16 T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

Implementation of Integrity Maintenance Method of Query Result
by Bitemporal Database

Tsukasa Kudou', Masahiko Ishino*, Kenji Saotome*, Nobuhiro Kataoka** and Tadanori Mizuno***

fMitsubishi Electric Information Systems Corporation, Japan
*Mitsubishi Electric Information Technology Corporation, Japan
* Hosei Business School of Innovation Management, Japan
** School of Information Science and Technology, Tokai University, Japan
*** Faculty of Information, Shizuoka University, Japan
kudou-tsukasa@mdis.co.jp

Abstract - Generally, databases of mission-critical systems
are updated with entry data by transaction processing, and are
queried to make statistics and so on by batch processing. So,
it is necessary that both processing can be executed simultane-
ously for the efficient system operation. In principle, a bitem-
poral database system can not only maintain the integrity of
the query results even under simultaneous data entry, but also
query the corrected data to provide valid query results. How-
ever, in the actual operation of a mission-critical system, var-
ious problems occur such as data-entry mistakes and data-
entry backlogs. Therefore, the bitemporal database has to
be able to support these problems. In this paper, we show
an application case of a bitemporal database into a mission-
critical system, to investigate an implementation of a method
for maintaining the integrity of the query results under real-
world conditions. As a result, we have confirmed that in-
tegrity was maintained even while the database was being
updated, and that various kinds of corrections done by the
actual system operations were reflected in the query results.
Furthermore, we confirmed that the method is effective in not
only the data corrections for a short period confirmation work
but also the correction management of data for a long period
of real-world use, and that data correction can be managed in
both internal processes and business procedures individually.

Keywords: temporal database, bitemporal database, query,
integrity, mission-critical system

1 INTRODUCTION

In many mission-critical systems such as in retail, finance
and manufacturing, data entered from online-terminals are
committed to the database in discrete transactions (hereinafter
“online entry”). Also, at regular intervals or as needed, batch
query jobs are performed, often accessing a massive amount
of data, to make statistical documents, analysis documents
and so on. For example, in the case of a retail system, the
sales data are entered from terminals in each store, and re-
flected in the central corporate database. Then, settlement of
accounts processing is performed on a daily or monthly ba-
sis by executing queries involving a great deal of data from
all of the stores for the given period. Here, if we divide the
time zone of the online entry and the batch processing, the

batch processing has to be performed in night, and moreover
its time may pass away by the extension of the online entry
time. Therefore, it is necessary that online entry can continue
concurrently with the various queries being processed to pro-
duce the reports.

In this situation, a snapshot database [2], which stores only
the latest state of the data, has the problem that the integrity of
the query results isn’t guaranteed when data are changed by
the online entry system, between or while individual queries
in the batch job. Database systems, which employ transaction
processing [4] equipped with lock control to manage concur-
rency, maintain the integrity of their data even when simul-
taneous accesses by many users arise. And, even if a large
amount of data is queried, the method to divide a long time
transaction of large batch into many mini-batches [4] is used.
However, a long time is necessary for querying a great deal of
data, so, even if the each query processing avoids conflict with
the online entry, some portions of the query results may come
after the online entry although other portions come before.

On the other hand, the temporal databases manage the data
that changes in chronological order, and a lot of researches
have been performed about them [3], [6], [7], [11], [13], [14].
In temporal databases, time can be captured along two distinct
time lines: the valid time and the transaction time [7]. The
valid time denotes the time a fact was true in the real-world;
the transaction time is the time during which the fact was
present in the database as stored data. Temporal databases
are divided into three types: valid time databases, transaction
time databases and bitemporal databases. Valid time databases
manage only the valid time, transaction time databases man-
age only the transaction time, and bitemporal databases man-
age both the valid time and the transaction time [12].

It has been shown that a transaction time database can ex-
press prior states of the database at designated past transaction
times as a snapshot [5], unaffected by continuing online entry.
However, in actual system operations, when errors in the data
are detected during batch processing, we have to correct the
data and restart the batch job from the beginning. In this case,
the problem arises that the corrected data is not reflected in
the query results of the redone batch job, because the trans-
action time of the corrected data comes after the designated
time of the query.

The version-control data model manages not only the times

ISSN1883-4566/09 © 2009 - Informatics Society and the authors. All rights reserved

International Journal of Informatics Society, VOL. 1, NO. 1 (2009) 16-26

when data is added or deleted, but also derived relations be-
tween versions [8],[9]. As aresult, it can manage both version
sets that are derived from the designated transaction times:
one set is created in chronological order by normal data en-
try; the other set is created out of order by data correction. So,
corrected data can be reflected in the query result. This model
is important in software development, CAD, and other sys-
tems which rely on strict version control. But, in applying it
to mission-critical systems that require a high data input fre-
quency, processes for detecting corrected data and deriving
new versions have to be executed so frequently that perfor-
mance suffers.

Using a bitemporal database, we can obtain query results
that have verifiable data integrity and reflect the corrected data
even while online entry continues concurrently. Here, to ap-
ply this to mission-critical systems, we have to confirm that
it can support a wide range of corrections which occur during
actual system operations. On the other hand, this database
must manage records with two kinds of time attributes, which
increases the difficulty of applying it to information systems
by complicating the query procedures and increasing of the
amount of data. Therefore, there are very few cases where it
has been implemented, and we could not find a case in which
a bitemporal database had been used and evaluated in an ac-
tual mission-critical system.

In this paper, we show that a bitemporal database can main-
tain the integrity of the query results in real-world conditions.
That is to say, various kinds of corrections which were ap-
plied to the data during actual system operations are properly
reflected in the query results, and batch queries were run con-
currently with live online entry. Furthermore, we applied it
to a mission-critical system and evaluated its effect on actual
system operations. As a result, we confirmed that the above-
mentioned integrity was maintained. Moreover, we confirmed
the following effects: first, data correction could be managed
over a long period of real-world use in addition to the use in
confirmation work in a short period; second, the data correc-
tions of internal processes and business procedures could be
managed individually.

To handle the implementation problems, we improved the
following points. First, we created work files for batch pro-
cessing jobs by constructing a temporary table of the database
(hereinafter "work table”). We then processed the data step-
by-step using this work table in order to simplify each indi-
vidual query procedure. Second, we implemented the system
such that each record is defined to be valid until it is super-
seded. Thus, because we could maintain complete bitemporal
data by only storing one data for a change of real-world, the
overall increase in the amount of data was minimized.

In section 2, we expound on the problems that arise when a
transaction time database is queried concurrently with online
entry, and in section 3, we show that this problem is solved
by utilizing a bitemporal database. In section 4, we show an
implementation case of a bitemporal database in a mission-
critical system and show the operation of the system. Finally,
in section 5, we evaluate and consider the implementation of
the bitemporal database.

17

Cash total sum table !
Receipt on 7/1 (¥6,600) ¢
1
1
1
1
1
1

Receipt on 7/2 (¥1,000) |
transaction
time t

Receipt table ! ,
ID=001 (¥1,000) , |
1D=002(¥2,000) (before change) &———0 |
N 1

ID=002(¥2,100) (after change) . —
ID=003(¥1,000) (deletion) — :
1D=004 (¥3,500) (addition) : —
1D=005(¥1,000) (entry of 7/2} 1 —

4 transaction
Receipt total ¥4,000 ¥7,600 time t

t=7/1 t=7/2 t=now

Figure 1: Snapshot of transaction time database.

2 PROBLEM OF TRANSACTION TIME
DATABASE

2.1 Query Processing to Deal with

In this paper, we deal with the following query processing.

i. Concurrent Execution of Query and Online Entry
Query of batch processing is executed concurrently with
the online entry from many online-terminals that up-
date the database with high frequency.

ii. Query Large Amounts of Data in a Single Batch
Massive amounts of data are queried in a lump, so the
processing takes time.

iii. Redoing Batch Queries after Data Correction
When data errors are detected in the query result, we
have to correct the data such by making changes, dele-
tions or additions. Then, the queries have to be exe-
cuted again on the same data without updates from fur-
ther online entry.

Such query processing is standard in mission-critical sys-
tems like the settlement account processing of retail systems,
in which queries are run on massive amounts of data and
executed by batch processing. Transaction processing of a
database system equips various kinds of integrity constraints
[4], and a method that maintains the integrity of the database
by the cooperation even when it was updated by a group of
people has been proposed [10]. Therefore, the integrity of
the database is maintained in many cases. However, the con-
firmation of the integrity, which has to query large amount
of data, has to be executed by batch processing. For exam-
ple, the comparison of several tables, the calculation of the
receipt totals to compare with the actual cash total sum, and
so on. Therefore, the batch processing has to be redone after
correcting data when data errors are detected.

2.2 Query Method during Online Entry

In the transaction time database, the transaction time is ex-
pressed by [tq,tq). In this expression, t, shows the time that
the data was added to the database, and t; shows the time that

18 T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

the data was logically deleted from the database. As long as
the data hasn’t been deleted yet, ¢4 is expressed as “now”,
which shows the time when querying is executed [1], [12].
When we change some data, the time ¢4 of the data is set to
the time of the change. Thereby it is logically deleted. Then,
new data is added to the database to replace the old data logi-
cally. By this way, the data once added is left in the database
without being deleted physically. Therefore, we can get the
snapshot at transaction time ¢ by querying the data in the con-
dition of ¢, <t < tg4, and the integrity of the snapshot is kept
even if the database is updated by the online entry while we
are querying.

Figure 1 shows the application example of querying snap-
shot in a retail system. By comparing the receipt table of July
Lst with the cash total sum table of the same day, three data er-
rors were detected: an entry mistake of /D = 002, an overlap
entry of /D = 003 and entry leakage of /D = 004. And, cor-
rections of data by change, deletion and addition were done
on July 2nd. Moreover, a new receipt data of 1D = 005 was
added on July 2nd. In the snapshot of July 1st, these update
on July 2nd were not reflected. By this characteristic, even
if the database were updated by the online entry during the
query, the integrity of the query result can be maintained.

2.3 Problem about Query of Correction data

In the actual business system, the right query result of the
receipt table of July 1st, which total is adjusted with the cash
total sum table, is necessary. However, there is a problem that
it is impossible to query current corrected state of July Ist.
Because, by the snapshot on July 1st, the data before correc-
tion is queried in the example of Figure 1; by the snapshot on
July 2nd, the receipt data on July 2nd ID = 005 is queried,
too.

Here, in the following examples, we express the transaction
time by making its unit a day. In the implementation, its unit
is determined according to requirements for the system such
as frequency of the online entry.

3 QUERYING BITEMPORAL DATABASE

We show that the problem in section 2.3 can be solved by
the bitemporal database.
3.1 Composition of Bitemporal Database

The relation of the bitemporal database R is expressed as
follows.

R(K,T,V, A) (D
We show each attribute as follows.
o K ={Ky,..K,}
This expresses the set of attributes constituting the pri-

mary key of the snapshot queried by designating both
time attributes: the transaction time and the valid time.

o I'={T,, Ty}

This expresses the time period attribute of the transac-
tion time, which is generated by system and isn’t made
public to the users. Here, T}, shows the time that the
data was added to the database (hereinafter “addition
time”), and Ty shows the time that the data was log-
ically deleted from the database (hereinafter “deletion
time”). As long as the data hasn’t been deleted yet, the
instance of attribute 7y is expressed as “now”.

o V={Vi,Va}

This expresses the time period attribute of the valid
time, i.e. the corresponding fact was true in the real-
world. Here, V,, shows the beginning time of the time
period, and Ty shows the ending time. In the case that
the data is still true when we query it, the instance of at-
tribute V; is expressed as “now” like Ty. Regarding the
valid time, the data once added is left in the database
without being deleted physically like the transaction
time, too. And, we can get the snapshot of a designated
valid time by querying the database.

e A= {Al, ceey An}
This expresses the other attributes.

3.2 The Method for Querying Bitemporal
Database during Online Entry

In the bitemporal database, the integrity of the snapshot is
also kept even while it was being updated by the online en-
try, like the transaction time databases shown in section 2.2,
because it manages the transaction time. Moreover, we can
query the state of the real-world of any designated valid time,
because it manages the valid time.

The snapshot of R, transaction time of which is ¢; and valid
time to, consists of the data that satisfy the both following
conditions: its instance of transaction time period
T = {T,,Tq} includes t1; its instance of valid time period
V = {V,, Vy} includes to; Therefore, its relation Ry (¢1,12)
is expressed as follows.

Rl(tl,tg) = {Tl?" € RA T[Ta} <t Nt < ’I”[Td]
/\T[Va] <ty Aty < T[Vd]} (2)

Here, r[T,], r[T4), r[V,] and r[Vy] show the respective in-
stance of attributes 7,,, Ty, V, and V; of r, the data included
in R. Therefore, in the case that an error data was detected in
the query result and corrected at transaction time ¢, we can
query the corrected data by the snapshot designating times as
follows: the condition of transaction time ¢y is t; > t; valid
time ¢ is the same with last query.

3.3 Effect to Data Corrections

Figure 2 shows the query results, which is executed by des-
ignating transaction time ¢; and valid time t9, in the case of
Figure 1. Regarding the bitemporal database, the receipt data
in real-world conditions can be queried. That is, as shown in

International Journal of Informatics Society, VOL. 1, NO. 1 (2009) 16-26

Data of the database on 7/2

Cash total sum table

Date | Ta | Td | Va [Vd | sum
71 | 741 | now | 7/1 | now | 6.600
7/2 | 7/2 | now | 7/2 | now | 1,000

Receipt table
D | Ta | Td [Va | Vd [Receipt| [(1)](2)](3)] | Kind of data
001 | 7/1 [now | 7/1 | now | 1000 | @[@

002 1 7/117/2(7/1 [now| 2000 | @

before change

002 | 7/2 | now | 7/1 | now | 2,100 after change
003 | 7/1 [7/2 | 3/1 | now | 1000] | @ deletion
004 | 7/2 | now | 7/1 | now | 3,500 [] addition
005 | 7/2 | now | 7/2 | now | 1.000 @ | |entry on 7/2

Snapshot of receipt table
Mt1=7/1 2271
D Ta | Td | Va Vd _|Recei
001 | 7/1 | now [7/1 | now | 1000
| 002 111 7/2] 7/1 | now | 2000
003 | 771] 7/2 [7/1 | new | 1.00C
Sum| 4,000

(N11=7/2 1= 11
D | Ta | Td | Va | Vd |Recei
001 | 7/1 | now [7/1 | now | 1.000
002 | 7/2 | now | 7/1 | now | 2100
004 | 7/2 | now | 7/1 | now | 3.500

Sum| 6,600

N

@ ti=7/2 ta=1/2
[D [7a | Td | Va | Vd |Recei
(005 | 7/2 | now [7/2 | now | 1,000

Sum| 1,000

N

Figure 2: Snapshot of bitemporal database.

item (2) of Figure 2, we can query the corrected state of July
Ist by designating ¢; July 2nd and ¢, July Ist in the condition
of Equation (2): the change, deletion and addition on July 2nd
are reflected; the receipt on July 2nd is not reflected. Inciden-
tally, item (1) of figure 2 shows the query result of data before
correction, the same as on July 1st in figure 1, and item (3)
shows the query result of data entered on July 2nd.

Moreover, even while data are being corrected, we can get a
snapshot that has integrity. The data corrections are also done
by the usual online entry. Therefore, as shown in section 3.2,
when we query the database by designating transaction time
t1, we can get the corrected result, which was performed by
t1. And, this query result isn’t influenced by the online entry,
including data corrections, ongoing at that time.

4 APPLICATION TO A
MISSION-CRITICAL SYSTEM

We applied the bitemporal database to a local government
system. In this section, we show the overview of this sys-
tem, the implementation of the bitemporal database and the
operation of its batch processing.

4.1 Overview of Local Government System

4.1.1 Composition of the system

The local government system is a mission-critical system for
the public administration business of local government like a
city hall. And, as shown in Figure 3, it consisted of various
kinds of subsystems to assist the local government business.

19

Subsystems about
local tax

Subsystems about
resident information

— Resident registration — Light vehicle tax

— Family registration = Inhabitant tax

— Registration of foreign
nationa

= Property tax

- Tax of national
- Certificate of health insurance

ersonal seal .
P = Tax collection

— National pension

— Mational health
insurance

— Voter registration

- Certificate of local tax

Resident information

— Gompulsory education database
S\
O —
Subsystems about welfare
— Health and hygiene - Child welfare

services — Services for the elderly

= Nursing insurance - Public financial

= Nursery assistance

Subsystems about City Office

= Financial accounting

- Local bond .
City office

— Personnel management
database

— Salary computation

Figure 3: Composition of local government system.

They were classified by business contents as follows.

e Subsystems about Resident information
They were used for the business, such as management
and certificate of the residents who live in the city.

e Subsystems about Local Tax
They were used for the business of the local tax, such
as levy and certificate about tax.

e Subsystems about Welfare
They were used for the business of welfare, such as
qualification management, levy and grant.

o Subsystems about City Office
They were used for the business of the office work of lo-
cal government, such as personnel management, salary
computation and financial accounting.

4.1.2 Characteristics of the Database

Each business needed the record data management in chrono-
logical order. We show the examples of the record data as
follows.

o Transfer of Resident
Each resident has his or her transfer records: they begin
by birth or transfer into the city; via change of address,
marriage and so on, they end by death or transfer to
other city.

20 T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

b,:?at:;:?:r?czf | Resident registration subsystem |
M -
| @l 0 :
& !) BEEHIEhE L_J statistics
Residents I: Rgpon registration
Resident window fEEIE
card Population
statistics, etc.
Registration of i i
|i3ght vehicle L'dt:h‘;ehwle Light vehicle tax
e
@ subsystem
<—‘_ 2
Residents I:‘ Report - —
Certificate of window |_Taxatlon. statistics
‘ registration Taxation table
Statistics of registration
Notice of tax light vehicle, etc.

Figure 4: Dataflow example of local government system.

e Taxable Article
The taxable article such as a light vehicle has the trans-
fer records: its registration, transfer, disuse and so on.

e Qualification of Welfare
The qualification of welfare has the acquisition and loss
records, which are managed for the premium payment,
the certificate of issuance, the insurance payment and
SO on.

e Transfer and Diligence of Staff
The records of each staff of the local government were
managed: his or her transfer, diligence, paid salary and
SO on.

Figure 4 shows the dataflow of the resident registration sub-
system and the light vehicle tax subsystem, as the example of
the data flow of the local government system. Notifications
were accepted with the report window of the city hall, and its
data were entered by the online entry and accumulated in the
database to be queried by various processing of the system.
And, the processing to query a great deal of data is processed
by batch processing, such as making statistics, tax calculation,
and so on.

4.2 Implementation of Bitemporal Database
4.2.1 Policy of Implementation

We used the commercial relational database and added at-
tributes of the transaction time and the valid time to each ta-
ble, to compose a bitemporal database.

4.2.2 Implementation of Transaction Time

Since transaction time is used as one of primary key attributes
of the database, the unit of transaction time had to be decided
based on the frequency of data entry. In this system, data
were entered from terminals, and the data entry took several
seconds at least. So, we made the unit of transaction time 1
second.

Data of Notification

(1) Expression by beginning and ending time
(a) Notification data after entry on 6/2
(a) Notification of

[D [Ta| Td[va]wvd Trlnnf:r| Name |Add|
Birth [001-1] 6/2 | now [6/1 | now [Birth [ichire Toki[Che 1

Name |Ichiro Toki (b) Motification data after entry on 7.3

Add Cho 1 1D Ta | Td | Va | Vd [Transfer| Name Add

Transfer|Birth 001-1| 6/2 [773 | 61 | now | Birth [lchiro Toki|Cho 1

Date 6/ |7 [oo1-1]7/3 [now|6/1 | 7/1] Birth |ichiro Toki|Cho 1
001-2]| 7/3 | now | 7/1 | now | Change |Ichiro Toki|Cho 2

(b) Notification of
change address

< (2) Expression by event time

Name |lchiro Toki (a) Notification data after entry on 6/2
Add __ |Cho 2 [D [Ta[Td] va Transfer] Name | Add
Transfer |Change [oo1=1] 6/2 | now [8/1 Birth _|lchiro Toki [Che 1
Date 741 (b) Notification data after entry on 7/3
D Ta | Td | Va Transfer| Name Add
001-1| 6/2 | now | 6/1 Birth |lchiro Toki |Cho 1
001-2| 7/3 | now | 771 Change |lchiro Toki|Cho 2

Figure 5: Expression of valid time.

4.2.3 Implementation of Valid Time

As for the valid time, because it depended on the business,
we decided its unit from the necessity about the business. We
show the examples of the unit of the valid time as follows.

e A Minute: the diligence of the office staffs.

o A Day: the transfer of residents, the transfer of taxable
articles, the acquisition and loss of the qualifications of
the welfare, the period of bank transfer and the transfer
of the office staffs.

e A Month: the payment information of salary of the
office staffs.

e A Year: the amounts of tax such as the light vehicle
tax.

In the implementing of the valid time attribute, we used
both expressions shown as follows.

e Expression by Beginning and Ending Time
We expressed the valid time of some tables by the be-
ginning and ending time: the table that needed to sub-
scribe the time becoming valid or invalid beforehand
such as the bank transfer period; the tables that needed
to manage beginning and ending time by the set such
as the acquisition and loss of the qualification.

e Expression by Event Time
Data were changed or added by an event and main-
tained until the next event occurrence. For example, the
state of a resident was changed by the event of transfer
such as his or her birth or change of address, and the
state was maintained until the next transfer.

When we changed a data expressed by the beginning and
ending time, the following procedure was executed and two
records are added as shown in item (1) of Figure 5. In Fig-
ure 5, T,, Ty, V,, V4 are the same as the notation in section
3.1

e ID =001 — 1(7, = 6/2): deletion time T} is set to
the original data.

International Journal of Informatics Society, VOL. 1, NO. 1 (2009) 16-26

e ID =001—1(T, = 7/3): the data after change of the
valid time is added, the ending time V;; of which is set
to July 1st that is the beginning time of the next record.

e ID =001 —2(T, = 7/3): the data, address of which
has been changed into 2-chome, is added.

Here, the data ID = 001 — 1(7, = 6/2) shows the record
between June 2nd and July 2nd of the transaction time, and
the data ID = 001 — 1(7, = 7/3) shows the record after
July 3rd.

On the other hand, when we change a data expressed by the
event time, only a record /D = 001 — 2(7,, = 7/3) is added
as shown in item (2) of Figure 5. Therefore, data increase in
the case of the expression by the event time is less than the
expression by the beginning and ending time. Incidentally, in
this case, the state in the real-world of the designated valid
time is expressed by the data that event time is eve of the
designated time, if there is no data that event time agrees with
it.

4.2.4 Support for Behind Entry Data

There was business that had to create documents like statistics
at the end of business hours of the designated date, though
the data of the real-world were behind in their notifications
to enter the system. Therefore, we created them based on
the notification date to the local government. For example,
some kinds of resident transfers should be notified within 14
days from the actual transfer date: birth, change of address,
transfer into the city and so on. However, statistics such as
population statistics or transfer statistics of residents had to
be created after the business end of the designated date to be
reported to the next day. Therefore, we managed the notifi-
cation date in addition to the transfer date that is a valid time
in the table of the resident registration subsystem. The notifi-
cation date is a user-defined time [7], [11], which is the time
attribute defined by user in the temporal database.

Figure 6 shows the example of the snapshot by the notifi-
cation date, in which N,, Ny show the beginning and ending
time of the notification date. Here, the ending time becomes
the notification date of the next notification. That is, the time
period attribute of the notification date is the same with the
valid time, and we can query the database by the notification
date in the same way with the valid time. Figure 6 shows the
example of the data, notification date of which is June 2nd
and was corrected on June 3rd. Item (1) of Figure 6 shows
the query result designating both the notification date and the
transaction time June 2nd, and its data are before the correc-
tion. And, Item (2) shows the query result designating noti-
fication date June 2nd like item (1) and the transaction time
June 3rd, which reflected all kinds of corrections: the change
of ID = 002 — 1, the deletion of 1D = 003 — 1 and the
addition of ID = 004 — 1.

4.3 Implementation of Online Entry

The notifications of the residents were accepted with the
report window of the city hall, and its data were entered from

21
Data of the database
Data on 6/2 [Ma, Nd): User—defined time (Notification date)
jis} Ta Td Va Vd Na Nd | Transfer Name Add
001-1 | 6/2 | now | 6/1 | now | 6/2 | now | Birth Taro Jisei |Machi 1 |
002-1 | 672 | now |5/31 | now | 6/2 | now | Into City | Jiro Henko |[Machi 2
003-1 | 672 | now |5/21) now | 652 | now Birth | Sabro Sakujo [Machi 3 |
Data on 6/3
jiv] Ta Td Wa | Vd | Na [Nd | Transfer Name Add. ()] (2)
001-1 | 6/2 | now | 6/1 | now | 6/2 | now | Birth Tare Jisei |Machi 1 [BN)
002-1 | 6/2 | 63 |5/31| now | 6/2 | now | Into City | Jiro Henko |Machi2| | @ | |
002-1 6/3 new | 5/31 | now | 6/2 | now | Inte City | Jiro Henko |Machi5| | | @ |
003-1 | 672 | 673 |5/21) now | 672 | now Birth | Sabro Sakujo|Machi 3| | @ | |
004-1 | 6/3 | now [5/21| now | 6/2 | now | Into City | Shiro Tsuika | Machi 4 []
n: of the datab.
(1) Transaction time=6.2, Notification date=6/2
D Ta Td Va Vd Na Nd | Transfer Name Add,
0011 6/2 | now | 61 | now | 6/2 | now Birth Taro Jisei |Machi 1
002-1 | 6/2 | 6/3 |5/31) now | 62 | now | Into City | Jiro Henko [Machi2
0031 6/2 6/3 |5/21] now | 672 | now Birth | Sabro Sakujo| Machi 3 |
(2) Transaction time=6/3. Notification date=6,2
D Ta Td Va Vd Na Nd | Transfer MName Add,
0011 6/2 | now | 61 | now | 6/2 | now Birth Taro Jisei |Machi 1
002-1 | 6/3 | now |5/31) now | 6/2 | now | Into City | Jiro Henko [Machi5
004-1 | 6/3 | now |5/21| now | 6/2 | now | Into City | Shiro Tsuika | Machi 4

Figure 6: Snapshot by user-defined time: notification date.

the business screen of the online-terminals. Regarding busi-
ness, this entry had the following characteristic.

e The simultaneous entry of the identical resident from
more than one terminal could not happen in the general
business, because the entry was done by the notification
of the resident.

e The entry time at the report window was comparatively
long to confirm the notification contents.

Therefore, we used the optimistic lock to reduce lock pe-
riod, which used the addition time of the transaction time and
executed by the following procedure.

i. The corresponding data is read from the table without
acquiring a lock.

ii. The data is changed with the business screen.

iii. Once again, the data is read from the table with the
record locking by the same condition as the last time.

iv. If it is being locked or its addition time is updated, the
data is judged that has been updated by the others, so
that the table is not updated. In the other case, the table
is updated by the changed data.

4.4 Implementation of Data Correction

We added the data correction feature, which is shown as
follows, to the business screen in addition to the data entry
feature of the notification.

o Correction as Internal Process
The corrections of the data entry error, in the entry data
confirmation works of system operations, were done as
the internal process of the local government.

e Correction as Business Procedure
The other corrections were done as usual business pro-
cedure of the local government.

22

Data of the database

T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

(a) Data of tables

Light vehicle table

Resident registration table

Data on 6/2 [Na, Nd):U defined time (Notifi date)

[o] Ta Td Va Vd Na Nd Transfer Name Add
001-1| 6/2 [now | 61 | now | 62 [mow Birth Taro Jise |Maehi |
002-1| 6/2 | now | 5731 | now | 672 | now | Inte City | Jiro Henke |Machi 2
003-1) 62 | now | 5/21| now | /2 | now Birth |Sabre Sakuje| Mach: 3
Data on 6/3

ID Ta Td Va Vd Na Nd Transfor Name Add,
001-1] 6/2 | now | 671 | now | 672 | now Birth Taro Jise |Machi 1
002-1| 672 | 673 | 5731 now | 672 | now | Into City | Jiro Henke | Machi 2
002-1) 6/3 | now | 5/31| 6/3 | 6/2 | 6/3 | Into City | Jiro Henka | Machi 2
002-2)| 6/3 | now | 6/3 | now | 6/3 | now | Correction| Jiro Henke | Machi §
003-1| 6/2 | 6/3 15/21| now | 6/2 | now Birth |Sabro Sakujo| Machi 3
003-1| 6/3 | now | 5/21| 6/3 | 6/2 | 6/3 Birth _|Sabro SakEE'o Machi 3
003-2| 653 | now | 6/3 | now | 673 | now | Deletion |Sabro Sakujo| Machi 3
004-1| 673 | now | 6/3 | now | 673 | now | Addition |Shiro Tsuika| Machi 4

Snapshot of the database
(1) Trar ion time = 673, Motification date = 6.

[¢] Ta Td Va Vd Na Nd Transfer Name Add,
0011 | 672 | now | 671 now | 6/2 | now Birth Taro Jise |Machi 1
002-1)| 6/3 | now | 5/31| 6/3 | 62 | 6/3 | Into City | Jiro Henko | Machi 2
003-1| 63 | now | 5721 | 6/3 6/2 6/3 Birth Sabro Sakujo| Mach: 3
@) T ion time = 6/3, Motification date = on or before 6/3

ID Ta Td Va Vd Na Nd Transfer Name Add,
001-1| 652 | now [B/1 now | B/2 | now Birth Tare Jise |Machi |
002-1)| 6/3 | now | 5/31| 6/3 | 672 | 6/3 | Into City | Jiro Henko | Machi 2
002-2 | 6/3 | now | 6/3 | now | 6/3 | now |Correction| Jiro Honke | Machi | g
003-1| 653 | now | 5721] 69 6/2 B/3 Birth Sabro Sakujol Machi 3] |
003-2]| 63 | now | 6/3 | now | 6/3 | now | Deletion [Sabro Sakujo| Machi 3
004-1| 653 | now | 653 | now | 63 | now | Addition |Shiro Tsuiw] Machi 4

Figure 7: Correction as business procedure.

S-ID

Ta

Td

\'

J-ID

J=ID

Ta

Td

v

111=1

1/10

4/20

1.1

020-1

020-1

6/2

/3

/1

111-2)

4/20

now

141

020-1

020-1

1/3

now

71

(b) Result of simple join

operation

Li

zht

hicle table

o N

regi tion table

S-ID

Ta

Td

Vv

J-1D

Ta | Td

Va

111-1

1/10

/20

11

020-1

6/2 | 1/3

6./

111-1

1/10

4/20

1.1

020-1

1/3 | now

10

111-2)

/20

now

11

020-1

6/2 | 7/3

B/

111-2

/20

now

11

020-1

7/3 | now

7/1

Figure 8: Problem of join operation on a bitemporal database

Query of bitemporal batabase

Light

vehicle

table

Resident
registration
table

|| Query on 6/30
1 (01=6/30, t2=4/1)

Query on 7/31
(41=7/31. t2=4/1)

Query on 7/31
(£1=7/31, t2=7/31)

The correction by the internal process was executed with
using the transaction time as shown in Figure 6. Item (2) of
Figure 6 shows the query result of the notification that was
notified on June 2nd and corrected on June 3rd, which was
queried by designating the notification date June 2nd and the
transaction time June 3rd. This correction was done as the
internal process, so that it was not shown on the official doc-
uments such as the transfer record of the resident card.

On the other hand, the corrections as the business proce-
dure have to be recorded on the official documents. For ex-
ample, regarding the resident card, there were three kinds of
corrections of business procedure: the official authority cor-
rection for the change, the official authority deletion for the
deletion and the official authority mention for the addition.
And, these corrections were recorded on the resident card.

Figure 7 shows the examples of the corrections done as the
business procedure. Here, the examples are the same correc-
tions that were done as the internal process in Figure 6. Item
(1) of Figure 7 shows the snapshot queried by the same des-
ignating time as item (2) of Figure 6, which transaction time
is June 3rd and notification date is June 2nd. For the cor-
rections were done as the business procedure, the notification
dates of them were June 3rd, and the correction result did not
reflect in the query result. On the other hand, for the correc-
tions were done with the notification date and their records
were accumulated, both before and after correction records
were queried by designating the both times as follows: the
notification date was June 3rd, or before, and the transaction
time was June 3rd. The relation of this snapshot is generally
expressed as follows.

Rg(tl,tg,) = {T’|T ERA T’[Ta] S tl A tl < T’[Td]
AT[NG] < t3} (3)
Here, t; and t3 are the designated transaction time and notifi-

cation date respectively, and r[T,], r[T,] and r[N,] are same
as equation (2).

Snapshot Snapshot
on 6/30 on 7/31

Query for Query for
transfer statistics transfer list

kind
2-wheeler
S-whaalar
A=whaaler

sum

6/30 | 7/31 [dift

name
Jisei
Henkeo
Sakujo

Tsuika

Batch| processing using ‘work tables
|| List print || | List print ||
L 2 v
Transfer J | Transfer list J
statistics

Figure 9: The composition of batch processing

4.5 Implementation of Batch Processing

Since the bitemporal database managed the records of the
both time, the transaction time and the valid time, its query
procedure became complicated. For example, as shown in
Figure 8, the light vehicle table had the foreign key J — ID,
which was the main key of the resident registration table.
However, because each table had chronological records in-
dividually, the query result of join operation between them by
J — ID became the direct product about the time attributes.
That is, the time attributes of these tables were not synchronous
each other, so they could not be used as the key of join oper-
ation.

To solve this problem, we composed temporary files by
the work tables in the application system, which are usually
composed by the sequential access method (SAM) file. And,
we processed data by the query function of the database, in
the whole batch processing, to simplify each individual query
procedure and maintain its performance. Specifically, as
shown in Figure 9, the snapshot of each table was queried at

International Journal of Informatics Society, VOL. 1, NO. 1 (2009) 16-26

the beginning of the batch processing to output the result into
the corresponding work table, and the following processing
was performed by querying this work table.

Here, Figure 9 shows the example of the batch processing,
which outputs were the transfer statistics of the light vehicle
between June and July and the transfer list in July. Since the
base date of the light vehicle tax was April Ist, each time
of the snapshot was designated as follows: the transaction
time t; = 6/30 and 7/31, the last day of each month, and
the valid time ¢o = 4/1, the base date. And, the snapshot
of resident information for the transfer list was queried with
designating both of the times on July 31st, which was its latest
information. As a result, the query of this snapshot did not
become complicated, because it was performed about each
table individually. And, the join operations about the work
tables did not become complicated, too, because it could be
performed by the same way as a snapshot database.

4.6 Operation of Batch Processing

The data entered to the system was queried by various kinds
of batch processing as shown in Figure 4. Regarding the des-
ignating time, the queries were divided into the following two
kinds.

4.6.1 Query of Data at End of Business Hours

Various statistics such as the population statistics were cre-
ated daily or monthly at the end of the business hours of the
day, and their results were reported to the next day. In the con-
ventional system operation, they had been made by the night
batch processing after the business hours of the report win-
dow. In this application system, we could execute the batch
processing during the business hours of the next day and so
on, because we queried the data of the end of business hours
by designating the transaction time. As a result, we could
reduce the night batch processing.

In the batch processing, query results were checked by the
first step. And, when error data were detected, the batch was
redone after the data correction. Regarding the batch process-
ing, all kinds of the corrections reflected in the query result, as
shown in Figure 6: the change, deletion and addition. Here,
as for the data that took time until its notification to the local
government, they were queried by using its notification date
as shown in section 4.2.4.

4.6.2 Query by Designating Valid Time

In the taxation processing, the base date of the taxation was
designated and the taxation was done after this date. However,
corrections of the taxation about the delay of the notification
often occurred, because the transfer notifications of taxable
articles to the local government usually took time.

In the case of the light vehicle tax, the taxation processing
had been usually executed with the base date of April 1st, and
since then, its correction processing was regularly performed.

23

Data of the database

D Ta Td Va vd Tax (1) [(2) | (3) |Correct.
001-1 | 1/10 | now | 1/1 now 1,000 [AN BN)
002-1 | 1/10 | 4720 | 11 now 1.200 []
002-1 | 4/20 | now [1/1 | 3/31 Q
002-2 | 4/20 | now | 4/1 | now 1,600 ® | ® | Change |
003-1 | 1/10 | 5720 | 1/1 now 5.200 AN |
003-1 | 5/20 | now | 1/1 | 3/31 0
003-2 | 5/20 | now | 4/1 now 7.200 @ | Change |
004-1 | 1/10 | 4720 | 11 now 2,500 []
004-1 | 4/20 | now | 1/1 | 3/31 Q Deletior
005-1 | 1/10 | 5/20 | 1/1 | now 4.000 el @
005-1 | 5/20 | now 1./1 | 3/31 0 Deletior
006-1 | 4/20 | now | 1/1 | now 7.200 @ | @ | Addition
007-1 | 5/20 | now 11 now 3.000 @ | Addition

Snapshot of the database
(1) Transaction time = 4/15, Valid time = 4/1

D Ta Td Va Vd Tax
001-1 1/10 | now 11 now 1,000
002-1 1/10 | 4/20 11 now 1,200
003-1 [1/10] 5/20 | 1/1 | now | 5.200/¢
004-1 | 1/10 | 4/20 | 1/1 now 2,500
005-1 | 1/10] 65720 | 1/1 now 4,000

Sum [13.900

2) Transaction time = 5/15, Valid time = 4/1
D Ta Td Va Vd Tax

001-1 | 1/10 | now | 1/1 now 1.000
002-2 | 4/20 | now | 4/1 now 1.600
0031 [1/10]5/20 1/1 | now | 5.200/¢
005-1 1/10 | 5/20 11 now 4,000
006-1 | 4/20 | now 1/1 now 7.200
Sum |_19.000
(3) Transaction time = 6/15. Valid time = 4/1
D Ta Td Va Vd Tax
001-1 | 1/10 | now | 1/1 now 1.000
002-2 | 4/20 | now | 4/1 now 1,600
003-2 | 5/20 | now 41 now 7.200 <
006-1 | 4/20 | now 11 now 7.200
007-1 | 5/20 | now | 1/1 | now 3.000
Sum |__20.000

Figure 10: Query Results by designating valid time.

Figure 10 shows the example, in which the taxation process-
ing had been executed on April 15th and its correction pro-
cessing was performed every month since then. We queried
by designating the valid time the base date of April Ist and the
transaction time the taxation processing date or the correction
processing date. By this condition, we could query the result,
in which the corrections done until each processing date were
reflected.

5 EVALUATION AND CONSIDERATION

5.1 Evaluation about Query of Correction
Data

5.1.1 Query of Data at End of Business Hours

Even if error data were detected in the batch processing, it
became possible to redo the processing after correcting these
error data, during the online entry of the usual business data.
In the online entry, the correction of entry data could be per-
formed as the internal process by using the transaction time,
in addition to the usual correction done as the business proce-
dure. The integrity of the query result was maintained about
both of these data corrections.

Since the queries in batch processing became to be able
to execute during the online entry, the night batch processing

24 T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

and its attendant work such as the waiting for the online entry
beyond business hours was reduced. Therefore, the system
operation load as the overtime work could be reduced. More-
over, when several batch processing overlaps on the same day,
it was enabled to make the schedule of batch processing flexi-
bly, in which, for example, the low processing of priority was
executed later such as the next day.

Here, the fact in the real-world wasn’t always reflected in
the system instantly like the resident’s transfer as shown in
section 4.2.4. So, as for the statistics, which were created by
the data of the end of business hours on the designated date
to be reported to the next day, we queried by using not their
valid time but their notification date that is the user-defined
time. In this way, we could query the state of the data of the
end of business hours on the designated date even if here are
notification backlogs.

5.1.2 Query of Correction for a Long Period

Like the taxation processing as shown in Figure 10, some
business needed to manage its correction for a long period
and grasp the status of the correction in the transfer statis-
tics. Regarding the business like this, we could also query the
result that reflected all kinds of corrections, which included
the change, deletion and addition, done until the designating
date. Even in this case, we could easily create the transfer
statistics by querying the total in the last time and this time,
and the transfer total between the both times. Moreover, it
could be executed during the online entry, because this query
procedure used the snapshot, too.

5.1.3 Management of Correction Data

The online entry data were confirmed and corrected before
they were used by the business procedure. Regarding the
business that managed the records such as the resident reg-
istration, the correction records in this step did not be needed
by the business procedure. So, these corrections were per-
formed as the internal process of the system operations. On
the other hand, after the data were used by the business pro-
cedure, their corrections also had to be done as the business
procedure. Both of these corrections, as the internal process
and as business procedure, could be managed individually by
the bitemporal database.

5.2 Evaluation of Implementation of Database

In the record management of the bitemporal database, the
problems about the increase of the amount of data and the
complication of the query procedure occurred.

About the amount of data, two records needed to add the
database for each change in the real-world as shown in item
(1) of Figure 5: one of them was the record of the before, of
which ending time of the valid time was updated, and another
was the record of the after. We could reduce these two records
to one record by the method that used the expression by the
event time as shown in item (2) of Figure 5. Therefore, we
adopted the expression by the event time to the tables except

the tables that needed to manage the ending time of the valid
time in particular.

As a result, the increase of records to the amount records
needed in the original business became almost only the cor-
rection records as the internal process. Regarding this appli-
cation system, this increase was 20% in a year even if max-
imum and the amount of data was less than twice using for
5 years, the life cycle of the system. Incidentally, in recent
years, the price of the unit capacity of the storage media was
falling and the increase of the amount of data didn’t become
aproblem in the aspect of the system building cost.

Next, to simplify each query procedure, we used the work
tables as temporary files of the batch processing, and pro-
cessed data step-by-step. As a result, we achieved the neces-
sary query performance for the business, in the function range
of the commercial relational database. Incidentally, since in-
serting a great deal of data into the work table with indexes
degrades the performance, we generated indexes after insert-
ing or importing of data in this case.

5.3 Consideration
5.3.1 Query of Data at End of Business Hours

We confirmed that the corrections of data were reflected in the
query result and its integrity was maintained by the bitem-
poral database, even while the online entry was performed.
Moreover, we confirmed that this is effective for the system
operation, because the night batch processing to query the
data of the end of business hours on the designated date could
be reduced by executing it in the business hours of the next
day and so on.

For example, the batch processing and its attendant work
of the overtime of the local government, having about 40,000
populations, could be reduced about 1.5 hours a day from the
conventional system. In addition, for the system operation
in the overtime was ridded of, the batch processing could be
transferred from the system department to the control depart-
ment of the business. As a result, the work of contact and
adjustment, such as the request of the batch processing or the
receipt of the documents of it, could be reduced. In recent
years, the nonstop services are expanding with the internet
application such as the electronic government, the electronic
commerce. Therefore, we consider that the operation to query
by batch processing without stopping the online entry is effec-
tive in such a field.

Moreover, we found that the notification date, which is
user-defined time, should be managed apart from the valid
time in some kinds of business, because, in the actual busi-
ness operation, all the fact of the real-world may not reflect in
the system instantly. For example, in the resident registration
subsystem, both times were used according to the business
contents: the age calculation of the resident used the birthday
that is the valid time; the statistics of the residents used the
notification date of the transfer that is the user-defined time.

International Journal of Informatics Society, VOL. 1, NO. 1 (2009) 16-26

5.3.2 Query of Correction for a Long Period

The data, which were correcting for a long period, had to be
managed by its records of correction from the base time of
the business until the query time. The bitemporal database
manages both the times: the valid time that expresses the base
time and the transaction time expresses the query time. We
confirmed that this is effective such as to grasp the records of
data for a long period and to create the transfer statistics.

5.3.3 Management of Correction Data

The bitemporal databases could manage correction records
about the both of the correction: as the internal process and
as the business procedure. The correction as the internal pro-
cess didn’t accumulate records for business procedure, but
these correction records were accumulated inside the database
by using the transaction time. Therefore, we considered that
these records are effective for the management of the change
process of data in the system, especially in the mission-critical
systems that need to adapt inspection of a high level.

6 CONCLUSION

For the efficient operations of mission-critical systems, it is
necessary both batch processing and online entry can be exe-
cuted simultaneously even under the actual system operation
such as data-entry mistakes and data-entry backlogs. We ap-
plied a bitemporal database into a mission-critical system, and
throughout its actual system operations, we confirmed that the
data corrections were reflected in the query results, and that
the integrity of the query results was maintained even while
the database was being updated by online entry. Furthermore,
we confirmed that it is effective about not only the data cor-
rections for a short period confirmation work but also the cor-
rection management of data for a long period of real-world
use, and that data correction can be managed in both inter-
nal processes and business procedures individually. In recent
years, the nonstop services are expanding with the develop-
ment of internet applications. Therefore, we consider that
the system operation being able to query by batch processing
without stopping the online entry become effective in such a
field.

REFERENCES

[1] L. Baekgaard, and L. Mark, Incremental Computation of
Time-Varying Query Expressions, IEEE Trans. knowl-
edge and Data Eng., Vol. 7, No. 4, pp. 583-590 (1995).

[2] G.Bhargava, and S. K. Gadia, Relational Database Sys-
tems with Zero Information Loss, IEEE Trans. knowl-
edge and Data Eng., Vol. 5, No. 1, pp. 76-87 (1993).

[3] N. Edelweiss, P. N. Hiibler, M. M. Moro, and G. De-
martini, A Temporal Database Management System Im-
plemented on top of a Conventional Database, Proc. XX
International Conference of the Chilean Computer Sci-
ence Society, pp. 58—67 (2000).

25

[4] J. Gray, and A. Reuter, Transaction Processing: Concept
and Techniques, Morgan Kaufmann (1992)

[5] C. S.Jensen, L. Mark, and N. Roussopoulos, Incremen-
tal Implementation Model for Relational Database with
Transaction Time, IEEE Trans. knowledge and Data
Eng., Vol. 3, No. 4, pp. 461-473 (1991).

[6] C. S. Jensen, and R. T. Snodgrass, Temporal Data
Management, IEEE Trans. knowledge and Data Eng.,
Vol. 11, No. 1, pp. 36-44 (1999).

[7] G. Ozsoyoglu and R. T. Snodgrass, Temporal and Real-
Time Databases: A Suevey, IEEE Trans. knowledge and
Data Eng., Vol. 7, No. 4, pp. 513-532 (1995).

[8] H. -J. Park, and S. I. Yoo, Implementation of Check-
out/Checkin Mechanism on object-Oriented Database
System, Proc. 7th International workshop on Database
and Expert System Applications, pp. 298-303 (1996).

[9] L. Shrira, and H. Xu, SNAP: Efficient Snapshots for
Back-in-Time Execution, Proc. 21st International Con-
ference on Data Engineering, pp. 434—445 (2005).

[10] H. Skaf, F. Charoy, and C. Godart, Flexible Integrity
Control of Cooperative Applications, 9th International
Workshop on Database and Expert Systems Applica-
tions, pp. 901-906 (1998).

[11] R. Snodgrass and I. Ahn, Temporal Databases, IEEE
COMPUTER, Vol. 19, No. 9, pp. 35-42 (1986).

[12] B. Stantic, J. Thornton, and A. Sattar, A Novel Ap-
proach to Model NOW in Temporal Databases, Proc.
10th International Symposium on Temporal Representa-
tion and Reasoning and Fourth International Conference
on Temporal Logic, pp. 174-180 (2003).

[13] A. U. Tansel, Integrity Constraints in Temporal Rela-
tional Databases Extended Abstract, Proc. Int. Conf.
on Information Technology:Coding and Computing, pp.
460—464 (2004).

[14] P. Terenziani, Symbolic User-Defined Periodicity in
Temporal Relational Databases, IEEE Trans. Knowl-
edge and Data Eng., Vol. 15, No. 2, pp. 489-509 (2003).

(Received September 9, 2007)
(Revised November 3, 2008)

Tsukasa Kudou Tsukasa Kudou
received the master’s degree in Engineering from
Hokkaido University in 1980 and received the
Dr. degree in industrial science and engineering
from Shizuoka University, Japan, in 2008. In
1980, he joined Mitsubishi Electric Corp. He was
the researcher of parallel computer architecture,
the engineer of application packaged software
and business information system. Since 2005 he

i ‘ R is the engineer of Mitsubishi Electric Information

Systems Corp. Now, his research interests

include database application and software engineering. He is a member of
IEIEC and Information Processing Society of Japan.

26 T. Kudou et al. / Implementation of Integrity Maintenance Method of Query Result by Bitemporal Database

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan, in 2007. In 1979, he joined Mitsubishi
Electric Corp. Since 2005, he is the system

engineer of Mitsubishi Electric Technology
‘ Corp. Now, His research interests include

management information system, industrial
engineering, application system of data-mining,
and information security system. He is a member of Information Processing
Society of Japan, Japan Industrial Management Association and Japan
Society for Management Information.

Kenji Saotome received a BE from the

Osaka University, Japan in 1979, and a Dr.Eng

in Information Engineering from the Shizuoka
University, Japan in 2008. From 1979 to 2007, he
was with Mitsubishi Electric, Japan. Since 2004,
he has been a professor of Hosei business school
of innovation management. His current research
areas include LDAP directory applications

and single sign-on system. He is a member

of the Information Processing Society of Japan.

Nobuhiro Kataoka received the master’s degree
in Engineering from Osaka University in 1968
and received the Ph.D. degree in Information
Science from graduate school of Information
Science Tohoku University, Japan, in 2000. In
1968, he joined Mitsubishi Electric Corp. He was
the engineer of basic software, middle software
and application packaged software. From

1992, he was transferred to corporate information
management department and managed to expand
ERP (SAP) all over the corporation. Since 2000
he is a Professor of Tokai University. Now, His research interests include
management information system and business process modeling. He is a
member of IEEE, IEIEC, and Information Processing Society of Japan.

Tadanori Mizuno received the B.E.

degree in industrial engineering from the Nagoya
Institute of Technology in 1968 and received the
Ph.D. degree in computer science from Kyushu
University, Japan, in 1987. In 1968, he joined
Mitsubishi Electric Corp. Since 1993, he is a
Professor of Shizuoka University, Japan. Now, he
is a Professor of graduate school of Science and
technology of Shizuoka University. His research
interests include mobile computing, distributed
computing, computer networks, broadcast
communication and computing, and protocol engineering. He is a member
of Information Processing Society of Japan, the institute of electronics,
information and Communication Engineers, the IEEE Computer Society,
ACM and Informatics Society.

