International Journal of Informatics Society, VOL. 1, NO. 2 (2009) 27-36

27

Modeling Language for LDAP and Automatic Production System

Kenji Saotome”, Seiichi Kondo ™, Akihisa Onuma’

Hokok

Takashi Komiya***, Masahiko Ishino****, Tsukasa Kudo**,

. Jkskoskosksk . .
Sanshiro Sakai and Tadanori Mizuno

EEEE TS

"Hosei Business School of Innovation Management, Japan
“Mitsubishi Electric Information Systems Corporation, Japan
""Mitsubishi Electric Corporation, Japan
" Fukui University of Technology, Japan
Faculty of Informatics, Shizuoka University, Japan
Graduate School of Science and Technology, Shizuoka University, Japan

skokckskok

EEEEE ]

Abstract - LDAP Directory Service begins to be used
as a tool for the development of Enterprise Information
System. Nevertheless, there are not the standards of the
model for the design of the Directory and generally
incomplete diagrams of the Directory have been
illustrated. The methods to design the Directory are
expected. Then, we proposed the modeling language
extending UML for the design of Directory Information
Tree (DIT). We developed for trial the system that
automatically generates the programs that manage the
Directory, and evaluated it. We found that this system is
enough applicable and efficient.

Keywords: Directory, LDAP, UML, MDA, Modeling.

1 INTRODUCTION

In late years the standardization of the directory
service advances, and the directory service products
which manage the data of the information system of the
company come to be released, and it begins to be used.
However, when the needs to build the original data
structure by the system matter occurred, it becomes
custom to show the incomplete figure of the degree to
exemplify hierarchical structure and do it with a design
document because there is not a standard design model
peculiar to the directory. Therefore by the conventional
construction technique of the directory, it becomes
difficult to get the desired directory for the program
developer and the user because we are not able to
realize the smooth mutual understanding between the
directory designer and the program developer and the
user using it. There is the danger that a problem occurs
just before the operation after the development.

We already proposed Directory Modeling Language
specialized in the directory service based on the UML
model, and produced the system(Automatic Production
System) which generated Directory Management
Program from this modeling language automatically
and demonstrated the applicability of this system [1].

This research domain is the directory, programs
automatic production and UML expansion, but the other
researches corresponding to these all domains are not

found. Therefore the theme of this research is an
advanced one [2][3] [4].

In this time, we added the notation of the schema
definition of the object class and the attribute type to the
modeling language and realized the automatic
generation function of the schema, and the system
implementing the specifications of the practical use
level was completed. By this report, we report about
Directory Modeling Language and the specifications of
Directory Management Program that Automatic
Production System generates and the evaluation of this

system.

The directory of this report has the structure of ITU-T
(International Telecommunication Union-
Telecommunication Standardization Sector)

Recommendation X.500 series and the interface of
LDAP(Lightweight Directory = Access  Protocol)
defined by IETF(Internet Engineering  Task
Force)[5][6][7]. The directory modeling language to
propose is based on UML(Unified Modeling Language)
standardized in OMG(Object Management Group)

[81[9].
2 MODELING LANGUAGE SPECS

This section describes the syntax specifications and
the semantic specifications of Directory Modeling
Language.

2.1 Syntax Specification

The model of Directory Modeling Language is
expressed by the class diagram of UML. In the class,
the stereotype and the tagged value is specified to show
the role of the class. We show below the  syntax
specifications of this modeling language..

2.1.1 <<LDAP>> Class

(1)For a model, there must be only one class specifying
an <<LDAP>> stereotype.

ISSN1883-4566/09 © 2009 - Informatics Society and the authors. All rights reserved



28 K. Saotome et al. / Modeling Language for LDAP and Automatic Production System

(2)In this class, a {LDAPRoot} tagged value must be
specified. In {LDAPRoot} tagged value, a character
string 1s specified.

(3)In this class, the association must not be specified.

2.1.2 <<LDAPEntry>> Class

(D)In this model the class name must be unique among
the classes specified <<LDAPEntry>> stereotype.

(2)In the class, one or more {LDAPODbjectClass} tagged
values must be specified. In {LDAPObjectClass}
tagged value, a character string is specified.

(3)The class has one or more attributes.

(4)The attribute consists of the attribute name and the
type. The attribute name must be unique in this class.

(5)The type must be String, byte[], Collection,
Collection<String> or Collection<byte[]>.

(6)<<LDAPRDN>> stereotype must be specified for
one or more attributes in a class.

(7) The association between classes is able to be
specified, and the multiplicity, the navigability and the
role name at the association end are able to be
specified. When there are one or more associations in
a class, the role name at each association end must be
unique each other.

(8)The multiplicity of the association is specified the
following one. The notation (*) means more than 0.

!

(9) The arrow of both directions or the arrow of single
direction 1s specified for the navigability of the
association.

(10) At the association end, one stereotype of the
following kinds must be specified.

+<<LDAPDIT>>
+<<LDAPDN>>
<<LDAPAttr>>

(11)When <<LDAPDIT>> stereotype at the association
end is specified, <<LDAPDIT>> stereotype must be
specified at another association end if nessesary. The
multiplicity at this association must be * vs. 1.

(12) At the association end of <<LDAPAttr>>
stereotype, {LDAPKey} tagged value must be
specified.

2.1.3 <<LDAPDefAttributeTypeS>> Class

(DIn this class, a {LDAPSyntax} tagged value must be
specified. A character string 1s specified in
{LDAPSyntax} tagged value.

(2)The class has one or more attributes.

(3)The attribute consists of the name and the type.

(4)The attribute name must be unique among the
attribute names described in the classes of
<<LDAPDefAttribute TypeS>> stereotype.

(5)In the type, void or Collection is specified .

<<LDAPEntry>>
CLASSH1

1 1<<LDAPDIT>>
* J<<LDAPDIT>>

<<LDAPEntry>>
CLASS2 ENTR
(a) <<LDAPDIT>> and DIT.

*

<<LDAPEntry>>
CLASS1

(b) <<LDAPDIT>> and DIT(Self Assoc).

<<LDAPEntry>>
CLASS1

1

%, <<LDAPDN>>

<<LDAPEntry>>
CLASS2

<<LDAPEntry>>
CLASS1

1
<<LDAPAttr>>
*\{LDAPKey=sn}
<<LDAPEntry>>
CLASS2

sn

(d) <<LDAPAttr>> and DIT.
Figure 1 : Modeling Language and DIT.

(6)In this attribute, if necessary, {LDAPEquality},
{LDAPOrdering} or {LDAPSubstr} tagged value is
specified.

(7)In this class, the association must not be specified.



International Journal of Informatics Society, VOL. 1, NO. 2 (2009) 27-36

2.1.4 <<LDAPDefObjectClass>> Class

(DIn this class, a {LDAPSuperior} tagged value must
be specified. In {LDAPSuperior} tagged value, a
character string is specified.

(2)A class has one or more attributes.

(3)The attribute consists of the attribute name and the
type.

(4)The attribute name must be unique in a class.

(5)void must be specified if specified.

(6)For each attribute, <<LDAPMust>> stereotype is
able to be specified.

(7)In this class, the association must not be specified.

2.2 Semantic Specifications

2.2.1 Class

2.2.1.1 <<LDAP>> Class

In the class specified <<LDAP>> stereotype, the
information of the whole model is specified.

In {LDAPRoot} tagged value specified in this class,
DN(Distingushed Name) which is top entry of all
directory entries belonging to the classes of this model
1s specified.

2.2.1.2 <<LDAPEntry>> Class

The class specified <<LDAPEntry>> stereotype
defines the directory entry. In the class, an object class
of the directory constituting an entry belonging to the
class is specified in the {LDAPObjectClass} tagged
value. One or more {LDAPODjectClass} tagged values
are able to be specified, but top object class is omitted.

The each attribute name defined in the class must be
the attribute type of the directory to belong to one of the
object classes specified in {LDAPObjectClass} tagged
value.

The type of the attribute defined in the class is the
type of JAVA wused in APIs which Automatic
Generation System generates.

When the attribute syntax shows binary data such as
Binary, Octet String or Certificate, byte|] is specified
when a single value, and Collection<byte[]> is
specified when multi values. When the attribute syntax
shows string data such as Directory String, Boolean or
Integer, string is specified when a single value, and
Collection or Collection<String> is specified when
multi values.

<<LDAPRDN>> stereotype shows that it is an
attribute type to become RDN (Relative Distinguished
Name) of the entry.

2.2.1.3

Class
The class specified <<LDAPDefAttributeTypeS>>
stereotype defines the user-defined attribute type with

<<LDAPDefAttributeTypeS>>

29

the attribute syntax. The attribute syntax is specified in
{LDAPSyntax} tagged value of the class. The attribute
syntax (the SYNTAX keyword in the attribute type
definition of the directory) 1is specified in
{LDAPSyntax} tagged value.

The attribute of the class shows the attribute type of
the directory, and the attribute name shows the name of
attribute type. In the type, void must be specified when
attribute type of single value, and Collection must be
specified when attribute type of multi values.

If necessary, {LDAPEquality}, {LDAPOrdering} and
{LDAPESubstr} tagged value are able to be specified in
each attribute of the class. {LDAPEquality},
{LDAPOrdering} and {LDAPESubstr} tagged value
show the matching rule of EQUALITY ,
ORDERRING and SUBSTR each.

For the character string to specify in these tagged
values, the keyword of the matching rule of the attribute
type definition of the directory must be specified.

2.2.1.4 << LDAPDefObjectClass >> Class

The class specified <<LDAPDefObjectClass>>
stereotype defines user-defined object class. In
{LDAPSuperior} tagged value specified in the class, the
superior object class (the keyword SUP of the object
class definition) is specified.

The attribute of the class shows the attribute type to
belong to this object class. The attribute name shows the
attribute type name. <<LDAPMust>> stereotype in
each attribute shows that this attribute type is the
required attribute type of this object class.

2.2.2 Association

The association shows the association between the
entries. Either of <<LDAPDIT>>, <<LDAPDN>> or
<<LDAPAttr>> stereotype 1s specified at the
association end to show the implementation of the
association of the directory.

2.2.2.1 Association of <<LDAPDIT>>

<<LDAPDIT>> stereotype shows that the association
is implemented by DIT (Directory Information Tree).
The multiplicity of this association must be * vs. 1. This
association is implemented by the method that an entry
belonging to the class of the association end specified
“1” 1s posted as the direct upper entry of the entry
belonging to the class at the other association end.

When there are more than 2 associations by
<<LDAPDIT>> stereotype in a class, this class cannot
have more than 2 association that have the “*”
multiplicity among these association ends at this class
side. Figure 1(a) shows an example of the class to use
<<LDAPDIT>> stereotype and DIT implemented. The
implementation of the association by DIT is the most
natural structure for the directory. As to express the
organization of the company, the self association to



30 K. Saotome et al. / Modeling Language for LDAP and Automatic Production System

associate with the own class is the typical example
associated by DIT of the directory. Figure 1(b) shows
the class diagram expressing the self association and
DIT implemented.

2.2.2.2 Association of <<LDAPDN>>

The <<LDAPDN>> stereotype shows that the
association is implemented by DN. An entry belonging
to a class has DN of an entry belonging to the class at
the other association end. This implementation
resembles the method that is used for the relations of the
group and the member to be called the static group in
the directory. Figure 1(c) shows the class diagram to use
the <<LDAPDN>> stereotype and DIT implemented.
The dotted lines in this figure are the notation to show
the associated entries, and are not to constitute the real
DIT.

2.2.2.3 Association of <<LDAPA ttr>>

The <<LDAPAttr>> sterecotype shows that the
association is implemented using an attribute value of
the attribute type. {LDAPKey} tagged value is specified
on the association end. In {LDAPKey} tagged value,
the attribute name to use for the association among the
attributes of the class at the other association end is
specified. When the value for this association in the
entry is equal to the attribute value in the attribute type
specified by the {LDAPKey} tagged value belonging to
the class of the other association end, it is considered
that these entries are associated. This implementation
resembles the relations of the primary key and the
foreign key of the relational data base. Figure 1(d) is the
figure of the class diagram specified <<LDAPAttr>>
stereotype and DIT implemented.

3 DIRECTORY MANAGEMENT PROG

3.1 Outline

We developed for trial the system(Automatic
Production System) to generate automatically the
program(Directory Management Program) to manage
the directory from the model of Directory Modeling
Language.

Directory Management Program has the following
specifications so that assuming trial.

*Only import by batch of all data
*Only access by the application program

Directory Management Program consists of Directory
Loading Compiler, Directory Access API and User-
defined Schema Information.

The example of figure 2 assumes the directory which
manages the information of the organization of the
company, the region where it is located at and the
employee who belonged to it. We select the standard
attribute type as much as possible, but define the user-

defined attribute type when we cannot use it. In figure 2,
addExtTelNumber, addExtFaxTelNumber, addCn
and addSn of Employee are the user-defined attribute
type. addExtTelNumber and addExtFaxTelNumber
show the extension telephone or FAX number. addCn
and addSn are additional Cn and Sn. For example these
are defined for the purpose of keeping the full name that
includes GAIJI with the character code set (Shift-JIS
etc) except utf-8.

Figure 3 describes the definition information of these
user-defined attribute types. addExtTelNumber and
addExtFaxTelNumber are defined as the attribute type
of the <<LDAPDefAttributeTypeS>> class which name
is DirectoryString. addCn and addSn are defined as
Binary because they are expressed with the character
code set except utf-8. The addOrgPerson object class
that these user-defined attribute types belongs to is
defined in the <<LDAPDefObjectClass>> class.

3.2 Directory Loading Compiler

3.2.1 Characteristics
Directory Loading Compiler has the following
characteristics.

(DIncomplete information is not left in the directory
because the loading script can detect the structural
error of DIT at the compilation time.

(2)The loading script can check the relation of definition
and reference about the association.

(3)To use the LDIF form it is necessary to be specified
the DN of the each entry itself and the related entry,
but to use the loading script the loading data can be
specified without being conscious of DN

3.2.2 Specifications

Directory Loading Compiler interprets the loading
script for the loading directory data by batch, and
generates the loading data of the LDIF form. Figure 4 is
the script described in the specifications of Directory
Loading Compiler generated by the model of Figure 2.
Region, Section and Employee of Figure 4 is the class
name, and the entry corresponding to this each class is
specified in #entry(). In #entry(), the attribute type and
the attribute value 1s specified in the form of
parameter=value. For example, st="Tokyo" of the
entry of Region shows that st is the attribute type and
Tokyo is the attribute value.

At the following {} of #entry(), the entry being the
lower entry in DIT is specified. The entry of ou="sales
department”" and ou="Development Division" of
Section class becomes a direct lower entry which RDN
is st="Tokyo”. In this way, the DN of each entry is
decided by expressing DIT structure with the nest and
RDN of each entry.

The role name in the class diagram is used to express
the association except DIT. The section parameter



International Journal of Informatics Society, VOL. 1, NO. 2 (2009) 27-36

31

<K LDAPEntry» < LDAP>
Region root .
{LDAPObjectClass = locality} {LDAPRoot = "dc=example.org”}
«LDAPRDN > st : String

1 | KLDAPDIT>»
prefecture <« LEDn/:EIIf)r;It;ye»
<« Ls%étlijo[r)\g» * {LDAPObjectClass = person}
{LDAPObjectClass = organizational Person}
<<|-2A PtEntry>> {LDAPObjectClass = addOrgPerson}
) ection )
{LDAPObjectClass = organizationalUnit} « LDAPRDN »cn : String
«LDAPRDN>ou : String <LDAPDIT> sn : String
ot sections title : String
postalAddress : String . .
* telephoneNumber : Collection<String>
facsimileTelephoneNumber : String
1
«LsDeAeltDi(l)DnN > 1 I— addExtTelNumber : Collection<String>
<LDAPDIT>>section addExtFaxTelNumber : String
* |addCn : byte[]
addSn : byte[]
K LDAPALttr>employee

{LDAPKey = sn}

Figure 2 : DIT Model by Directory Modeling Language.

<K LDAP DefAttributeTypeS >
DirectoryString
{LDAPSyntax = 1.3.6.1.4.1.1466.115.121.1.15}

addExtTelNumber : Collection
addExtFaxTelNumber : void

<K LDAPDefAttribute TypeS>
Binary
{LDAPSyntax = 1.3.6.1.4.1.1466.115.121.1.5}

<K LDAPDefObjectClass>»
addOrgPerson
{LDAPSuperior = organizationalPerson}

& LDAPMust>»addCn : void
< LDAPMust>»addSn : void
addExtTelNumber : void

addExtFaxTelNumber : void

addCn : void
addSn : void

Figure 3 : Scheme Definition Model by Directory Modeling Language

specified in the entry of Employee class is the role
name specified at the <<LDAPDN>> stereotype of the
class diagram, and the associated entry at this parameter
is specified.

3.3 Directory Access API

3.3.1 Characteristics
Directory Access API has the following the
characteristics.

(1)The API uses JNDI (JAVA Naming and Directory
Interface) which 1s JAVA standard interface of LDAP
directory access and is implemented as the API which
does not depend on the directory server.

(2)Directory Access API can be accessed with the
interface of the design pattern adopted in EJB
(Enterprise JavaBeans).

3.3.2 Specifications

Directory Access API has the functions to get the
entry, the attribute value of the entry and the associated
entry to the entry and so on.

Figure 5 shows the function of the API to access the
entry belonging to Section class of Figure 2.
findByPrimaryKey() method of SectionHome class
gets the instance of Section class by the attribute type of
RDN. findAll() method get all the entries belonging to
Section class. getDn(), getOu() and
getPostalAddress() of Section class get the attribute
value of the entry. getRegion(), getSection(),
getSections() and getEmployee() get the associated
entry. SectionDTO class is the JavaBeans implemented
Java.io.Serializable and has all of the attribute values.



32 K. Saotome et al. / Modeling Language for LDAP and Automatic Production System

Region {
#entry (st="T okyo") {
Section {

#entry (ou="Sales", postalAddress =*Shinjuku-ku, Tokyo", employees=<sn="A"> <sn="B">) ;
#entry (ou="development’, postalAddress="1, Chiyoda-ku, Tokyo", employees=<sn="C">) {

Section {

#entry (ou="development-1", postalAddress="2, Chiyoda-ku, Tokyo", employees=<sn="D"> <sn="E">) ;
#entry (ou="development-2”, postalAddress=“3, Chiyoda-ku, Tokyo", employees=<sn="F"><sn="G">) ;

Employee {

#entry (cn="A", sn="A", title="chief", telephone Number="03-1111-0001", facsimileTelephoneNumber="03-1111-1001",
addCn="gmA=", addSn="gmA=", addExtTelNumber="11-0001", addExtFaxTelNumber="11-1001", section=<ou="Sales">) ;

#entry (cn="B", sn="B", tile="staff", telephoneNumber="03-1111-0002", facsimileT elephoneNumber="03-1111-1002",
addCn="gmE=", addSn="gmE=", addExtTelNumber="11-0002", addExtFaxTelNumber="11-1002", section=<ou="Sales"> ) ;

#entry (cn="T", sn="I", tile="staff", telephone Number="06-2222-0002", facsimileT elephoneNumber="03-2222-1002",
addCn=“gmg=", addSn="gmg=", addExtTelNumber=22-0002", addExtFaxTeINumber=22-1002", section=<ou=“Personnel™> ) ;

Figure 4 : Input of Directory Loading Compiler.

3.4 User-defined Schema Information

3.4.1 Characteristics
User-defined Schema Information has the following
characteristics.
(1)The User-definition Schema Information does not
depend on the directory server because it is generated
by the standard LDIF form.

3.4.2 Specifications

The User-defined Schema Information consists of the
data of the LDIF form to register the user-defined
attribute type generated from the information of the
class of <<LDAPDefAttributeTypeS>> stereotype and
the user-defined object class generated from the
information of the class of <<LDAPDefObjectClass>>
stereotype. Figure 6 is the LDIF formed data of the
attribute  type definition generated from the
<<LDAPDefAttributeTypeS>> class of Figure 3. Figure
7 1s the LDIF formed data of the object class definition
generated from the <<LDAPDefObjectClass>> class of
Figure 3.

4 EVALUATION

In comparison with the existing application program
using the directory, we constructed the directory, tested
the function and measured the performance.

The object of the evaluation is Information Leakage
Prevention Solution of Mitsubishi Electric Corporation
(Mitsubishi Solution System as follows)[10]. We
describe the functionally equal directory with Directory
Modeling Language for the organization and the
employee information of the directory of Mitsubishi
Solution System, compare the performance of the each

SectionHome

SectionHome ( ctx: DirContext ) : SectionHome
findByPrimaryKey ( ou: String ) : Section
findAll () : Collection

Section

Section ( ctx: DirContext, dn: String, ou: String,
postalAddress: String, employees: Collection )
: Section

getDn () : String

getOu () : String

getPostalAddress () : String

getRegion () : Region

getSection () : Section

getSections () : Collection

getEmployee () : Collection

SectionDTO

SectionDTO ( ou: String,
postalAddress: String ) : SectionDTO
getOu () : String
setOu (ou: String ) : void
getPostalAddress () : String
setPostalAddress ( postalAddress: String ) : void

Figure 5 : Methods of Class "Section".

program that we make with Directory Access API and
the API of Mitsubishi Solution System.



International Journal of Informatics Society, VOL. 1, NO. 2 (2009) 27-36

4.1 User-defined Schema definition

We defined 35 user-defined object classes and 136
attribute types of Mitsubishi Solution System and were
able to confirm the same schema definition.

By this definition, the classes in the model that we
described by Directory Modeling Language were 7
<<LDAPDefAttributeTypeS>>  classes and 35
<<LDAPDefObjectClass>> classes.

What 136 attribute types are able to be expressed by 7
<<LDAPDefAttributeTypeS>> classes shows that the
attribute syntaxes of these attribute types are 7 kinds.

4.2 Building DIT

We were able to confirm that the DIT approximately
same as Mitsubishi Solution System was build.

There were 9 <<LDAPEntry>> classes, 30 attributes
and 13 associations in the model that we described.

4.3 Performance Measurement

4.3.1 Measurement Method
4.3.1.1 Data Structure

We assume the company of 5,000 employees and
compare the performance using data for the
measurement such as Table.1.

4.3.1.2 Evaluation Programs
We assume the implementation of the address book by
the directory and use the following two programs for the
performance comparison.
(1) Program1
This 1s the program that is assumed to find the
employees from the organization hierarchy. While
referring in sequence from the main office to the
lower organization, this program displays the data of
the organizational unit and all the employees
belonging to there. The entries to access are 781
organizational units and 5156 employees.
(2) Program2
This is the program that is assumed to directly find an
employee by the attribute. This program generates an
employee name at random and acquires the data of the
employee with the employee name as a key. The
entries to access are 5000 employees, 5000
organizational units and 4,999 upper heads except the
president.

4.3.1.3 Measurement environment

We connect two following computers in 100BaseT
and access from PC that the evaluation programs
execute to the directory server in LDAP interface.

33

dn: cn=schema

changetype: modify

add: attributetypes

attribute Types: ( addExtTeINumber-oid
NAME 'addExtTelNumber'

DESC 'User Defined Attribute'

SYNTAX 1.36.1.4.1.1466.115.121.1.15
X-ORIGIN 'user defined' )

attribute Types: ( addExtFaxTelNumber-oid
NAME 'addExtFaxTelNumber'

DESC 'User Defined Attribute'

SYNTAX 1.36.1.4.1.1466.115.121.1.15
SINGLE-VALUE

X-ORIGIN 'user defined' )

attribute Types: ( addCn-oid

NAME 'addCn'

DESC 'User Defined Attribute’

SYNTAX 1.36.1.4.1.1466.115.121.1.5
SINGLE-VALUE

X-ORIGIN 'user defined' )

attribute Types: ( addSn-oid

NAME 'addSn'

DESC 'User Defined Attribute'

SYNTAX 1.36.1.4.1.1466.115.121.1.5
SINGLE-VALUE

X-ORIGIN 'user defined' )

Figure 6 : LDIF for Definition of Attribute Types.

dn: cn=schema

changetype: modify

add: objectclasses

objectClasses: ( addOrgPerson-oid

NAME 'addOrgPerson'

SUP organizationalPerson STRUCTURAL
MUST (addCn $ addSn)

MAY ( addExtTelNumber

$ addExtFaxTelNumber)

X-ORIGIN 'user defined")

Figure 7 : LDIF for Definition of Object classes.

(1)The PC that the evaluation programs execute
H/W  CPU: Intel Pentium4 2.8GHz
Memory: 760MB, HDD: 35GB
S/W  Java 1.4.2 06
Windows XP Professional
(2)The directory server
H/W CPU: Intel Xeon 3.2GHz
Memory: 2GB, HDD: 292GB
S/W  SunONE Directory Server 5.2
Windows Server 2003

4.3.2 Result

Table 2 shows the measurement result. In Table 2,
MMS is Mitsubishi Solution System, and DMP is
Directory Management Program.



34 K. Saotome et al. / Modeling Language for LDAP and Automatic Production System

4.3.3 Discussion

We found that Directory Modeling Language has
enough description ability of the application system,
because with Directory Modeling Language, we was
able to build DIT approximately same as Mitsubishi
Solution System.

We found that Directory Access API is implemented
by approximately same method as the API of Mitsubishi
Solution System in the access of the directory, because
about the number of the entries sent to PC, the
difference for programl is 781 and the difference for
program? is only 81.

We found that Directory Access API can work with
practical performance, because the total of the execution
times of Program1 and Program? is same as Mitsubishi
Solution System.

We show the evaluation for the execution times of
both. The differences of Directory Management
Program and Mitsubishi Solution System about the
processing to influence performance are the follows.

*The APIs of Directory Management Program
gets all attribute’s values of the entry, but some
of the APIs of Mitsubishi Solution System can
get a part of the attribute’s values. Therefore
Directory Management Program becomes
disadvantageous in the quantity of data sent to
PC.

* When Mitsubishi Solution System acquires the
entry, it performs the access of the directory
without the transfer to check the contradiction
of the directory structure. The check is
unnecessary  for  Directory = Management
Program because this system creates the correct
data with Directory Loading Compiler.
Therefore Mitsubishi Solution System becomes
disadvantageous in the number of the access of
the directory.

In Programl, Mitsubishi Solution System uses the
many APIs to get a part of the attribute’s values of the
entry for the implementation of this system. The
influence surfaced in Program]1.

Program2 sends many entries to PC. Mitsubishi
Solution System performs many accesses of the
directory to check the contradiction of the directory
structure. The influence surfaced in Program?2.

S CONCLUSION

We found that this system is enough applicable and
efficient. By wusing the result of this work, the
improvement of the quality, the productivity and the
maintenancibility can be expected.

We will implement OCL(Object Constraint Language)
for the expansion of Directory Modeling Language in
the future[11]. OCL is the function taken for the
standard in UML2.0 and the language to describe the
limitation and the query of the UML model.

Table 1 : Data Structure of Measurement

organization |org units |members |Title

1 1 |president
head office 5 5|vice president
division 25 25| general manager
deaprtment 125 125|director
section 625 5,000|manager, staff
TOTAL 781 5,156

Table 2 : Result of Measurement

Program svstem time num of entries
8 Y (minutes) |sent to PC

Programl | VIMS 20 19,842

g DMP 24 19,061

MMS 54 40,081

Program2 DMP 0 10000

Now we have the most basic function of the
acquisition of the entry such as the follows.

*findByPrimaryKey/()

find the entry by the primary key(RDN) in the class.
find All()
find the all entry in the class.

When the search by the free search condition is
necessary, it assumes that user oneself learn the
implementation of the Directory Access API and realize
it. In the application system, it is necessary to acquire
the entry by the complex search condition of the
attribute value etc. We will implement the search with
the free search condition by OCL.

REFERENCES

[1] K.Saotome, S.Kondo, A.Oonuma, T.Komiya,
S.Sakai, T.Mizuno : “Modeling Language for
LDAP and Automatic Production System of
Directory Management Program”, Information
Processing Society of Japan, Database, Vol47,
No.SIG13(TOD31), pp.28-39 (2006).

[2] Dragan Milicev ”Automatic  Model
Transformations Using Extended UML Object
Diagrams in Modeling Environments”, IEEE
TRANSACTIONS ON SOFTWEAR
ENGINEERING VOL.28 NO4, pp.413-431, 2002.

[3] Ludovic Apvrille, Jean-Pierre Court : "TURTLE A
Real-Time UML Profile Supported by a Formal
Validation Toolkit”, IEEE TRANSACTIONS ON
SOFTWEAR ENGINEERING VOL.30 NO7,
pp.473-487,2004.

[4] MDA(Model Driven Architecture),

UML Profile for EDOC, UML Profile for EAIL
http://www.omg.org/mda/specs.htm#Profiles



International Journal of Informatics Society, VOL. 1, NO. 2 (2009) 27-36

[5] ITU-T(International Telecommunication
Union-Telecommunication
Sector) .
http:/www.itu.int/ITU-T/

[6] IETF(Internet Engineering Task Force) .
http://www.ietf.org/

[7] Tim Howes : “Understanding and Deploying Ldap
Directory Services”, Macmillan Technical Pub,

2003.

[8] OMG(Object Management Group).
http://www.omg.org/

[9] UML(Unified Modeling Language).
http://www.uml.org/

[10] Information Leakage Prevention Solution of
Mitsubishi Electric Corporation.
http://global mitsubishielectric.com/bu/security/rd/
rd07_02.html

[11] OCL(Object Constraint Language).

http://www.omg.org/technology/documents/formal

/ocl.htm

(Received October 17, 2008)
(Revised July 17, 2009)

Kenji Saotome received a BE
from the Osaka University, Japan
m 1979, and a DrEng in
Information Engineering from the
Shizuoka University, Japan in
2008. From 1979 to 2007, he was
with Mitsubishi Electric, Japan.
Since 2004, he has been a
professor of Hosei business school of innovation
management. His current research areas include
LDAP directory applications and single sign-on
system. He is a member of the Information
Processing Society of Japan.

Seiichi Kondo received the
master's degree in information
science from Kyoto University,
Japan, in 1984. Currently, he is a
senior engineer in Mitsubishi
Electric  Information  Systems
Corporation. His research
interests  include  information
security systems, identity
management, and access control.

Akihisa Onuma received a
degree  from the  Waseda
University in 1986, currently, he
is a engineer in Mitsubishi
Electric Corporation, Japan. His
current research areas include data
modeling and single sign-on
system.

Standardization

35

Takashi Komiya received a
MA from the SAGA University,
Japan in 2000, currently,he is a
senior engineer in Mitsubishi
Electric Corporation, Japan. His
current research areas include
overall information security
systems, especially identity
management and authentication

systems .

Masahiko Ishino received the
master's degree in science and
technology from Keio
University in 1979 and received
the Ph.D. degree in industrial
science and engineering from
graduate school of Science and
technology of Shizuoka
University, Japan, in 2007. In
1979, he joined Mitsubishi Electric Corp. Since
2009, he is Professor of Fukui University of
Technology. Now, His research interests include
management  information  system, industrial
engineering, application system of data-mining, and
information security system. He is a member of
Information Processing Society of Japan, Japan
Industrial Management Association, Japan Society
for Management Information.

Tsukasa Kudou received the
master's degree in Engineering
from Hokkaido University in 1980
and received the Dr. degree in
industrial science and engineering
from Shizuoka University, Japan,
in 2007. In 1980, he joined
Mitsubishi Electric Corp. He was
the researcher of  parallel
computer architecture and the engineer of business
software. Since 2005 he is the engineer of Mitsubishi
Electric Information Systems Corp. Now, his
research interests include database application and
system quality assurance. He is a member of [EIEC
and Information Processing Society of Japan.

Sanshiro Sakai received the B.E.,
ME and Ph.D degrees from
Shizuoka University, Japan, in
1979, 1981 and 1984,
respectively. Currently he is a
professor in the Faculty of
Informatics, Shizuoka University.
His current research interests are
in  computer supported collaborative learning,
programming language education environments and
understanding of computer programs. He is a



36 K. Saotome et al. / Modeling Language for LDAP and Automatic Production System

member of Information Processing Society of Japan
(IPSJ), Institute of Electronics, Information and
Communication Engineers (IEICE), and Japanese
Society for Information and Systems in Education
(JSiSE).

Tadanori Mizuno received the
B.E. degree in industrial
engineering from the Nagoya
Institute of Technology in 1968
and received the Ph.D. degree in
computer science from Kyushu
University, Japan, in 1987. In
1968, he joined Mitsubishi
Electric Corp. Since 1993, he is
a Professor of Shizuoka University, Japan. Now, he
is a Professor of graduate school of Science and
technology of Shizuoka University. His research
interests include mobile computing, distributed
computing, computer  networks, broadcast
communication and computing, and protocol
engineering. He 1s a member of Information
Processing Society of Japan, the institute of
electronics, information and Communication
Engineers, the IEEE Computer Society, ACM and
Informatics Society.






