/19, 4/20), its data was entered on April 21th. In this
case, there is a problem that the query result includes the data
ID = 002, because it satisfies the condition of equation (1).
But nevertheless it is the normal business entry data after the
deadline time.

Moreover, there is the problem that some businesses don’t
need to manage the valid time. For example, the slips of the
purchase and the payment of the accounting system are man-
aged by the system, so their valid time as for the real world
isn’t managed usually. That is, the split table of the database
doesn’t need to take the composition of bitemporal database.

3 PROPOSAL OF QUERY METHOD TO
REFLECT DATA CORRECTION

We propose a query method,“correction query”, for the prob-
lem shown in section 2.

3.1 Correction Query

The correction query is the query method which result of
time t1 reflects only its correction entered by timet2. We call
the timet1 “query time”, andt2 “correction query tim”, and
it becomest1 < t2. Incidentally, in the case of Figure 2,t1
corresponds to the deadline, andt2 corresponds to the start
time of settlement of accounts (final).

The correction query deals with the database that manages
the transaction time, i.e. the transaction time database. The
relation [3] of the transaction time databaseR is expressed as
following.

R(K,T,A) (2)

We show each attribute as follows.

• K = {K1, ...,Km}
This expresses the set of attributes constituting the pri-
mary key of the snapshot queried by the designated
transaction time.

• T = {Ta, Td}
This expresses the time period attribute of the transac-
tion time, which is generated by system and isn’t made
public to the users. Here,Ta shows the time that the
data was added to the database (hereinafter “addition
time”), andTd shows the time that the data was log-
ically deleted from the database (hereinafter “deletion
time”). As long as the data hasn’t been deleted yet,
the instance of attributeTd is expressed by the above-
mentioned “now”.

• A = {A1, ..., An}
This expresses the other attributes.

We can query the snapshot at any designated transaction
time, which is the state of the database at the time. When
making the designated time t, the relation of this snapshot is
expressed by the following equation.

Q(t) = {q|q ∈ R ∧ q[Ta] ≤ t ∧ t < q[Td]} (3)

Here,q[Ta] shows the instance of the attributeTa of q, and
q[Td] is similar, too. In the correction query, both of the snap-
shot at above-mentionedt1 andt2 are queried. And, the cor-
rection query result is the data that reflected the corrections
entered by the timet2 into the snapshot oft1.

The relation of the correction query forR is expressed by
the union of the followingS1 andS2, i.e. S = S1 ∪ S2.
Here,S1 shows the data not being changed or deleted between
t1 andt2. So, the correction query result is the same as the
snapshot oft1. The corresponding data is expressed by the
following equation, because it exists at the both oft1 andt2.

S1 = {s|s ∈ Q(t1) ∧ s ∈ Q(t2)} (4)

On the other hand,S2 shows the data being changed or
deleted betweent1 andt2. So, the correction query result is
the data after the change or delete. As for the change, it is
expressed by the following equation, because the data before
and after change is connected by the primary key attributes

5International Journal of Informatics Society, VOL. 3, NO. 1 (2011) 3-11

ID = 301

ID = 302

Change ID = 302

ID = 303

ID = 304

Transaction ｔime t
t = t 1 t = t2

Delete

Add

(1) State of data by time series

Query time = t1
Correction query time = t2

Snapshot
of t1

Correction query Snapshot
of t 2

ID = 301

ID = 302

(no relevance) (no relevance)ID = 303

ID = 301

ID = 302

(no relevance) ID = 304

ID = 302

ＳＳ11

ＳＳ22

ID = 301

(no relevance)

(2) Correction query

Figure 4:An example of correction query

r[K] ands[K]. And, by this definition, the data deleted by
the timet2 isn’t the target of the correction query.

S2 = {s|s /∈ Q(t1)∧ ∈ Q(t2)∧
∃r ∈ Q(t1); r[K] = s[K]} (5)

Incidentally, the data of the correction query result is the sub-
set of the snapshotQ(t2), which is entered by the usual trans-
action, so the consistency of the data is maintained.

Figure 4 shows the example of the correction query, of
which query time is the transaction timet = t1 and cor-
rection query time ist = t2. In the entered dataID =
301, 302 and 303, ID = 302 was changed,ID = 303 was
deleted, on the other handID = 304 was added newly after
the timet1. (2) of Figure 4 shows the correction query result
for these data. First, the dataID = 301 is queried based on
the equation (4);ID = 302 after correction is queried based
on (5). Second,ID = 303 that was deleted andID = 304
that was newly added don’t become the target.

3.2 Effect of Correction Query

We show that the problem shown in section 2.2 can be
solved by the correction query. Figure 5 shows the appli-
cation example of the correction query to the settlement of
accounts processing, in the case of Figure 2. Here, we show
the change of data of database by the time series like (1) of
Figure 4. The temporary processing of the settlement of ac-
count had been executed for the data entered by the deadline
time, and to correct the data, the change ofID = 302 and
the deletion ofID = 303 were executed by the online entry
based on the confirmation result of the temporary processing.
On the one hand, the online entry of the normal business data
were continued after the deadline time as same as before the
time. In this example, the result of correction query, of which

Deadline of online entry (t=t1)

Online entry

t=t2

ID=301

Time

Database

Batch
processing

Settlement

of accounts

(temporary)

Settlement
of accounts

(final)

ID=302

ID=303

Figure 5:Correction query for settlement of accounts

the query time is the deadline timet = t1 and the correction
query time is the start time of the “final” settlement of account
processingt = t2, is the data shown by “●” in Figure 5. That
is, the state of database as of the deadline time with reflect-
ing the corrections entered after the time can be queried even
during the normal business online entry without undergoing
influence of this.

4 APPLICATION TO A
MISSION-CRITICAL SYSTEM

In this section, we show the application result of the correc-
tion query to a mission-critical system, the local government
system.

4.1 Overview of Local Government System

The local government system is a mission-critical system
for the public administration business of the local government
like a city hall. And, as shown in Figure 6, it consisted of var-
ious kinds of subsystems to assist the local government busi-
ness. They were classified by business contents as follows.

(a) Subsystems about Resident information
They were used for the business, such as management and
certificate of the residents who live in the city.

(b) Subsystems about Local Tax
They were used for the business of the local tax, such as
levy and certificate about tax.

(c) Subsystems about Welfare
They were used for the business of welfare, such as qual-
ification management, levy and grant.

(d) Subsystems about City Office
They were used for the business of the office work of lo-
cal government, such as personnel management, salary
computation and financial accounting.

In each subsystem, the reports were accepted at the report
windows and online entered to accumulate in the database.
And, the processing to query a large quantity of data was ex-
ecuted as the batch processing regularly or at any time. In the

6 T. Kudo et al. / A Correction Reflected Query Method of Database during Online Entry

Subsystems about

resident information

- Resident registration

- Family registration

- Registration of foreign

national

- Certificate of

personal seal

- National pension

- National health

insurance

- Voter registration

- Compulsory education

Subsystems about

local tax

- Light vehicle tax

- Inhabitant tax

- Property tax

- Tax of national

health insurance

- Tax collection

- Certificate of local tax

Resident information

database- Compulsory education

Subsystems about City Office

- Financial accounting

- Local bond

- Personnel management

- Salary computation

City office

database

Subsystems about welfare

- Health and hygiene

services

- Nursing insurance

- Nursery

- Child welfare

- Services for the elderly

- Public financial

assistance

database

Figure 6:Composition of local government system

batch processing, the state of database as of the designated
time was often queried. We show the example of batch pro-
cessing like this below.

• Population statistics:based on the resident transfer re-
ports, the statistics of such as the population and the
number of households was made as of the end time of
the first day of every month.

• Taxation processing:based on the reports about the
local tax, the taxation processing was executed. It used
the state of database as of the individually designated
time.

• Settlement of accounts processing:based on the data
of the income and the outlay, settlement of accounts
processing was executed with the state of database as
of the end time of every day, month and year.

4.2 Implementation of Correction Query

As shown in section 3.2, the correction query intends to
the transaction time database. We used the commercial rela-
tional database and added the attributes of the addition time
and the deletion time to each table to compose a transaction
time database, depending on the necessity of the target busi-
ness. Here, since transaction time is used as one of primary
key attributes of the database, the unit of the transaction time
had to be decided based on the frequency of data entry. In this
system, data were entered from the terminals, and the data en-
try took several seconds at least. So, we made the unit of the
transaction time 1 second. Incidentally, we made the attribute

(a) Traditional expression of transaction time

Change t=nowOnline entry

Transaction Time t

t=t1

ID=302

ID=302

Before change

After change

t=t2

t=now

(b) Expression of transaction time for correction Query

t=t1 t=t2

ID=302

ID=302

Transaction Time t

Online entry Change

Before change

After change

Figure 7:Implementation of transaction time

Figure 8:Dataflow of light vehicle tax business

of the transaction time the closed information in users includ-
ing the records as for it, so users could query only the latest
state at the query time.

As for the change records with the transaction time, the
data after change was conventionally expressed in the form,
of which addition time was the changed time as shown in (a)
of Figure 7. In the implementing of a correction query, it was
necessary to connect the data before and after correction. So,
the query processing became complicated if the conventional
expression was used. To solve this problem, we implemented
the transaction time with the expression, in which the addi-
tion time of the data after change is the time that the data
was added first, as shown in (b) of Figure 7. Incidentally, in
this expression, the deletion time becomes the primary key
attribute; though, in the conventional expression, the addition
time is the primary key attribute.

4.3 Composition of Subsystem for Business

As the example of the business system, to which we applied
the correction query, we show the light vehicle tax subsystem
that is one of the subsystems about the local tax. The light
vehicle is taxed on the light vehicles, which is owned by the
residents as of April 1st that is the basic date. And, the taxa-
tion processing is executed based on the data reported by the
residents.

Figure 8 shows the dataflow of the light vehicle tax busi-

7International Journal of Informatics Society, VOL. 3, NO. 1 (2011) 3-11

(1) Data of vehicle table on 5/6
ID Owner Ta Td 5/6
001 Keiji, T. 5/6 now ●
002 Jouto, J. 5/6 now ●
003 Haisha, S. 5/6 now ●

(2) Data of vehicle table on 5/7
ID Owner Ta Td 5/6 5/7 S
001 Keiji, T. 5/6 now ● ● ●
002 Jouto, J. 5/6 5/7 ●
002 Jouto, J. 5/6 now ● ●
003 Haisha, S. 5/6 5/7 ●
004 Tuika, F. 5/7 now ●

Figure 9:Query result of vehicle table with correction query

ness. The acquisition reports of the light vehicles should be
reported within 15 days; the disused and transfer reports should
be reported within 30 days. However, these reports are ac-
cepted in the related organizations such as the Light Motor
Vehicle Inspection Organization, the Land Transport Bureau
and the light vehicle stores in addition to the report windows
of the local government. The data accepted at the related or-
ganizations were delivered to the local government with paper
reports for online entry or with mediums for lump-sum entry.
For such operation, it often takes time to reflect the transfer
data of the real world into the vehicle table of the system.
Therefore, the taxation processing was executed for the data
entered by the deadline time, and thereafter, tax correction
processing was executed monthly for the data newly entered
by the corresponding deadline time.

Online entry at the report windows could not be suspended
during business hours, because the light vehicles license plate
issue certificates or the disuse report receipt certificates had to
be published immediately reflecting the reported data. On the
other hand, the taxation processing and the tax correction pro-
cessing were executed by the batch processing to make the tax
payment notices to the residents and the account transfer re-
quests to the financial institutions. So, to prevent the taxation
error, the checklist and the statistics documents for the con-
firmation were made by the temporary processing first. And,
when the data error was detected, it was corrected by the on-
line entry. After this confirmation and correction, the final
processing was executed.

So, the target data for the final processing was the state of
database as of the deadline time, in which only the corrections
after the time were reflected. Figure 9 shows the taxation pro-
cessing case, of which the deadline time was May 6th and the
execution time was May 7th. We show the state of database
as of May 6th in (1) of Figure 9, and the data entered by this
time was the target for the processing. We show the state as of
May 7th in (2) of Figure 9, in which the change of the vehicle
ID = 002, deletion ofID = 003 and addition ofID = 004
were reflected. Here, the transaction time ofID = 002 was
implemented with the expression shown in (b) of Figure 7. In
Figure 9, “●” of column “5/6” shows the snapshot data of
May 6th; column “5/7” shows the snapshot data of May 7th;
column “S” shows the correction query result, of which the
query time was May 6th and the correction query time was
May 7th.

As shown in the column “S”, the correction query result
was the snapshot at May 6th, in which only the correction

Query ofQuery ofQuery ofQuery of

bitemporal databasebitemporal databasebitemporal databasebitemporal database

Query

process

Account data
table

Correction queryCorrection queryCorrection queryCorrection query

Vehicle table

Taxation processing
(Temporal)

Work

table
Snapshot of

bitemporal database

Correction query

result

Figure 10:Combination with conventional query method

entered by May 7th were reflected. So, the addition data
ID = 004 was not included.

4.4 Combination with Other Query Methods

In the actual mission-critical systems, it is necessary to
query the database in a wide range of conditions. For ex-
ample, the light vehicle tax was paid by the tax notice or the
bank transfer. Here, as for the bank transfer, it was requested
by the resident with its transfer period. So, the data for the
bank transfer needed to have the valid time attribute, and we
had to implement it as a table of bitemporal database. On the
other hand, we queried the master table by the multiversion
concurrency control, because it was the table of the snapshot
database without managing the transactiontime. In this way,
as the constitution of the table was different with the condi-
tion of the target business, it was necessary to combine var-
ious kinds of query results to make the final outputs such as
the financial statements and so on.

In the application system, to solve this problem, we com-
posed temporary files of the batch processing by the work
tables, which are usually composed by the sequential access
method (SAM) file. And, in the whole batch processing, we
processed data by the query function of the database, to sim-
plify each individual query procedure and maintain its perfor-
mance. For example, as for the above-mentioned bank trans-
fer, we queried the vehicle table by the correction query and
queried the account data table by the snapshot of the bitem-
poral database on the other hand. Afterward, as shown in
Figure 10, we combined these results by utilizing the query
function of the database in the temporary processing executed
next.

5 EVALUATION

5.1 Evaluation about Systems Operation

In the application system, online entry could not be sus-
pended during business hours, because the certificates reflect-
ing the entry data had to be published immediately as shown
in Figure 8. On the other hand, conventionally, the batch pro-
cessing using the data that took time until its entry or was not
including the valid time data, could not be executed concur-
rently with the online entry. So, it had to be executed at the
overtime like “batch processing 3” or “4” of (1) of Figure 11.

8 T. Kudo et al. / A Correction Reflected Query Method of Database during Online Entry

Processing division Service time Overtime Service time Overtime

Online entry

batch processing 1

batch processing 2

batch processing 3

batch processing 4

(1) System use schedule with conventional query processing

batch processing 4

(2) System use schedule using correction query

(*) shows the batch processing using correction query

Processing division Service time Overtime Service time Overtime

Online entry

batch processing 1

batch processing 2

batch processing 3

batch processing 4

(*)(*)(*)(*)

(*)(*)(*)(*)

Figure 11:Reduction of overtime batch processing

Table 1: Application rate of correction query.

No business total Ta Td

(a) resident 36 32(89%) 18(50%)
(b) tax 72 58(81%) 31(43%)
(c) welfare 40 37(93%) 24(60%)
(d) office 63 42(67%) 8(13%)

sum 211 169(80%) 81(38%)

In contrast,as the batch processing like this became able to
be executed concurrently with the online entry by utilizing
the correction query in the application system, it could be ex-
ecuted during the business hours on the next day as shown in
(2) of figure 11.

As a result, all the batch processing to query database were
executed during the business hours, and the overtime work
could be reduced. Incidentally, the confirmation and the cor-
rection entry were also executed at the same time.

5.2 Evaluation about Coverage

Table 1 shows the application table number and rate of the
correction query in the application system. We added the ad-
dition time Ta to the tables to manage the records with the
transaction time; and we added the deletion timeTd to the ta-
bles for the correction in addition toTa. Therefore, the rate
of the columnTd of Table 1 is the application rate of the cor-
rection query. Here, the row number is the same as the sub-
system classification number shown in section 4.1. And, it
targets only the transaction table, so it excludes the following
tables: the master tables such as the parameter table and the
code table; the temporary data tables such as the work table;
the derivation datas table such as the total sum.

Here, the table rate to have the addition time is 80%; the
table rate to have the deletion time is 38%. That is, the correc-
tion query was applied to about 50% of the tables that manage
the records. Here, the application rate depended on the sub-
system. It was applied to only the 13% tables in the subsys-
tems about the city office; on the other hand, it was applied to
from the 43% to 60% tables in the other subsystems.

As shown in section 4.4, the queries with a wide range of

conditions were necessary in the actual system operation. Ta-
ble 2 shows the evaluation of the query method for these query
condition. In addition, it shows the kind of the database cor-
responding to the query method, too. In table 2, “⃝” shows
that batch query processing can be executed during the on-
line entry; “×” shows that there is the problem to execute the
processing. The conventional query methods, i.e. the multi-
version concurrency control and the snapshot of bitemporal
database, have the problem for the query condition as of the
designated transaction time with correction. By the correc-
tion query, we could execute the batch query processing even
in the above-mentioned condition.

On the one hand, the multiversion concurrency control is
necessary to query the tables of the snapshot database; the
snapshot of the bitemporal database is necessary to query as
of the designated valid time reflecting correction entry. There-
fore, it is necessary to make the batch processing such a struc-
ture that can combine these query results for making the final
output as shown in Figure 10.

5.3 Evaluation about Implementation

For the correction query was implemented in the query pro-
cessing as shown in Figure 4, the online entry processing was
same as before. And, as for the database table, we could im-
plement the correction query easily, because we implemented
the transaction time using the expression shown in (b) of Fig-
ure 7. For example, the correction query shown in Figure 9
could be executed by the following simple SQL.

select ID, Owner, Ta, Td from V ehicle Table

where Ta ≤ 5/6 and Td = now (6)

In addition, there is the thing that plural history data are queried
if Td is designated as the past, not now. In this case, the his-
tory data that has earliestTd becomes the query target. How-
ever, in the actual system operation,Td was usually desig-
nated at “now”, that is the time when the batch processing
was executed. Therefore, such operation was unnecessary.

As shown in section 5.2, it is necessary to query the database
in a wide range of conditions corresponding with the business
needs and to combine these results to make the final output.
For this problem, in the application system, we took the con-
stitution of batch processing, in which we used the database
work table instead of the SAM file as shown in Figure 10. As
a result, we could combine them easier by using SQL func-
tion. By adopting the above-mentioned constitutions, in the
application case to the local government of a population of
about 40 thousand, the performance deterioration of query
and online entry didn’t occur comparing with the conven-
tional method.

6 CONSIDERLATION

By the correction query, the problem of conventional query
method, that is the query condition as of the designated trans-
action time with correction during online entry, could be solved.
As the result of having applied it to an actual mission-critical

9International Journal of Informatics Society, VOL. 3, NO. 1 (2011) 3-11

Table2: Evaluation of query method with query time condition.

As of query As of designated As of designated
Target database Query method valid time transaction time

start time with correction with correction
Multiversion Snapshot ⃝ × ×

concurrency control database
Snapshot Bitemporal ⃝ ⃝ ×

database

Correction Transaction time ⃝ × ⃝
Query database

system, weconfirmed the effect that the overtime batch pro-
cessing to query the database became unnecessary. In re-
cent years, such the operation of mission-critical systems is
increasing because of the rapid development of the internet
business such as the electronic commerce, the electronic gov-
ernment and so on, in which users directly enter their data to
the systems and the online entry cannot be suspended. So, the
batch processing has to be executed in the online entry service
time. Therefore, we consider that the correction query is ef-
fective, by which we can execute the batch query processing
without suspending the online entry.

In the actual mission-critical systems, a wide range of data
management and data query are necessary based on the busi-
ness needs. So, it is necessary that the database can be queried
by plural methods, and the final output has to be made by
combining these query results. In particular, querying the
database containing records is complicated. So, the method
to meintain query performance is important. Therefore, we
consider that our proposal method is effective: the implemen-
tation of the transaction time by the proposed expression; the
method using the work table to process the data step by step
by utilizing the database function to simplify each query and
combine their results to make final output.

The application rate of the correction query deeply depends
on the subsystems as shown Table 1. Excepting the subsys-
tems about the city office, because the subsystems deal the
data based on the reports of real world, the wrong entry data
has to be corrected as shown by the light vehicle business in
section 4.3. On the other hand, as for the subsystems about
the city office, the reports were often omitted in the business.
For example, the slips of the financial accounting subsystem
were managed in the database. So, when an approval slip was
wrong, the new split was published for its adjustment. There-
fore, we consider that the correction query is effective for the
system that needs the internal correction to consistent its data
with the state of the real world.

7 CONCLUSION

As for the system that takes time until the state of real world
is reflected into its database, the batch processing is often exe-
cuted using the data entered by the designated time. However,
in this case, when the entry data is corrected, the integrity of
the query result of the batch processing cannot be maintained

during the online entry by the conventional query method.
In this paper, we propose the correction query to query the
data entered by the designated time with reflecting the cor-
rections entered after the time. Moreover, we applied this to
the mission-critical system and confirmed the effect to reduce
the overtime batch processing in the actual systems operation.

Future study will focus on the development of the method,
by which database can be updated with a large quantity of
data in a lump during the online entry.

REFERENCES

[1] L. Bækgaard and L. Mark, “Incremental Computation of
Time-Varying Query Expressions,” IEEE Trans. knowl-
edge and Data Eng., Vol. 7, No. 4, pp. 583–590 (1995).

[2] P. A. Bernstein and N. Goodman, “Multiversion Con-
currency Control-Theory and Algorithms,” ACM Trans.
on Database Sys., Vol. 8, No. 4, pp. 465–483 (1983).

[3] E. F. Codd, “Extending the database relational model to
capture more meaning,” ACM Trans. on Database Sys.,
Vol. 4, No. 4, pp. 397–434 (1979).

[4] N. Edelweiss, P. N. Hübler, M. M. Moro and G. Demar-
tini, “A Temporal Database Management System Imple-
mented on top of a Conventional Database,” Proc. Inter-
national Conference of the Chilean Computer Science
Society, pp. 58–67 (2000).

[5] J. Gray and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” Morgan Kaufmann, San Fran-
cisco (1992).

[6] C. S. Jensen, L. Mark and N. Roussopoulos, “Incremen-
tal Implementation Model for Relational Database with
Transaction Time,” IEEE Trans. knowledge and Data
Eng., Vol. 3, No. 4, pp. 461–473 (1991).

[7] C. S. Jensen, C. E. Dyreson and et al., “The Consen-
sus Glossary of Temporal Database Concept – February
1998 Version, Temporal Database: Research and Prac-
tice.” (the book grow out of a Dagstuhl Seminar, June
23–27, 1997), Lecture Notes in Computer Science 1399,
Springer–Verlag, pp. 367–405 (1998).

[8] C. S. Jensen and R. T. Snodgass, “Temporal Data
Management,” IEEE Trans. knowledge and Data Eng.,
Vol. 11, No. 1, pp. 36–44 (1999).

[9] T. Kudou, M. Ishino, K. Saotome, N. Kataoka and
T. Mizuno, “Implementation of Integrity Maintenance

10 T. Kudo et al. / A Correction Reflected Query Method of Database during Online Entry

Method ofQuery Result by Bitemporal Database,” In-
ternational Journal of Infomatics Society, Vol. 1, No. 1,
pp. 16–26 (2009).

[10] A. Motro, “Integrity = validity + completeness,” ACM
Trans. on Database Sys., Vol. 14, No. 4, pp. 480–502
(1989).

[11] G. Özsoyǒglu and R. T. Snodgrass, “Temporal and Real-
Time Databases, A survey,” IEEE Trans. knowledge and
Data Eng., Vol. 7, No. 4, pp. 513–532 (1995).

[12] L. Shrira and H. Xu, “SNAP: Efficient Snapshots for
Back-in-Time Execution,” Proc. 21st International Con-
ference on Data Engineering., pp. 434–445 (2005).

[13] R. Snodgrass and I. Ahn, “Temporal Databases,” IEEE
COMPUTER, Vol. 19, No. 9, pp. 35–42 (1986).

[14] B. Stantic, J. Thornton and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Proc.
10th International Symposium on Temporal Representa-
tion and Reasoning and Fourth International Conference
on Temporal Logic, pp. 174–180 (2003).

(Received August 24, 2010)
(Revised April 24, 2011)

TsukasaKudo received the M. Eng. from Hokkaido
University in 1980 and the Dr. Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan, in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010 he is a Professor of Shizuoka
Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC,

Information Processing Society of Japan and The Society of Project Manage-
ment.

Yui Takeda received the B.E. from Keio Univer-
sity, Japan in 1987. In 1987, she joined Mitsubishi
Electric Corp. She was an engineer of artificial in-
telligence and application software. Since 2001,
she joined Mitsubishi Electric Information Sys-
tems Corp. Now, she manages intellectual prop-
erty rights.

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan, in 2007. In 1979, he joined Mitsubishi
Electric Corp. Since 2009, he is Professor of Fukui
University of Technology. Now, His research in-
terests include Management Information Systems,
Ubiquitous Systems, Application Systems of Data-
mining, and Information Security Systems. He is

a member of Information Processing Society of Japan, Japan Industrial Man-
agement Association, Japan Society for Management Information.

Kenji Saotomereceived the B.E. from the Osaka
University, Japan in 1979, and the Dr.Eng in In-
formation Engineering from the Shizuoka Univer-
sity, Japan in 2008. From 1979 to 2007, he was
with Mitsubishi Electric, Japan. Since 2004, he
has been a professor of Hosei business school of
innovation management. His current research ar-
eas include LDAP directory applications and sin-
gle sign-on system. He is a member of the Infor-
mation Processing Society of Japan.

KazuoMutou received the master’s degree in pre-
cision engineering from Yamanashi University in
1982 and received the Ph.D. degree in mechanical
system engineering from graduate school of Sci-
ence and technology of Tokyo University of Agri-
culture and Technology in 1993, in 1982, he was
with Polytechnic University. Since 2008, he is As-
sistant Professor of Shizuoka Institute of Science
and Technology. Now, His research interests in-
clude CAD/CAE/CAM/CAT Systems, MES Sys-
tems, and Digital Manufacturing Systems, etc. He

is a fellow of Society of Automotive Engineers of Japan and a member of the
Japan Society for Precision Engineering, etc.

Nobuhir o Kataoka received the Ph.D. in infor-
mation science from Tohoku University. Since
he jointed Mitsubishi Electric Corporation he has
been engaged development of software engineer-
ing, and computer system design. He is currently
a professor at School of Information Technology
and Electronics Tokai University in Japan. His re-
search interests is modeling for Information sys-
tem development.

11International Journal of Informatics Society, VOL. 3, NO. 1 (2011) 3-11

