International Workshop on Informatics (IWIN 2009)

A proposal for a low-cost model of software process evaluation

Nobuhiro Kataoka *,

Tsukasa Kudou **

* School of Information and Telecommunication Eng., Tokai University, Japan
kataoka9@tokai.ac.jp
**Mitsubishi Electric Information Systems Corporation, Japan
kudou-tsukasa@mdis.co.jp

Abstract - Well-known process level evaluation methods
used by software companies include CMMI certification and
ISO/TEC TR 15504 process assessment, both of which are
hearing methods with evidence base. These methods create a
heavy workload for organizations that perform process
evaluations as well as for the organizations being evaluated.
However, since software companies collect various data in
their everyday development work, we believe that the
process level of such companies can be easily evaluated
from these data, thus reducing the financial and other
burdens of such evaluations. In this paper, we propose a
low-cost model that uses these data to evaluate the process.
The data used in the model include the specifications review
man-hour rate, the test specifications review man-hour rate,
and the software reuse rate. The model calculates the partial
correlation coefficient in which the objective functions are
productivity and number of bugs, and the explanatory
variables are the three data items described above. Using
this model, we can evaluate the amount of correlation from
the results, and the strengths and weaknesses of an
organization’s process are revealed. We applied this model
to an actual company's data and were able to determine the
strengths and weaknesses of the company's software process
from an evaluation of the results. Thus, the effectiveness of
the proposed model in evaluating the software process at
low cost was confirmed.

Keywords: software process, process evaluation, low cost,
assessment, productivity

1 INTRODUCTION

Some well-known process level evaluation methods used by
software companies include CMMI (Capability Maturity
Model Integration)[1] certification and ISO/IEC TR
15504[2] process assessment. Both are hearing methods
with evidence base. These create a heavy load for
organizations that perform process evaluations as well as for
the organizations being evaluated.

However, software companies in their everyday
development work collect various data and we believe that
the process level of software companies can be easily
evaluated from these data, thus reducing the financial
burden of such evaluations.

In this paper, we propose a low-cost model that uses these
data to evaluate the process, specifically the effect of
software reuse, design specifications review, and test
specifications review, at low cost. In this way, we raise

129

awareness of these activities within the organization and
also tie such awareness to making further improvements in
the process.

Evaluation is performed by using the value of the
partial correlation coefficient in which the objective
functions are productivity and number of bugs present, and
the explanatory variables are the specifications review man-
hour rate, the test specifications review man-hour rate, and
the software reuse rate. When there is an area that does not
produce a good effect, this indicates where in the software
development process a problem exists.

In this way, the weak points in the software
development process can be determined using our model. As
a next step, more detailed analysis is required to pinpoint the
exact areas for process improvement.

To determine whether the proposed model was
effective for an initial general evaluation of the process at
low cost, we used actual system data to evaluate the model.
As a result, we were able to determine the strengths and
weaknesses of the organization’s process, thereby
confirming the effectiveness of our model.

The remainder of this paper is organized as follows.
Section 2 presents the research situation and current
challenges in process evaluation, and Section 3 introduces
the proposed model. Section 4 describes the results when
actual system data were applied to the proposed model,
Section 5 presents the overall evaluation results, Section 6
discusses the significance of our model, and Section 7
provides concluding remarks.

2 METHOD OF SOFTWARE PROCESS
EVALUATION

Simply acquiring ISO 9001[3] certification does not
improve the software development process of an
organization. Rather, process improvement is carried out on
a daily basis using a quality system that has been developed
over time. In addition, to acquire CMMI certification, the
process level is certified according to the level of the
certification acquired, but great expense and effort is
necessary for this. The software development process can
otherwise be evaluated by the process assessment of
ISO/IEC TR 15504, however this also requires much effort.
It is well known that upstream review plays a
considerable role in improving the quality of software [4].
A method has been proposed to improve the efficiency of
review methods [5], and there is also a proposal on how to
zero-in on a process that has become a problem [6]. In
addition, Komuro et al. collected three data items-review



speed, indication density, and review efficiency-and, using a
statistical technique, identified problems and made
improvements, confirming the improvement of the review
effect and cost reduction [7].

All these improvement methods are for organizations
that have processes of a certain level, and only focus on
reviews that have a strong relationship to quality. However,
there are many organizations worldwide that do not reach
this level. In such organizations, advancing to the next step
comes only after analyzing the strengths and weaknesses of
the existing processes of the organization. Thus, a low-cost
process diagnosis model requiring only collected data is
necessary.

3 PROPOSED MODEL

We used the following three data items in our proposed
model: 1) design specifications review man-hour rate; 2) test
specifications review man-hour rate; and 3) source code
reuse rate. The data we used as evaluation result data were
the development productivity and the bug rate (number of
bugs per line of source code). Our reasons for choosing
these data were as follows. The importance of review in
software development is well known. Software development
is human intellectual work, and there are many elements in
which we may make errors, for example, through a lack of
technical skills, incorrect beliefs, or discrepancy with the
work of other people.

In such a situation, 7.3.1 b for ISO 9001-2000
requires that a review suited for each stage be performed,
and the inspection propriety confirmed. In addition, CMMI
requires a review known as "a pure review" in the third level
key process area.

On the other hand, the reuse of source code has been
said to be the trump card of productivity improvement. It is
natural that productivity will improve with code reuse, but
the impact on productivity changes greatly depending on the
type of code reuse. In other words, the impact on
productivity and quality changes greatly depend on whether
it is reuse of code at source level or whether it is reuse of
modules. Recently, a number of tools that automatically
generate source code have been developed. However, only
the skeleton of the source code is generated by design
specifications and the details must be added by the user. In
addition, due to the popularization of Java, the use of
modules is spreading with the use of JDK and Java Beans,
but application logic for domains are limited to reuse among
sections. Moreover, in certain domains the product is used
as a framework after system development is complete, and
reuse is planned by changing some part of the system, thus
improving the productivity.

3.1 The development model

Figure 1 presents the development model which is the
premise of the proposed model. This development model is
a general waterfall model, but we will describe it in order to
eliminate any possible misunderstanding. In the figure, we
show the flow of program development, the stage where the
program reuse process is performed, and the stage where the
review is done.

130

International Workshop on Informatics (IWIN 2009)

In addition, we clarify the meaning of productivity of
the overall software, productivity of program development,
total bugs, combinatorial testing bugs, and system testing
bugs.

3.2 An evaluation model

(1) In the evaluation model, we assume that the following
data are collected at each project.

- All of the software development lines of code

- New production lines of code

- Reused lines of code

- Man-hours throughout the entire development

- Man-hours creating program specifications + man-hours
creating the program + man-hours testing modules (hereafter,
program development man-hours)

- Source code reuse rate

- Man-hours used for the specifications review

- Man-hours used for the test specifications review

- Number of bugs in combinatorial testing

- Number of bugs in system testing (including field

testing)
- Man-hours for bug repair from combinatorial testing to
field testing (bug repair man-hours)

We selected these data items assuming that many software
companies collect them. Of importance in our model is that
it can perform analysis even if some data are absent without
impacting the overall situation, and it can also watch over
wider overall tendencies. The reason we did not include
review man-hours of the source code in the model is that we
determined that the numbers of cases in which the source
was reviewed were few, with the exception of specific parts
such as important parts of the system or parts made by new
employees.
(2) Data classification and collection
Here, we describe how to create the evaluation data from the
above-mentioned data

- Total productivity: Lines of source code from the entire

software development / man-hours used throughout the

entire development

- New total productivity: Lines of source code from the

new production / man-hours used throughout the entire

development

- Program development productivity: Lines of source code
from the entire software development/ man-hours used
throughout the program development

- New program productivity: Lines of source code from the
new development/ man-hours used in new partial program
development

- Specifications review man-hour rate: (system
specifications + software specifications + program
specifications) man-hours used in review / man-hours used
throughout the entire development

- Total man-hours used for bug repair: Bugs repair man-
hours used in combination testing, system testing and field
testing

- Number of bugs in combinational testing: Number of
bugs in combinational testing
- Number of bugs in system testing: Number of bugs in
system and field testing.



4 System design

New development of software

Software design

4—

International Workshop on Informatics (IWIN 2009)

Review of system

<4—| specification

Reuse design of software
module
Review of software

ispeciﬁcation

—* | Program design |¢—— | Review of program
a specification
b : e fe— :
Codmlg compile Reuse design of source
v code

Module testing

Y
A

Reuse module

a. whole software productivity
c. total bugs

Fig.1

3.3 Desirable value for the model

The proposed model calculates the partial correlation
coefficient in which the objective functions are productivity
and number of bugs present, and the explanatory variables
are specifications review man-hour rate, test specifications
review man-hour rate, and software reuse rate. The number
of bugs is normalized by dividing it by a development line
of source code. It is necessary to use partial correlation
analysis because in simple correlation other eclements are
impacted, and it is not possible to perform evaluation of the
exact degree of impact. As a result, we believe that the
desirable tendency is as shown in Table 1. The table is
explained as follows.

(1) Source code reuse rate:

It was natural that the total productivity and source code
reuse rate would show a high correlation, so we set this
value to 1.0. For the productivity of a new development part,
there is a system framework, and it shows high correlation if
we have a style change or addition for the framework.
However, because all development is not done in this style,
we cannot expect it to be 1.0. Therefore, in Table 1 we set
this value slightly lower than 1.0, at 0.8 as a temporary
value.

d - <Y , ,
Combinational (< Review of combinatorial
v testing test specification
'J I Y v
e System testing |« Review of system test
specification
v
Field testing < Review of field test
\ specification

d. combination testing bugs

b. program development productivity
e. system testing bugs

Process of software development

It is natural that entire program productivity show a high
correlation, so we set this to 1.0 We set the correlation value
to O for real new parts which will have no correlation.

Because bugs are not included if the reuse of source
code is at the program level or module level, bug repair
man-hours might be in high negative correlation. In addition,
the number of bugs in combinatorial testing and system
testing may have a high negative correlation for similar
reasons. In the case of reuse of source level code, it is very
likely that bugs will be created in change stages and
insertion stages even if bugs were not in the original source
code, so there will not always be a high negative correlation.
Therefore, we temporarily set a low value of -0.8 rather than
a value of -1.0 here.
(2) Specifications review man-hour rate:
When the review man-hour rate is high, an improvement in
productivity and a reduction effect in the number of bugs are
recognized for the following reasons.

Here, we are assuming an organization with a 5%

or lower review man-hour rate, not organizations with more
than a 10% man-hour rate.

131



International Workshop on Informatics (IWIN 2009)

Table 1 Desired value of this model

Total development Program Bug repair Number of bugs
productivity productivity total man-
Total New Total New hours Combinational | System
part part testing testing
Software reuse rate 1.0 0.8 1.0 0 —0.8 —0.8 —0.8
Specifications review 10 10 10 10 0% 0% 0%
man-hour rate ’ ’ ’ ’ ’ ’ '
Test specifications - sk sese s _ _
review man-hour rate 0.8 0.8 0.8 0.8 1.0 1.0 1.0

* We expected some negative correlation and so used - 0.2.
** We expected considerable positive correlation and so used 0.8.

Total productivity, new part productivity, the entire
program productivity, and new program productivity should
show a high correlation due to the reduction of rework man-
hours by the review man-hour rate of system specifications,
software specifications, and program specifications.

Therefore, we set this value to 1.0. Likewise, program
productivity should show a strong positive correlation with
the review man-hours rate. This is similar for the entire
program and new parts. Therefore, we set this value to 1.0.

Because errors are extracted by the specifications

review, the bug repair man-hours will show a negative
correlation. In the specifications review it is difficult to
perform a review with enough detail that enable program
errors to be extracted, so we cannot expect a large value as
negative correlation. Therefore, this is temporarily set to -
0.2. We temporarily set combinatorial testing and the
number of bugs of system testing to - 0.2 for similar reasons.
(3) Test specifications review man-hour rate:
If the test specifications review man-hour rate is high, the
bugs in combinatorial testing increase exponentially and will
show a strong positive correlation with combinatorial testing.
Therefore, we set this value to 1.0. On the other hand, by
detecting a bug by combinatorial testing early, the number
of bugs can be reduced in the system testing plus field
testing (hereafter, “system testing”), so we expect a strong

negative correlation. Therefore, we set this value to -1.0. In
addition, the repair costs for a bug are large in system
testing for combinatorial testing, so a strong negative
correlation was expected for the bug repair cost. Therefore,
we set this correlative value to -1.0. Because the bug repair
cost decreases, a strong correlation with total productivity
can be expected.

However, this correlation is not, in actuality as strong
as anticipated. In addition, it is similar to the productivity of
total and new development parts. Therefore, we set this
value to 0.8. Because we can say that the productivity of
program development will be similar, also we set this value
t0 0.8.

132

3.4 Contribution rate for total productivity

A characteristic of this model is the fact that we can evaluate
a single year of data. However, it can be used to evaluate the
contributing causes for improvements in productivity.

For example, we assume that o is the productivity
improvement rate for the current year over the previous year.
“A” is the growth of the source code reuse rate, “B” is the
growth of the design specifications review man-hour rate,
and “C” is the growth of the test specifications review man-
hour rate.

In addition, we set each correlation value for total.
productivity as a, b, and ¢, and set each contribution rate for
each productivity as Pa, pb, and Bc. First we find Pa’, fib’,
and fc', which are the apparent contribution rates for each
element. This can be expressed by Equation 1:

a
Ba = AX
athtc
b 1
Bb’ =BX )
atb+e
c
Bc’ = CX
atb+c

Next, we distribute the total contribution rate using the
apparent contribution rate, and calculate the actual
contribution rate. This can be expressed by Equation 2:

aX pa
Ba =
Ba’ +B8b> + Bc’
o - aXfBb )
ga  +Bb’ + B¢’
aX B¢’
Bec =
Ba’ +Bb, + HC’



The following shows a calculation result using a data sample.

o =20% A=30% B=10%
a=0.8 b=09 c=0.85

p a'=30%0.8/2.55=9.4 %

p b'=10%0.9/2.55=3.5 %

p ¢'=15%0.85/2.55=5.0 %

C=15%

p a=20%%x9.4/(9.4+3.5+5.0)=10.5 %
B b=20%x3.5/(9.4+3.5+5.0)=3.9 %
B ¢ =20%%x5.0/(9.4+3.5+5.0)=5.6 %

4 EVALUATION OF MODEL USING
DATA FROM AN ACTUAL COMPANY

We ecvaluated the model using data from an actual
company’s projects. The data was derived from 30 projects
carried out during a certain year, and the development
number of source code lines varied from 5KL to 700KL,
with an average of 120KL. In addition, reuse rate in the
domain concerned was considerably high at about 50% on
average, and the highest projects were at 90%. Of course,
there were also projects at 0%.

The results from an evaluation of these data using
our model are shown in Table 2. Next, we will describe the
analysis results. In addition, we show the desired value of
the model and the real data in a radar chart in Figure 2.
However, we reversed the positives and negatives in this
chart because a decrease in the number of bugs is desirable.
However, since an increase in the specifications review
man-hour rate is desirable, we do not reverse the positives
and negatives here.

(1) Correlation with source code reuse rate
The correlation between total productivity and source code
reuse rate is close to the desired value. In addition, the
correlation of the productivity of a new development part
with the source code reuse rate is also close to the desired
value. This means that when there is a framework for the
entire system, repetitive development is done, such as
adding new functionality. As a reuse method, we can
determine that this is a desirable development process.

The program production correlation is lower than
the impact of total productivity.

International Workshop on Informatics (IWIN 2009)

As for this, reuse of the source code for reuse of the design
specifications might require extra work. We believe this is
because it is reuse of the source code itself, and not reuse of
parts of the source code. If parts of the source code are
reused, the correlation should be of the same degree as the
correlation with total productivity. There is no correlation
with the productivity of new parts of program productivity.
This is in accordance with the expected value.

Bug repair man-hours have a value close to the
expected value. We believe this to be caused by the
reduction in the number of system test bugs. However, in
regards to the number of bugs in combinatorial testing and
system testing, they were considerably different from the
expected values. We believe that this is because the source
code was reused, and it was not just reuse involving most of
the system or parts of the system.

(2) Correlation with specifications review rate

In total development productivity, the total productivity and
new partial productivity both had a correlative value close to
the expected value. We believe that a sound design review
was performed for the system specifications and software
specifications. We believe that the correlation of new parts
was particularly high because many items are pointed out
for design review because they are new, so the review effect
is high.

For program productivity, total productivity displays a
considerably high correlation. For new parts, the correlation
is considerably lower than the expected value. We believe
that a sound review could not be done unless someone who
understands the contents of the program specifications
performs the review.

There is no clear correlation with number of bugs,
and the results do not accord with the expected values at all.
This means that the review of the program specifications
was not done to the error extraction level.

This suggests that, in order to extract a program bug,
someone who understands the program must do the review
of the program specifications, or a review of the source code
must be done.

(3) Effect of the test specifications review

The review rate of specifications has some correlation with
total productivity. We believe that it has the effect of
reducing the number of bugs repair man-hours. However, no
correlation is observed with new production parts.

Table 2: Example of estimate of partial correlation coefficient using actual company data

Total Program Bug repair | Number of bugs

development productivity total man-

productivity hours

Total New Total New part Combinational | System

part testing testing

Software reuse rate 0.94* 0.87* 0.90* 0.09 —0.82% —0.44 —0.54
Specifications review
man-hour rate 0.92* 0.95% 0.88%* 0.69 0.20 0.14 0.30
Test specifications
review man-hour rate | 0-71 0.32 0.73 0.53 —0.81% 0.84 —0.35

* shaded areas denote statistically significant results

133



International Workshop on Informatics (IWIN 2009)

= Actual software reuse rate

Resue rate Desired software reuse rate

Total productivity
1.00_+

Number of bugs system test Productivity of new part

Number of bugs Total productivity of
combinational test program
Bugs repair total man-hours Productivity of new program

—&— Actual specifications review man-hour rate
Specifications reviewl

= Desired specifications review man-hour ratio

Total productivity
1.00

Number of bugs system test \iProductivity of new part

Number of bugs
combinational test

\ Total productivity of
/ program

. / ..
Bugs repair total man-hours Productivity of new program

Actual test specifications review man-hour rate

Test specifications review Desired test specifications review man-hour rate

Total productivity

Number of bugs system test z Productivity of new part
/

Number of bugs
combinational test

Total productivity of
program

N\
Bugs repair total man-hours Productivity of new program

Fig. 2 Radar chart of desired and actual partial correlation coefficient

134



It is easy to carry out a review of specifications for existing
parts with a fixed architecture, whereas for new parts, it is
difficult to do a review of test specifications. It is similar in
the case of the correlation with program productivity.

In regards to the correlation with bugs, man-hours
used to repair all bugs shows a considerable negative
tendency and, in this aspect, is close to the expected value.
In addition, the number in combinatorial testing shows a
high positive correlation, and this is in accordance with the
tendency of the expected value. However, the number of
bugs in system testing shows a negative correlation
tendency, but the value is insufficient. This shows that the
test specifications review is not yet sufficient, and as a result,
the bugs could not be completely caught in combinational
testing.

(4) Contribution rate for total productivity

In this case there was no data on the productivity
improvement rate from the previous year so were not able to
perform an evaluation. However, in Section 3.4 we showed
that a, b, and ¢ for the reuse rate, specifications review man-
hour rate, and test specifications review man-hour rate were
0.94, 0.92, and 0.71, respectively. Therefore, we presume
that entire productivity is probably considerably dependent
on the first two.

5. EVALUATION

From the analysis we could analyze the strengths,
weaknesses, and areas for improvement for this organization,
thereby confirming the effectiveness of our model. The
results can be summarized as follows.

(1) Strengths in the organization’s process
Reuse of software depends on the design specifications
framework, and this is reused for system designs and
software designs. By further promoting this in the future, we
can expect higher productivity and quality improvements
from software reuse. Specifications reviews are largely
being done in the upstream process. Test specifications
reviews have a considerable effect on reducing the number
of bug repair man-hours
(2) Weaknesses in the organization’s process
We Dbelieve the following are necessary process
improvement items. In software reuse, the reuse must be
approached not in terms of source code, but in terms of parts,
or as a framework. Downstream process reviews such as
program specifications reviews do not show a large enough
effect. Specifically, they do not have an effect on bug
extraction. We believe that there are a few review effects for
new programs in particular and the following items are
necessary to efficiently review a new program: a review
checklist, setting the numerical quota of bug search items,
and an efficient explanation of the specifications by the
creator. A checklist is also necessary for an efficient
specifications explanation, and performing a prior check
based on this checklist is also one method.

In test specifications reviews, a more thorough review
of newly produced parts is required. This also requires a
review checklist, setting numerical quota for bug search

135

International Workshop on Informatics (IWIN 2009)

items, and an efficient explanation of the specifications by
the creator.

(3) Effectiveness of the model

From the previously mentioned analysis results, we were
able to make an analysis of the overall strengths and
weaknesses of the organization. In addition, as a result of a
hearing undertaken with the development section, we heard
the opinion from many that some of the items were vague.
Presenting items with a clear number makes it easy for
managers to choose the necessary action, and it increases
their sensitivity towards developers. This shows the
effectiveness of this mode

6 DISCUSSION

Detailed data was collected on the organization chosen for
evaluation and the various data were consolidated for model
evaluation. We believe that there are a number of
organizations that collect these data but do not use it in this
way, and our model is likely to be beneficial for such
organizations.

As a next step, it is necessary for them to take

measures to improve their weak points. While various
methods have been proposed, it is necessary to adopt an
improvement method according to the organization’s
specific situation [8][9][10][11]. In addition, it is necessary
to extract problem processes from upstream specification
review results. This will cause the effectiveness of the
review to increase.
We have previously proposed such a method [6]. With this
method, when upstream process management is insufficient,
we focus our attention on the fact that the effect could
appear in the each bug reports of the test process in the
downstream processes. We can analyze the bug reports and
identify groups that we believe to have characteristics
similar to the process impact. Then, by following the
process characteristics noted in ISO/IEC 15504, and the
combinatorial table from the work output, we can determine
the particular upstream processes that were the cause of
most of the bugs occurring in the downstream tests and then
make improvements.

Also, in this example, because the man-hours used in
the upstream process review were comparatively low (less
than 5%), the review man-hour rate and productivity had an
extremely positive correlation. If the review man-hour rate
becomes high, the challenge will be how to conduct reviews
efficiently. We have also previously suggested a
method to improve review efficiency [5] in which a quality
coordinate [7] is initially used to set a start and end standard
point of review. Following on form this, we have proposed
here a method to continuously improve the review checklist
using the statistics technique of a management diagram. As
a result of applying this method to an actual organization,
we were able to confirm the tolerance of the quality
coordinate, the review cost, and a shift in the test man-hours
to the upstream process for the entire lifecycle. In addition,
the product quality is gradually improving. Improvements
were confirmed for each criterion, implying the
effectiveness of the proposed method.



7 CONCLUSIONS

The characteristics of this model are, firstly, it is able to
make a process evaluation using the data collected every day
within an organization and, secondly, even a single year of
data can be used to evaluate the process, multiple years are
not needed. Although this is only analyzing general
tendencies, there is much value in using the model because
analysis can be done using data that is collected daily, and
thus it requires less labor and time than assessments done by
outside companies or quality management organizations.

Using our model, we can find the weaknesses of
organizations and improve them, and we can connect this to
actions to make the strengths even stronger, clarifying the
direction for such organizations. For future work, we will
apply this method to other projects in order verify whether it
has a similar effect.

REFERENCES

[17 http://www.sei.cmu.edu/cmmi/index.html

(2009/8/20)
[2] http://www.isospice.com/ (2009/8/20)
[3]1ISO 9001:2000
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue
_detail.htm?csnumber=46486  (2009/8/20)
[4] Rogger S.Pressman, “SOFTWARE ENGINEERING
/sixth edition” McGraw-Hill (2005)
[5] A. Hayashi, N. Kataoka, “A Method to Identify Critical
Software Process Improvement Area using Quality Function
Deployment”. Proceeding International Conference on
Innovation in Software Engineering ISE, pp1143-1148
(2008)
[6] A.Hayashi, N. Kataoka , ”A Method to Identify Critical
Software Process Improvement Area using Quality Function
Deployment”, Journal C of IEEJ , Vol.128, No7 ,
pp1231-1241 (2008)
[7] Komuro et al. “Peer review technique improvement and
quantitative analysis of improvement effect on the basis of
the reality of the development work ” ,SEC Journal, Vol.1,
No.4, PP.6-15, Nov. 4(2005)
[8] Tom Gilb, D. Graham, “Software Inspection”, Addison-
Wesley Professional (1993)
[9] Peter C. Rigby, Daniel M. German, Margaret-Anne
Storey, “Open source software peer review practices: a case
study of the apache server”, ICSE '08: Proceedings of the
30th international conference on Software engineering, May,
pp541-550 (2008)
[10] Dewayne  Perry, Adam  Porter, Michael
Wade, ”"Reducing inspection interval in large-scale software
development”, IEEE Transactions on Software Engineering
archive, Vol. 28, Issue 7, PP.695-705, July (2002)
[11] KOMIYAMA Toshihiro, “Development of Foundation
for Effective and Efficient Software Process Improvement
(<Special Features> Study of The Latest Trend of Software
Management Technology)”, IPSJ Magazine, Vol. 44, No4,
Apr., pp341-347 (2003)

136

International Workshop on Informatics (IWIN 2009)





