44 H. Mineno et al. / Evaluation of Local Pipelining for Reprogramming Wireless Sensor Networks

Evaluation of Local Pipelining for Reprogramming Wireless Sensor Networks

Hiroshi Mineno, Takuya Miyamaru!,
Yoshiaki Terashima®, Yuichi Tokunaga® and Tadanori Mizuno*

Faculty of Informatics, Shizuoka University
3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan
mineno@inf.shizuoka.ac.jp
Presently, Nagoya Works, Mitsubishi Electric Corporation
5-1-14 Yadaminami, Higashi-ku, Nagoya, 461-8670, Japan
Miyamaru.Takuya@ap.MitsubishiElectric.co.jp
SInformation Technology R&D Center, Mitsubishi Electric Corporation
5-1-1 Oofuna, Kamakura, 247-8501, Japan
Terashima.Yoshiaki@eb.MitsubishiElectric.co.jp
Tokunaga. Yuichi@ds.MitsubishiElectric.co.jp
Graduate School of Informatics, Shizuoka University
3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan
mizuno@inf.shizuoka.ac.jp

Abstract -

Wireless reprogramming is a useful service for wireless
sensor networks to upload new code and modify functions.
The latest reprogramming protocols use the technique called
pipelining. Although it can accelerate the speed of code distri-
bution, it requires a lot of control packets which affects energy
efficiency and reliability. Improving energy efficiency and re-
liability is an important challenges in reprogramming. In this
paper, we present a technique for code distribution called Lo-
cal Pipelining. Local pipelining assigns a number of segments
to a group that consists of a neighborhood. The number of
segments is based on the number of control packets and the
speed of code distribution. By adjusting this value accord-
ing to remaining energy that group has, Local pipelining can
control the amount of control packets and improve energy ef-
ficiency and reliability in the entire network.

Keywords: Reprogramming, Wireless sensor networks

1 Introduction

The recent advances in MEMS and low power wireless
communication technology have led to the development of
wireless sensor networks (WSN). A WSN consists of a num-
ber of sensor nodes, and they collect and transfer sensing
data to the network autonomously. Many WSN applications,
which including environmental monitoring, security, and po-
sition tracking, have been developed.

In WSNss, reprogramming that updates code on sensor nodes
is one of the most important services. Because WSNs are a
relatively new field of study, many applications contain de-
veloping technologies (ad-hoc routings, data processing, po-
sition estimations, etc.), and these technologies are imple-
mented as specific code on the sensor nodes. It is therefore
possible that these codes will be modified or extended in the
future for long-running applications using WSNs. Thus, a

method to easily reprogram many deployed sensor nodes is
necessary. Recently, much research on wireless reprogram-
ming has been conducted[1][2]. Wireless reprogramming dis-
tributes new code easily to a lot of sensor nodes using wireless
multihop communication. The purpose of general protocols
in WSN is to aggregate a lot of small data from the edge nodes
to the base station, whereas the purpose of wireless repro-
gramming protocols is to distribute large data from the base
station to the edge nodes[3][4][5][6]. The pipelining method,
which quickly distributes bulk data to the entire network has
been proposed in some studies[7][8][9]. In pipelining, code is
divided into several segments, which are transferred in paral-
lel. By dividing code into smaller segments, we can increase
the degree of parallelism and speed up the distribution. How-
ever, the number of control packets is also increased, and this
results in higher energy consumption and lower reliability.

Here, we present the code distribution technique called lo-
cal pipelining, in which a number of segments is assigned to
a group consisting of several sensor nodes. Normal pipelin-
ing fixes the number of segments as one value in the entire
sensor network. So if we set a large value for the number
of segments in order to speed up updating, this causes an in-
crease in the number of control packets. In contrast, the local
pipelining scheme can adjust the number of control packets
depending on the condition of each group. First, we present a
method of local pipelining that can freely adjust the number
of segments and control packets depending on the remaining
energy. Adjusting this value for each group contributes to
improved energy efficiency and transfer efficiency. Second,
we analyze the case of several pipelines that have a different
number of segments. This is helpful in cases where we have
to reprogram various multiple networks.

This paper is organized as follows. In section 2, we ex-
plain some issues related to pipelining and analyze the control
packets needed in the transfer process. An overview of local
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pipelining and its features is introduced in section 3, which
also describes the transfer algorithm. We describe the perfor-
mance of local pipelining using several formulas in section 4,
and evaluate it in section 5. Also included in section 5 is a de-
scription of the implementation of local pipelining on TinyOS
[11]. This evaluation includes a simulation of the number of
sending packets, completion times, and the propagation pro-
cess. Finally, section 6 summarizes the paper and mentions
future work.
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Figure 3: Pipelining
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2 Related Issues
2.1 Pipelining

Many wireless reprogramming protocols share design chal-
lenges. We deal here with the three important challenges that
follow [1].

o Reliability: The complete code must be correctly re-
ceived by the target nodes, and the downloaded code
must be executed correctly on the sensor node.

e Energy efficiency: The energy used in reprogramming
is provided by the sensor node battery. This battery
also supplies energy for sensing, which is the primary
role. Thus, the energy consumption for reprogramming
should be reduced as much as possible.

e Completion times: The completion time of reprogram-
ming affects the sevice using a WSN. When we repro-
gram the network, we have to stop service and wait un-
til the update is completed. Therefore we have to mini-
mize the completion time of reprogramming.

Pipelining is proposed as a means to speed up distribution
despite these challenges. In pipelining, code is divided into
several segments, as depicted in Figure 1, and each segment
consists of several packets, which form a transfer unit. Fig-
ure 3 shows how distribution can be sped up by overlapping
the transferring segments. The figure compares the process
of pipelining with normal distribution. There are five sensor
nodes deployed linearly in Figure 3. In the pipelining scheme,
while node 4 is transferring segment 1 to node 5, node 1 is
transferring segment 2 to node 2 simultaneously. The result
is that pipelining can complete downloading earlier than nor-
mal distribution. Thus, we can reduce the completion time by
overlapping the segments. In this case, we need at least three
hops spaced between segments to avoid the hidden terminal
problem.

2.2 Negotiation Scheme

Because pipelining deals with several segments, it is nec-
essary to keep track of segments that are lacking. Therefore,
a negotiation scheme is needed to request missing segments.
This scheme uses a three-way handshake that has three types
of messages (Advertise, Request, Data). This scheme is pro-
posed to reduce message redundancy by SPIN [10]. The epi-
demic property is important since WSNs experience high loss
rates, asymmetric connectivity, and transient links due to node
failures and repopulation. The latest reprogramming protocol
uses this scheme to improve reliability. Figure 2 illustrates
the three-way handshake. First, a source node advertises an
ADV message, which includes its own segment, to neighbor-
ing nodes. Second, if the destination node receives the ADV
message, it compares its own segment with the received seg-
ment information and decides whether it needs the segment
advertised by the source node. If it needs this segment, it
requests the segment to source node by sending an REQ mes-
sage. Finally, if the source node receives the REQ message
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Figure 4: Local pipelining

from the destination node, it starts to forward a DATA mes-
sage that consists of sequential packets. By using this three-
way handshake, we can reduce the redundancy of transferred
segments.

2.3 Energy issue in pipelining

In pipelining, we can accelerate the speed of code distri-
bution by dividing code into smaller segments (increasing the
number of divided segments) and increasing the degree of par-
allel. However, we cannot increase the number of segments
without reason, because, this can affect the energy efficiency
and reliability, depending on the control packets. Pipelin-
ing uses one negotiation per segment, and one negotiation re-
quires control packets that include ADV and REQ messages.
Thus, if we increase the number of segments, the ADV and
REQ messages in corresponding segments will also increase.
This affects the energy efficiency and reliability. First, a lot of
energy is used to send messages, it is one of the most energy-
consuming actions in the sensor node. The number of mes-
sages greatly affects energy efficiency. Second, when many
messages are sent, message collisions may occur.

For these reasons, it is necessary to reduce or adjust the
control messages required for pipelining.

3 Local pipelining
3.1 Overview

The goal of local pipelining is to freely adjust the number
of control packets depending on the condition of each group.
Normal pipelining, which is used by Deluge [7] and MNP [8]
fix the number of segments as one value in the entire network.
In this case, if we set a large value for the number of segments
in order to speed up processing, this causes an increase in the
number of control packets.

The amount of remaining energy varies depending on which
nodes are deployed. Therefore, some sensor nodes bear a
large burden of control packets. However, we cannot decrease
the number of segments to fall in step with the subset of sen-
sor nodes, because this degrades performance. Therefore, we
propose a local pipelining to achieve a realistic distribution
for each node while maintaining good performance.
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Figure 5: Distribution of Local pipelining

In local pipelining, the number of segments is not assigned
to an entire network, but rather, a value is assigned to each
group, which is a set of neighboring nodes, as shown in Figure
4. Tt is only necessary to set the value of each group depend-
ing on the available of energy. In this way, we can achieve
the following setting. If there is some leeway in the energy,
we can divide code into smaller segments for faster distribu-
tion or into larger segments to constrain the number of control
packets.

3.2 Distribution Process

Figure 5 shows the distribution process of local pipelining.
In this figure, we assume that group 1 includes node 1 to node
S, group 2 has node 6 to node 11, and group 1 divides code
into six segments, and group 2 divides code into three seg-
ments. If one pkt control packet is needed for each segment,
group 1 needs 6 x pkt and group 2 needs 3 X pkt.

Because local pipelining deals with several networks each
of which has a particular number of segments, it is necessary
to transfer data by using a distribution technique that is differ-
ent from normal pipelining. This process involves changing
the number of segments and retransmitting new segments in
the transfer. This process is handled by a boundary node de-
ployed at the edge of a group. Node 6 is the boundary node
in Figure 5. The boundary node must wait until all segments
from other groups have been received, and when the down-
load is completed, it starts forwarding with its own number of
segments. That is to say, the boundary node has the same role
as a base station.

3.3 Transfer Algorithm

To achieve distribution like this, we extended the negoti-
ation scheme described in section 2. First, we added a field
that includes information about a group to ADV and DATA
messages. Group information can be determined depending
on the amount of remaining energy and other information. A
corresponding group table containing group information and
the amount of remaining energy is established in advance. For
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Table 1: Example of group table

Group | Remaining energy

1 80% - 100%
60% - 80%
40% - 60%
20% - 40%
0% - 20%

[V I SO ]

[When a segment is received. ]

IF ownGroup == rcvMsg.group
I" send segment as the same number of segment */
GOTO Advertise phase
ELSE
IF downloadComplete == TRUE
I* send segment as the new number of segment */
setOwnSegmentSize()
GOTO Advertise phase
ELSE
I* wait until all segment data is complete */
GOTO Receive phase
ENDIF
ENDIF

Figure 6: Transfer algorithm

example, if the remaining energy is in the range from 80% to
100%, it corresponds to group X. If the remaining energy is
in the 60% to 80% range, it corresponds to group Y. By mak-
ing a corresponding table like Table 1, we have the option
of changing the information depending on the group. Second,
we added the transfer algorithm shown in Figure 6. This algo-
rithm is used when a segment is received. Received messages
include the information about the group the source node be-
longs to. First, the node compares the group in the received
message with its own group. If the received group is the same
as own group, it goes to the advertise phase. In the adver-
tise phase, the node sends ADV messages that include the re-
ceived segment. This process is the same as in normal pipelin-
ing. If the received group is different from its own group, the
node is a boundary node. When a boundary node receives a
segment, it prohibits transferring of the segment. It must wait
until all segments have been completed. This is because to
reset a new number of segments it must have all the data. If
all segments are downloaded, it sets its own number of seg-
ments and goes to the advertise phase. Otherwise, it stays in
the receive phase.

4 Performance Analysis

4.1 Speed of local pipelining

In this section, we analyze the performance of local pipelin-
ing, normal pipelining, and cases without pipelining. In par-
ticular, we focus on completion time and the number of mes-
sages, which affect energy efficiency and speed of distribu-
tion. First, we explain the effect of normal pipelining. We
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assume a linear deployment as in Figure 3, and the network
size is n hop. Then we try to forward the static size code im-
age, which is divided into m segments, and where ¢ times is
needed to send one segment. To avoid the hidden terminal
problem, we need at least three hops between segments. Al-
though handshake is supposed in our proposed local pipelin-
ing scheme to overcome this problem, we need at least three
hops between segments to avoid the hidden terminal problem
completely in the case of linear deployment as shown in Fig-
ure 3. Therefore, completion time 7T}, is expressed as follows.

T, = (n+3(m—1)) -t ()

In the case without pipelining, completion time 7;, is ex-
pressed as follows.

T,=n-m-t 2)

These formulas conduce the result in Figure 7. This result is
the theoretical completion time of normal pipelining, and it is
assumed that n is 100 hops, and the time until all data sending
has ended is 1024. For example, if m = 16, the completion
time of normal pipelining is (100 4+ 3(16 — 1)) - 1024/16 =
9280. This figure is obvious proof of the relationship between
the number of segments and completion time. This relation-
ship means that as we increase the number of segments, we
can accelerate the speed of distribution. In contrast to pipelin-
ing, the speed of distribution in cases without pipelining is
slow. In this condition, the theoretical completion time is
fixed as T,, = 100 - 1 - 1024 = 102400. If n and m are
large enough, it is obvious that T}, < T,.

Second, we express the effect of local pipelining. Local
pipelining involves several networks that have a different num-
ber of segments depending on the group. When the boundary
node receives the segment of another group, it waits until all
data is complete, and retransmits its own number of segments.
Therefore, the completion time of local pipelining can be ex-
pressed as the sum of the completion time for each group.
Then, there are k groups in the linear network, each group
network size is n;, they have m; segments, and they need
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time ¢; to send one segment. The theoretical completion time
of local pipelining 73, is expressed as the following.

k

Tip =Y (ni+3(m; —1)) -t 3)

=1

In each group, T, < T, is approved. Therefore, the sum of
completion time 7j,, is less than the case of not using pipelin-
ing. This means that local pipelining is superior to not us-
ing pipelining in completion time, but it is inferior to normal
pipelining.

4.2 Control packets

Next, we describe the control packets needed in normal
pipelining and local pipelining. First, we introduce the con-
trol packets per segment. A segment has two types of control
messages, ADV messages and REQ messages. These mes-
sages are not necessarily one message. If a source node ad-
vertises an ADV message and receives no requests for it, it
needs to retransmit the ADV message. By the same reason,
if a destination node send an REQ message to a source node
and the DATA does not arrive, it needs to retransmit the REQ
message. At this point, we assume the number of ADV mes-
sages per segment as N, 4,,, and the number of REQ messages
per segment as N,.,. One segment needs Nogy + Nyeq con-
trol packets. Thus, one node needs m - (Ngdy + Nreq) control
packets. In normal pipelining, the sum of control packets in
an entire network is as follows.

Cp:”'m'(NavarNreq) “4)

In contrast, local pipelining has several m, and several k groups
which have n; sensor nodes. The sum of control packets in an
entire network is as follows.

k
C’ZPZZni-mi~(
=1

These formulas show that local pipelining can freely adjust
and reduce the number of control packets depending on cir-
cumstances while maintaining the speed of distribution. For
example, there are four groups in an entire network, and each
group has five nodes. Each group is assigned a number of
segments as follows. Group 1 has 16, group 2 has 8, group
3 has 16, and group 4 has 8. In this case, Cj, = 48 - 5 -
(Nado + Nyeg) = 240 - (Ngdgo + Nyeg). In contrast, the
case of normal pipelining, m is fixed as 16. Therefore, C), =
20-16 - (Nagv + Nyeq) = 320 - (Ngay + Nyeg). It is obvious
that C}, > Cjp.

Nadv + Nreq) (5)

5 Evaluation

5.1 Simulation Environments

In this section, we describe an evaluation of local pipelin-
ing using the TinyOS network simulator (TOSSIM [12]). The
goal of this simulation was to prove that local pipelining is
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Figure 9: Average completion time of each node

superior to normal pipelining from the view point of energy
efficiency, and that it can transfer data without problems.

First, we describe the implementation of local pipelining on
TinyOS. The implementation was based on MNP [8] which is
a state-of-the-art reprogramming protocol and includes nor-
mal pipelining. We extended the function of MNP’s control
packets described in section 3, and added a transfer algorithm.
In this implementation, we had to be careful about the group
arrangement. The groups were arranged as in Figure 8 with-
out regard for the remaining energy. Because TOSSIM cannot
duplicate the sensor node battery, so we assume that groups
are determined depending on location, as shown in the Figure.

Next, we explain the simulation environment. We assumed
each node had a transmission radius of 50 feet (meaning that
nodes can receive messages within a 50-foot radius). Nodes
were deployed in a reticular pattern (Figure 8), and each node
had 40 feet of spacing. The network had four groups that had
5 x 5 subnetworks, and each group had the number of seg-
ments indicated in Figure 8. We assumed that normal pipelin-
ing (MNP) had a fixed number of segments, where the value
was 16 divisions. The base station had a complete code im-
age, and started forwarding each segment in the early stage of
distribution.
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5.2 Completion times and propagation

In this section, we investigate the distribution speed be-
tween local pipelining and normal pipelining. Figure 9 shows
the average completion time of each node under simulation,
classified by group. Because the number of segments is fixed
in normal pipelining, the completion time for each group has
about the same value. In contrast, local pipelining has various
numbers of segments, which affects the completion times. In
this environment, this result indicates that local pipelining can
distribute code faster than normal pipelining.

Figure 10 illustrates the propagation process of segments
under simulation, when the node has downloaded all seg-
ments. In this figure, normal pipelining has equable propa-
gation, where each node is received almost at the same time.
This is because the same number of segments is used in the
entire network. On the other hand, local pipelining is in-
equable propagation. The borders of the groups bring about
the delay. This delay is caused by the network’s waiting until
all segments have been downloaded completely. There are es-
pecially large delays in the boundary nodes placed where that
the difference in the segment numbers is very large.

5.3 The number of messages

Next, we evaluate the energy efficiency depending on the
number of messages. Figure 11 plots the number of the mes-
sages in the entire network, with a comparison between nor-
mal (MNP) and local pipelining. It is clear that local pipelin-
ing requires fewer messages than normal pipelining. ADYV,
and REQ are control messages, and DATA includes segment
data (but also includes start-download and terminate-download
messages in MNP). Control packets depend on the number of
segments, as explained in section 4. Therefore, local pipelin-
ing, which has different numbers of segments, is effective in
adjusting the number of control packets. In linear deploy-
ment, which uses the same parameters, control packets are
indicated by (4+8+16+44)-25-(Nggv+Nreq) = 800(Nygy+
Nyeq) in local pipelining. On the contrary, normal pipelining
requires 16 - 100 - (Nggy + Nyeg) = 1600(Nggy + Nyeq) con-
trol packets. Therefore, the number of control packets in local
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pipelining is smaller than in normal pipelining.

6 Summary and future works

In this paper, we presented our local pipelining technique,
which can freely adjust several numbers of segments corre-
sponding to groups. By adjusting this parameter, we can re-
duce the number of control messages depending on the cir-
cumstances. This method improves energy efficiency, be-
cause sending messages is one of the actions that consumes
the most energy. To verify the effectiveness of local pipelin-
ing, we evaluated it using the TOSSIM simulator. In this sim-
ulation, we mainly evaluated the number of messages and the
completion time. We found that local pipelining can reduce
the number of messages, and the average completion time of
each node is shorter than in the case of normal pipelining.
This means that local pipelining achieved a partial improve-
ment in energy efficiency.

Our future work is as follows. First, we will try to reduce
the delay of local pipelining. At the group border, some de-
lays occur, which are the waiting times for all segment down-
loading to be completed. This design is easy to implement
and ensures correct distribution. The delay can be improved
by transferring the received segments incompleted. If a node
receives enough segments so that we can change the number
of segments, we can transfer the received segments with own
number of segment divisions. Our second task in the future
is to study other metrics affected by adjusting the number of
segments. In this paper, the metric considered was the re-
maining energy. However, we believe that local pipelining
can improve other metrics (hardware richness, condition of
communication, etc). Thirdly, we have to evaluate our pro-
posed local pipelining performance under more realistic con-
ditions, such as several topologies and groups as well as ideal
grid condition. Although there are some assumptions in our
proposed local pipelining yet, we will study more useful re-
programming wireless sensor networks method based on this
work.
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